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Effect of Macromolecular Crowding on Reaction Rates:
A Computational and Theoretical Study

Jun Soo Kim and Arun Yethiraj*
Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

ABSTRACT The effect of macromolecular crowding on the rates of association reactions are investigated using theory and
computer simulations. Reactants and crowding agents are both hard spheres, and when two reactants collide they form product
with a reaction probability, prxn. A value of prxn < 1 crudely mimics the fact that proteins must be oriented properly for an asso-
ciation reaction to occur. The simulations show that the dependence of the reaction rate on the volume fraction of crowding
agents varies with the reaction probability. For reaction probabilities close to unity where most of encounters between reactants
lead to a reaction, the reaction rate always decreases as the volume fraction of crowding agents is increased due to the reduced
diffusion coefficient of reactants. On the other hand, for very small reaction probabilities where, in most of encounters, the reac-
tion does not occur, the reaction rate increases with the volume fraction of crowding agents—in this case, due to the increase
probability of a recollision. The Smoluchowski theory refined with the radiation boundary condition and the radial distribution func-
tion at contact is in quantitative agreement with simulations for the reaction rate constant and allows the quantitative analysis of
both effects separately.
INTRODUCTION

The cell cytoplasm is a very crowded environment consisting

of many organelles, large macromolecules, and the cytoskel-

etal network. The fraction of volume occupied by ‘‘crowding

agents’’ is significant, estimated to be 20–30% of the total

volume or higher. The environment of the cell cytoplasm

is therefore very different from dilute solutions (1–3), where

most biochemical studies are carried out. The effects of

macromolecular crowding can therefore be very significant

and there has been considerable effort devoted to under-

standing crowding effects (1–8). In this work we quantify

the effect of crowding on association reactions using

computer simulation and theory.

A qualitative picture for the effect of crowding agents on

association reactions has been provided by the pioneering

efforts by Minton (4,5). In this picture, crowding agents

induce two opposing effects that impact the reaction rate.

The presence of crowding agents reduces the diffusion coef-

ficient of the reactants, and this should decrease the reaction

rate. On the other hand, crowding agents can increase the

equilibrium constant for the association and this thermody-

namic effect should increase the reaction rate. The net reac-

tion rate reflects a balance between these effects, and one can

envisage conditions where the reaction rate might be a non-

monotonic function of the volume fraction of crowding

agents.

In the diffusion-controlled limit where every encounter

between reactants results in a reaction, the reduction of diffu-

sion in the crowded environment will lead to the reduced

reaction rate. In the biophysics of association reactions,
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however, it is important to consider that not every encounter

will result in a reaction. Specific binding occurs through sites

that must be properly aligned for the reaction to occur, and

this is referred to as anisotropic reactivity (9–12). Therefore,

the probability that an encounter results in a reaction can be

quite small; for example, only ~2% for the binding of an

actin monomer to the end of a filament (13). As the proba-

bility of reactive encounter becomes smaller due to aniso-

tropic reactivity, caging effects (which keep reactants in

proximity) induced by crowding agents could increase the

reaction rate by increasing the probability of reorientation

and recollision. In this work, we investigate the crowding

effect on the association reaction with different probability

of reactive encounter, resulting in qualitatively different

dependence of the reaction rate on crowding.

Although the importance of crowding effects on the reac-

tion rate is appreciated in many different biological processes,

such as protein-protein associations (14,15), actin filament

elongation (13,16), and protein folding (7), it has been diffi-

cult to quantify these effects, especially in terms of the two

opposing effects discussed above. For example, in a recent

study, Moorthy et al. (15) studied the effect of polyacrylamide

gels on the association of proteins. They found that increasing

the concentration of the crowding agent (hydrogel in this case)

increased the rate constant for the association reaction. The

experiments could not, however, establish the mechanism

for this increase in the reaction rate.

Theories developed for reaction kinetics in dense liquids

can be used to understand crowding effects on protein asso-

ciation reactions, with the solvent replaced by the crowding

agents. In the original theory of diffusion-controlled reac-

tions, an expression for the reaction rate constant can be ob-

tained by solving the Smoluchowski equation with so-called

absorbing boundary condition. To consider a finite initial
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reaction rate and the structure of the solvent, refinements of

the theory have been proposed, including partially absorbing

boundary condition and the incorporation of a potential of

mean force (17–19). We use the solution of the Smoluchow-

ski equation with these refinements to predict the long time

rate constant of protein association reactions. Computer

simulations have also been used as an alternative to describe

the diffusion-controlled reaction kinetics in dense liquids

(20–23). However, in these studies, the reactant concentra-

tions and the solvent densities are too high, compared with

those of proteins in cells, to be directly useful for an under-

standing of crowding effects on the protein association

reactions.

There have been simulation studies on the related problem

of reaction rates in random media (24–27). Buján-Nuñez

et al. (24) investigated the effect of immobile obstacles on

the rates of association reaction. The presence of immobi-

lized obstacles are often referred to as confinement effects

and are distinct from crowding effects imposed by mobile

crowding agents (5,8). The biophysics of the confinement

problems is dominated by the fragmentation of void space

due to the presence of immobile obstacles. Therefore the

reaction rate goes to zero for very low volume fraction of

the obstacles. Although it is not clear what fraction of the

total proteins in the cytoplasm are mobile (28), comparison

of the tracer diffusion in concentrated mixtures of long fila-

ments and inert soluble particles suggests that roughly half of

total cytoplasmic protein is mobile in solution and the

remainder is structural (28,29). The effect of mobile crowd-

ing agents is therefore of crucial importance in understanding

of biochemical reactions within cells, even though their

effects might not be as dramatic as those of structural

obstacles.

In this work, we investigate the effect of crowding on

association reactions using computer simulation and theory.

We use a simple model for the reactants and the crowding

agents to isolate excluded volume effects. We model reac-

tants and crowding agents as hard spheres, all of the same

size, and propagate the system using Brownian dynamics

simulations. We consider pseudo-first-order reactions, A þ
B / products, and keep the concentration of the B-species

constant. One example of this type of reaction is actin fila-

ment elongation during membrane protrusion (30) where

the concentration of actin monomers is essentially constant

because the binding of monomers to one end of the filament

is accompanied by a depolymerization at the other end. We

investigate total volume fractions, f, ranging from 0.01 to

0.4, which cover the entire regime from aqueous buffer

solutions to what might be expected in a cell cytoplasmic

environment.

Our model has significant technical advantages. Since the

interaction between all species is identical, we can greatly

amplify the volume of the data collected by labeling each

of the spheres as a reactant and calculating the survival prob-

ability for all spheres. In addition, a simple analytical expres-
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sion can be obtained for the long time rate constant. The

Smoluchowski theory refined with the partially absorbing

boundary condition and the potential of mean force provides

the expression for the long time rate constant (17,18), which

can be simplified with approximate results obtained for hard

sphere liquids (31,32).

We investigate crowding effects for different values of the

reaction probability. In general, not every encounter between

reactants should lead to a reaction (9–12) because the relative

orientation of proteins is essential for association. Although

models of anisotropic reactivity have been considered, such

as a reactive patch on a sphere (9–12), we mimic this effect

via a reaction probability where an encounter results in

a reaction with a probability prxn, which is less than unity.

This is similar to the probability of reaction on collision

considered earlier (19,33) and replaces the mixed boundary

conditions dependent on the angular coordinate (9,12). We

find that crowding effects are strongly dependent on the

value of prxn. Simulations show that for prxn > 0.05, the reac-

tion rate constant always decreases as the volume fraction is

increased. This is the case when the encounter rate between

reactants is more important in determining the reaction rate.

For prxn < 0.002, the reaction rate constant increases with

increasing volume fraction, which we attribute to the cage

effect characterized by the increases in the pair distribution

function at contact and in the recollision probability. For

intermediate values of prxn, the reaction rate constant can

be a nonmonotonic function of volume fraction.

An approximate expression of the long time rate constant

based on the Smoluchowski theory provides a qualitatively

accurate description of the crowding effect. The good agree-

ment of the theory with simulations, especially at low values

of prxn, is quite surprising given the simplicity of the theory.

Furthermore, this expression allows one to separate the two

opposing effects induced by crowding and suggests that the

dependence of the rate constant on prxn arises from the strong

dependence of the rate of product formation (from an

encounter pair) on prxn.

MODEL AND SIMULATION METHOD

We consider pseudo-first-order reactions, A þ B / products, in the pres-

ence of crowding agents. All species, i.e., reactants (A and B) and crowding

agents, are modeled as hard spheres of diameter s, which is the unit of length

in this work. The simulation cell is a cube of linear dimension L ¼ 12s with

N particles. The total volume fraction, f ¼ Nps3/6L3, is varied by changing

N which ranges from 17 at the lowest volume fraction to 1320 at the highest

volume fraction investigated. The system consists of one A-reactant particle

(NA¼ 1), 16 B-reactant particles (NB¼ 16), and N – NA – NB particles of the

crowding agent.

We use the hard-sphere Brownian dynamics method of Strating (34) to

evolve the system. Hydrodynamic interactions are not considered. After

each time step Dt, the position ri(t) of particle i is obtained via

riðt þ DtÞ ¼ riðtÞ þ RðDtÞ; (1)

where R(Dt) is a random displacement with a Gaussian distribution

function with zero mean and variance 6D0Dt, i.e., hR(Dt)i ¼ 0 and
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hR2(Dt)i ¼ 6D0Dt. D0 is the diffusion coefficient of the spheres in pure

solvent. D0 sets the timescale, i.e., tBD ¼ s2/D0 is used as the unit of time

in this work. If the displacement results in an overlap between any two parti-

cles, the displacements are corrected to mimic an elastic collision between

particles (34). For this purpose, the velocity of each particle is calculated

from the original random displacements, vi ¼ Dri/Dt, and the collision

time and the velocity after the collision are calculated (35). The corrected

displacements are then determined by the position at the moment of collision

and the velocity after the collision. This propagation by elastic collision is

repeated until the time reaches Dt. A time step Dt ¼ 10�4 tBD is used for

all the simulations. This ensures that a particle does not move more than

its radius in one time step.

In the presence of crowding agents, the diffusion coefficient, D, is a func-

tion of the total volume fraction occupied by reactants and crowding agents

and is calculated from the mean-square displacement using the Einstein

relation ���riðtÞ � rið0Þj2
�
¼ 6Dt; (2)

where the average is over all the particles and over initial times. The diffu-

sion coefficient is averaged over the 10 independent trajectories (starting

from different initial conditions) and statistical uncertainties are one standard

deviation about the mean.

To relate these parameters to experimental systems we consider the param-

eters for actin monomers (16,36). For this system s ¼ 5.4 nm (longitudinal

dimension), D0 ¼ 71.5 mm2/s, and tBD ¼ 0.41 ms. The concentrations of A

and B are 6 mM and 98 mM, respectively. A concentration of 100 mM is quite

high for a single protein and actin is the most abundant protein in many eu-

karyotic cells (30). The number of B reactant particles (NB ¼ 16) is chosen

such that the concentration determined from these parameters does not

exceed 100 mM. We investigate only one concentration of the reactant B,

but this concentration is low enough that we do not expect the concentra-

tion-dependent effects noted in other work (20,21,23). For comparison we

perform simulations with one particle of reactant A and two particles of reac-

tant B (without any crowding agents at prxn ¼ 1). The rate constant is

different from that of one particle of A, 16 particles of B, by only 3%.

This confirms that many-particle effects are not significant at the concentra-

tions studied.

The reaction rate constant is obtained as follows. When reactants A and B

collide, they can react with a probability prxn. In practice, a random number

uniform in the range (0,1] is chosen and if this random number is <prxn the

reaction is assumed to have occurred. The quantity directly obtained from

the simulation trajectories is the survival probability, SA(t), which is the

probability that the particle A remains unreacted after time t. The time-

dependent reaction rate constant k(t) is related to the survival probability

via (18,20,21),

dSAðtÞ
dt

¼ �kðtÞCBSAðtÞ (3)
or

dlnSAðtÞ
dt

¼ �kðtÞCB; (4)

where CB is the concentration of reactant B. We focus on the long time limit

of the time-dependent rate constant, i.e., kN h k(t / N), which we obtain

from a linear least-squares fit of ln SA(t) at long times; the slope of this curve

divided by CB gives kN.

The survival probability is calculated using the method suggested by

Dong et al. (20) and Zhou and Szabo (21), which has also been adopted

in the recent article by Sun et al. (37). For each volume fraction a number,

Ntrj, of independent trajectories are obtained. Since all the particles are iden-

tical, in the beginning of each trajectory, each of N particles is labeled A in

turn and, for every choice of A, the other particles are grouped into Ngrp

groups with NB number of B particles. Each group of B particles participates

in the reaction independently with particle A, and hence there are NNgrpNtrj

total configurations participating in the reactive events. This greatly
amplifies the volume of data collected. For example, for the total volume

fraction of 0.10, there are a total of 330 particles that can be labeled as a reac-

tant A in turn, resulting in the 330 different configurations for the reaction.

Once a particle is labeled as A, the rest of 329 particles are divided to 20

groups of 16 B reactants, only one group of which is considered to be reac-

tive in turn. One single trajectory gives 6600 (¼ 330 � 20) reactive events,

and with only 150 trajectories a total of 990,000 reactive events are recorded.

In the simulations reported, the number of reactive events varies between

1,000,000 and 3,000,000.

THEORY

The primary quantity in the Smoluchowski theory is time-

dependent pair distribution function, r(r, t), of reactant pairs,

which is the number density of a reactant at a distance r at

time t given that its reactant pair is at the origin. The Smolu-

chowski equation is a stochastic equation for r(r, t) and is

given by (17–19,21)

vrðr; tÞ
vt

¼ Drel

r2

v

vr
r2e�bUðrÞ v

vr
ebUðrÞrðr; tÞ; (5)

where U(r) is the potential of mean force between reactants,

and Drel is the relative diffusion coefficient of a reactive pair.

The potential of mean force can be obtained from the radial

distribution function, i.e., g(r) ¼ e–bU(r). where b ¼ (kBT)�1,

kB is the Boltzmann constant, and T is the temperature. Given

initial and boundary conditions, Eq. 5 can be solved for r(r,

t) and hence the reaction rate,

kðtÞ ¼ 4pDrels
2e�bUðrÞ

�
d

dr
ebUðrÞrðr; tÞ

�
s

: (6)

The initial condition is

rðr; 0Þ ¼ e�bUðrÞ ¼ gðrÞ; (7)

For our model, the partially absorbing boundary condition

suggested by Rice (17) and Collins and Kimball (38) takes

the form

prxnk0rðs; tÞ ¼ 4pDrels
2e�bUðrÞ

�
d

dr
ebUðrÞrðr; tÞ

�
s

; (8)

where k0 is the intrinsic rate of reaction between two reac-

tants at contact. In Eq. 8, the flux of reactant pair density

at contact is related to the rate of product formation.

Exact expressions for the rate constant, k(t), can be ob-

tained in the t / 0 and t / N limits (17,18),

kð0Þhkðt ¼ 0Þ ¼ prxnk0e�bUðsÞ ¼ prxnk0gðsÞ (9)
and

kNhkðt ¼ NÞ ¼ 4pseDrelprxnk0gðsÞ
4pseDrel þ prxnk0gðsÞ; (10)

where g(s) is the value of the radial distribution function at

contact, i.e., r ¼ s, and

se ¼

2
4Z

N

s

ebUðrÞr�2dr

3
5
�1

: (11)
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Equation 10 can be rewritten as

1

kN

¼ 1

4pseDrel

þ 1

prxnk0gðsÞ; (12)

where we can identify the diffusion-controlled reaction rate,

kD¼ 4pseDrel, and the initial reaction rate, k(0)¼ prxnk0g(s).

The long time rate constant is also decomposed into two

contributions in Minton’s theory (4), i.e.,

1

kN

x
1

kenc

þ 1

kts

; (13)

where kenc is the rate constant for an encounter, and kts¼ kts
�G

where kts
� is the transition-state limited rate constant in the

absence of crowding agents and G is the nonideality factor

defined as a ratio of activity coefficients. A comparison of

this expression with Eq. 12 shows that since kenc has the

same physical meaning as kD in Eq. 12, kts ¼ kts
�G is equiv-

alent to k(0) (¼ prxnk0g(s)) in Eq. 12. Indeed, for the case

where the product is a tangent dimer, G ¼ g(sþ) is an exact

result. In such case, the Minton theory (4), based on the scaled

particle theory for the determination of G, is therefore equiv-

alent to the Smoluchowski theory. Note that for different

models of the product the equivalence does not hold.

We use Eq. 12 to calculate the long time reaction rate

constant and to compare the results with those obtained

from simulations. The hard-sphere model allows for further

simplifications via analytic forms for D and g(s). From the

Carnahan-Starling equation of state (31) and the pressure

equation we have

gðsÞ ¼ 1� f=2

ð1� fÞ3
; (14)

and the Enskog theory predicts

D

D0

¼ 1

gðsÞ ¼
ð1� fÞ3

1� f=2
: (15)

We can also approximate Drel ¼ 2D and se z s. The varia-

tion of the effective collision diameter, se, with volume frac-

tion is not significant. Zhou and Szabo determined its value

as 1.07s for f ¼ 0.412 (21) so s ¼ se is expected to be

a reasonable approximation in the range of volume fractions

we study. The final result for kN is

s3

kNtBD

¼ 1� f=2

8pð1� fÞ3
þ ð1� fÞ3

ð1� f=2Þprxn

s3

k0tBD

; (16)

which, in units of s and tBD for length and time, can be

written as

1

kN

¼ 1� f=2

8pð1� fÞ3
þ ð1� fÞ3

ð1� f=2Þprxn

1

k0

: (17)

The only parameter that is not known a priori for our

model is k0. For its determination, it is possible to treat the

cases of prxn¼1 and prxn < 1 separately, since it is reasonable
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to assume k0 ¼ N for prxn ¼ 1 (corresponding to the

absorbing boundary condition of the original Smoluchowski

theory) whereas k0 should be finite for prxn < 1. However, it

is shown that the finite value of k0 determined consistently

for all prxn as described below is a good approximation

without making any significant change of the rate constant

even at prxn ¼ 1. Therefore, we determine k0 from the simu-

lations consistently at all prxn with an assumption that k0 is

finite even at prxn ¼ 1. From Eq. 4, at short times,

d ln SAðtÞ
dt

��
t¼ 0
¼ �kð0ÞCB ¼ �prxn � k0gðsÞCB; (18)

or

d ln SAðtÞ
dðprxntÞ

��
t¼ 0
¼ �k0gðsÞCB: (19)

It is found that the slopes of ln SA(t) for all prxn plotted as

a function of prxnt collapse into one at short times which

we take as an average value of k0g(s). The value k0 deter-

mined from it varies within 5% with the volume fraction

of crowding agents. We use k0 determined for f ¼ 0.01

for the analytical calculation of the reaction rate in all volume

fractions for consistency, that is, k0 ¼ 5.98 � 1026 mol s�3

tBD
�1. With s¼ 5.4 nm and tBD¼ 0.41 ms, this corresponds

to k0 ¼ 2.31 � 1011 M�1 s�1. As mentioned above, the

difference between rate constants determined using this finite

value of k0 and k0¼N is negligible, implying that k0¼ 2.31

� 1011 M�1 s�1 is large enough for the purely diffusion-

controlled case.

RESULTS AND DISCUSSION

The diffusion coefficient decreases as the volume fraction

of crowding agents is increased, as expected. Fig. 1 depicts

D/D0 as a function of the volume fraction and shows that

over the range studied the diffusion coefficient decreases

by more than a factor of 3. The simulation results are in

perfect agreement with previous Brownian dynamics simula-

tions (39), which provide a test of the simulation algorithm.

Also shown in the figure is the prediction of the Enskog

theory in Eq. 15. The theory is in reasonable quantitative

agreement with the simulation results for the diffusion coef-

ficient, which justifies the use of Eq. 15 in the calculation of

the long time rate constant in Eq. 12.

The reaction rate constant is obtained from the long time

behavior of the survival probability. Fig. 2, a and b, depict

the survival probability for prxn ¼ 1 and 0.001, respectively,

and for various volume fractions. The rate constant, kN, is

obtained from the slope of the curves divided by the concen-

tration of B. Linear behavior is seen over several decades of

the survival probability and the regime where SA(t) is

between 0.1 and 10�4 is used for the calculation of the rate

constant. For prxn ¼ 1 the slope of the curve decreases as

the volume fraction is increased, but for prxn¼ 0.001 the slope

of the curve increases as the volume fraction is increased. The
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reaction rate constant therefore has a qualitatively different

dependence on volume fraction in the two cases.

The qualitative dependence of the rate constant kN on

volume fraction is different depending on the value of prxn.

Fig. 3 a depicts simulation results for kN (in units of

M�1 s�1) as a function of volume fraction for various values

of prxn. For prxn R 0.05, the rate constant is a monotonically

decreasing function of f. For prxn % 0.002, the rate constant

is a monotonically increasing function of f. For intermediate

values of prxn, the rate constant is a nonmonotonic function of

f. In Fig. 3 b, the rate constant is divided by the value of the

rate constant for f ¼ 0.01. The trends as a function of f are

much clearer in this case. The line marked ‘‘Diff. Coeff.’’ is

the relative diffusion coefficient of the spheres as in Fig. 1.

The relative reaction rate constant for prxn¼ 1 shows roughly

the same trend as the relative diffusion coefficient suggesting

that diffusion limitations are important in this case. Note,

however, that the decrease of the relative reaction rate constant

with the increased volume fraction is less than that of the rela-

tive diffusion coefficient, which could be because of the ther-

modynamic effects discussed by Minton (4,8). This implies

that even the prxn ¼ 1 case does not correspond to a purely

diffusion-controlled limit, where kD ¼ 4pseDrel (see Eq.

12). It is also interesting that the rate constant does not vanish

even for f¼ 0.40, contrary to the case of immobilized obsta-

cles where the reaction rate decays to zero for f ¼ 0.20 (24).

The predictions of the Smoluchowski theory (Eq. 12) for kN

are compared to simulation results in Fig. 4. The theory is in

good qualitative agreement with the simulations in all cases,

and captures the trends discussed above. With the exception

of the highest volume fractions and prxn ¼ 1, the theory is in

quantitative agreement with the simulations. Note that there

are no adjustable parameters in the theory and this is therefore

a test of the approximations inherent to the theory. Discrep-

ancies between theory and simulation may stem from the fact

FIGURE 1 Simulation results (squares) for D/D0, as a function of total

volume fraction (f). The line is the prediction of the Enskog theory for

hard spheres.
that the Smoluchowski theory of irreversible diffusion-limited

reactions is exact only under the conditions that the dynamics

are diffusive, A is static, and the molecules of the species B are

noninteracting (18,21). These conditions are clearly not satis-

fied in our molecular model. In addition, the small deviations

of the Enskog estimate for D from simulations as shown in

Fig. 1 might also contribute to the discrepancies especially at

prxn ¼ 1, where the influence of diffusion is most important.

The analytical expression Eq. 12 enables a separate consid-

eration of kD and k(0). An examination of the two contribu-

tions (kD and k(0)) to kN provides a qualitative understanding

of the dependence of the rate constant on volume fraction. For

high values of k(0) ¼ prxnk0g(s), the reaction is diffusion-

controlled and kN ~ kD, which is a monotonically decreasing

function of f. For low values of k(0), the reaction is not diffu-

sion-controlled, and kN ~ k(0), which is a monotonically

increasing function of f. When these two contributions are

comparable, kN is a nonmonotonic function of f. Fig. 5

FIGURE 2 Logarithm of the survival probability as a function of time for

(a) prxn ¼ 1, and (b) prxn ¼ 0.001, and for various total volume fractions, f

(numbers on each plot). For each case, the rate constant is determined from

the slope in the regime marked by the horizontal dotted lines.
Biophysical Journal 96(4) 1333–1340



1338 Kim and Yethiraj
depicts kD, k(0), and kN for prxn¼ 0.05, 0.01, and 0.002. In all

cases, k(0) is an increasing function of f and kD is a decreasing

function of f. As prxn is decreased, the contribution of k(0)

becomes more significant, and this contribution is dominant

for prxn % 0.002. When k(0) and kD are of similar magnitude,

kN displays a nonmonotonic dependence on f.

The increase in kN with increasing f for low reaction prob-

abilities can be understood by considering the recollision

probability a(t), which is the probability that a reactant pair

recollide at least once in a time duration t given that they

collided but did not react at time t ¼ 0. In dense crowded

media, each particle is surrounded by crowding agents that

cage the particle. Although the probability of an encounter

decreases with increasing volume fraction, once two reactants

have encountered each other, the probability of a recollision is

also greater because the cage of crowding agents makes an

a

b

FIGURE 3 Simulations results for the rate constant (kN) as a function of

total volume fraction for various values of the reaction probability, prxn (as

marked). The absolute rate constant (in units of M�1 s�1) is shown in panel

a and ratio of the absolute rate constant to its value for f ¼ 0.01 is shown in

panel b. Numbers on each plot are the reaction probabilities prxn. The line

marked ‘‘Diff. Coeff.’’ is the relative diffusion coefficient of spheres.
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escape of the reactants less likely by forcing them to remain

in proximity for longer. Fig. 6 depicts a(t) obtained from

simulations for various volume fractions. As the volume frac-

tion is increased so does a(t), which means that the reactants

are more likely to have repeated collisions. In Fig. 6, a(t) is

0.99 at time 0.1tBD for f ¼ 0.4, compared to values of

0.979, 0.966, 0.954, and 0.946, respectively, for f ¼ 0.30,

0.20, 0.10, and 0.01. This difference does not seem large,

but is significant because, for low values of prxn, the reactants

have to collide many times, of order 1/prxn, for a reaction to

occur. If we assume that 1000 collisions are necessary for a

reaction (for prxn ¼ 0.001) and each of these takes ~0.1 tBD,

then a1000 ¼ 4.3 � 10�5 for f ¼ 0.40 and 7.8 � 10�25 for

f¼ 0.01. The idea of increased recollisions being responsible

for the trend in the reaction rate is therefore reasonable.

In Fig. 7, simulation results for 1/kN are plotted as a func-

tion of 1/prxn. Again, good qualitative agreement is found

between theoretical predictions from Eq. 12 and simulations.

An interesting feature in this figure is that at high volume

fractions, the increase in kN is modest as prxn is increased,

whereas for low volume fractions it increases dramatically.

This implies that although kN depends strongly on the

intrinsic reaction probability in dilute solutions, this effect

is not as important in crowded environments because cage

effects make repeated encounters more likely. Therefore,

the effect of anisotropic reactivity might not be as important

in crowded environments as it is in buffer solutions.

CONCLUSIONS

We study the effect of macromolecular crowding on associ-

ation reactions using Brownian dynamics simulations and

the Smoluchowski theory. Reactants and crowding agents

are all modeled as hard spheres of the same diameter.

When reactants encounter each other, via a collision, they

FIGURE 4 Comparison of theoretical predictions (solid lines) to simulation

results (symbols with dashed lines) for kN as a function of volume fraction for

various values of prxn (as marked). Simulation results are the same as in Fig. 3 a.
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FIGURE 5 Rate constant kN and contributions kD and k(0) as a function

of f for prxn ¼ (a) 0.05, (b) 0.01, and (c) 0.002.
react with a probability prxn, which mimics the fact that reac-

tants must orient properly for a reaction to occur. We study

values of prxn ranging from 0.001 to 1.

The qualitative impact of crowding agents on the reaction rate

constant depends strongly on the value of prxn. For prxn > 0.05,

the rate constant decreases monotonically with increasing

volume fraction of crowding agents, suggesting that the reaction

is dominated by diffusion limitations. The thermodynamic

effect, where crowding effects are expected to increase the equi-

librium constant for the associated species, does not appear to

change the qualitative behavior. For prxn < 0.002, the rate

constant increases monotonically with increasing volume frac-

tion of crowding agents, attributable to the cage effect of crowd-

ing agents which increases the probability of recollisions

between reactant pairs (after a collision does not result in a

FIGURE 6 Recollision probability, a(t), as a function of time for various

volume fractions.

FIGURE 7 Reciprocal of rate constant, 1/kN as a function of the recip-

rocal of reaction probability, 1/prxn, determined from simulations for various

volume fractions (as marked). The linear behavior is consistent with theoret-

ical predictions (Eq. 12).
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reaction). For 0.002<prxn< 0.05, the rate constant can be a non-

monotonic function of the volume fraction of crowding agents.

The rate constant obtained from analytic theory is in good

agreement with the simulation data, provided the short time

reaction rate is input into the theory. From the standpoint of

the theory the essence of the crowding effect comes from the

pair correlation function between reactants (at contact), i.e.,

g(s). Crowding increases the value of g(s). In the diffu-

sion-controlled regime, this results in a decrease in the rate

constant, and in the reaction-controlled regime this results

in an increase in the rate constant. Real situations lie some-

where in between these two limiting regimes.

The simulations as well as the Smoluchowski approach

suggest the cage effect as a possible mechanism for the

increase in reaction rate with increasing crowding seen in

the experiments of Moorthy et al. (15). It is important to

note, however, that this work focuses on excluded volume

effects on the reaction rates. Other interactions, such as van

der Waals and electrostatic interactions, could play an impor-

tant role in realistic situations and it is possible, in principle, to

extend this simulation protocol to investigate such effects.
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