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Oleoylethanolamide-Based Lyotropic Liquid Crystals as Vehicles
for Delivery of Amino Acids in Aqueous Environment
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and §Fribourg University, Department of Physics and Fribourg Center for Nanomaterials, Fribourg, Switzerland

ABSTRACT We have investigated the phase behavior of self-assembled lyotropic liquid crystals (LC) formed by ternary
mixtures of oleoylethanolamide (OEA), water and arginine. OEA, a natural analog of the endogenous cannabinoid anandamide
involved in the peripheral regulation of feeding, was selected as a main component due to its capacity to induce efficient
decreases in food intake and gains in body mass. Arginine was selected as representative hydrophilic amino acid and added
to the OEA-water mixture at different concentrations. The phase diagrams were determined by combining cross-polarized optical
microscopy and small angle x-ray scattering. First, the phase diagram for the OEA-water system was determined. It was shown
that these two compounds give rise to reverse Ia3d double gyroid and reverse Pn3m double diamond cubic phases existing in
bulk over a large window of temperature and composition, and that for water content beyond 25% Pn3m coexisted with excess
water. Successively, the influence of arginine as guest molecule in the water channels of the reverse LC was investigated. For
the sake of comparison, results for the OEA-water-arginine system were compared with analog series of OEA-water-glucose.
The results showed that, at a fixed water content and temperature, the phase behavior of the liquid crystalline phases is strongly
dependent on arginine concentration. In more detail, arginine could be encapsulated in the bulk OEA-water LC up to 2.0% wt,
whereas transitions from Ia3d to Pn3m cubic phase were observed with increasing arginine concentration. Interestingly, upon an
increase of water concentration beyond 20–25%, Pn3m phase started to coexist with excess water releasing the arginine in
external water solution. Quantitative measurements of arginine content inside the LC water channels and in the excess external
water solution revealed a complete release of the amino acid, demonstrating that the investigated lyotropic liquid crystalline
systems can be used as ideal vehicles for the delivery of functional hydrophilic active molecules in aqueous environment.
INTRODUCTION

In recent years, self-assembled lyotropic liquid crystalline

(LC) phases of lipids and water, as well as their aqueous

colloidal dispersions, have gained increasing interest, due

to their potential in different fields of applications, such as

food technology (1–3), encapsulation and crystallization of

proteins (4–10), polysaccharides (11), cholesterol (12),

administration of drugs (13–15) and the formulation of

new delivery systems (13–16). Among the lipids studied,

monoglycerides are the most widely investigated systems.

The common types of liquid crystalline phases encountered

in binary monoglyceride/water systems are the isotropic

micellar fluid (L2), the lamellar phase (Lam), the reverse

hexagonal columnar phase (HII), and some types of reverse

bicontinuous cubic structures, namely the double diamond

(Pn3m), and the double gyroid (Ia3d) (17–19). Because the

structure of LC systems is a key factor in their applications,

it is of great importance to investigate the effects of guest

molecules on their morphologies and the way these mole-

cules may partition within hydrophilic or hydrophobic

domains of the LC structures. The polarity of the guest mole-

cules will be the first factor determining changes in the

topology of LC phases. For example, polar guest molecules
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located in the aqueous domains will alter the water solution

properties and can either modify the equilibrium hydration

level of the monoglyceride polar headgroups or participate

directly in cooperative hydrogen bonding with the mono-

glyceride headgroups (20–22). The research groups of

Saturni and Mariani (21,22) have investigated the liquid

crystalline behavior of lipid-water systems in presence of

large excess water, modified by trehalose saccharide as

examples of hydrophilic guest molecules. They found that

the introduction of trehalose sugar molecules in the water

regions caused a strong reduction of the lattice parameter

of the Pn3m cubic phases. Mezzenga et al. have confirmed

these findings (11). Furthermore, by using a dextran polysac-

charide series of different molecular weights in bulk mono-

glyceride-water systems, the same authors have further

demonstrated that the size of hydrophilic molecules also

plays a role by inducing, for example, order-to-order transi-

tions among bicontinuous cubic phases of different group

spaces (11). On the other hand, the effect of nonpolar addi-

tives, which preferably partition into the hydrophobic region

of the LC systems, will essentially tend to cause lipid hydro-

carbon tails to swell, release their packing frustration and

increase the water/lipid curvature favoring the formation of

reversed phases (20,23,24).

One of the major limitations in using monoglyceride-water

systems as possible delivery vehicles for active ingredients

and components in food applications is the introduction of
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new fat components in the resulting formulations. As a result,

the overall amount of monoglyceride in the composition has

to be maintained at a low amount, which consequently hinders

the maximum quantity of target active components to be

delivered.

The main objective of this work is to investigate the lyo-

tropic liquid crystalline phase behavior of a new system

based on water and a special type of monoglyceride, oleoy-

lethanolamide (OEA), and to evaluate this system’s

possible potential as a delivery vehicle for amino acids

and other hydrophilic molecules in aqueous environments.

OEA is a natural analog of the endogenous cannabinoid

anandamide and it is naturally present in chocolate. It is

produced in cells in a stimulus-dependent manner and is

rapidly eliminated by enzymatic hydrolysis, suggesting

a function in cellular signaling (25,26). Administration of

OEA causes a potent and persistent decrease in food intake

and a gain in body mass. OEA is a lipid mediator involved

in the peripheral regulation of feeding (25). In what

follows, we first want to assess whether thermodynamic

conditions exist for using OEA as a carrier for hydrophilic

functional molecules in conditions of high hydration—

those highly diluted concentration regimes where OEA

can coexist with excess water and can be administrated in

the form of structured colloidal dispersions. The effect of

arginine and glucose as polar guest molecules influencing

the type of the liquid crystalline phases and their capacity

to be encapsulated within OEA-water systems is an inte-

grant part of the study. Fig. 1 illustrates schematically the

main concepts toward the use of OEA-water systems as

delivery vehicles for amino acids and other hydrophilic

molecules.
Biophysical Journal 96(4) 1537–1546
EXPERIMENTAL METHODS

Materials

OEA was extracted and purified as described previously by Rodrı́guez de

Fonseca et al. (25,27). L(þ)-arginine (Mw ¼ 174.20 g/mole), purity grade

~99%, was purchased from Aldrich, Switzerland. Its solubility in water

was determined to be 15.91 wt % at 20�C (see the Supporting Material).

The density of arginine saturated solution at 20�C is 1.041 g/ml. Limonene

was selected as a typical hydrophobic plasticizing compound for the OEA

tails. Therefore, 5.0 wt % limonene with respect to OEA, was mixed with

the OEA; the resulting 95:5 wt % binary mixture of OEA:Limonene was

considered, for simplicity, as one single component throughout the whole

work and will simply be referred as OEA in what follows. All samples

were used as received. Scheme 1 sketches the chemical structures of the

various compounds used in the study.

Sample preparation

Arginine solutions of various concentrations ranging from 0 to 10 wt % of

arginine in water were prepared by dissolving arginine in high-performace

liquid chromatography-grade water (pH 7.0) at room temperature under

continuous stirring. The aqueous arginine solution was then added to

OEA at different weight ratios ranging from 10 to 50 wt %. The resulting

mixtures were then placed in glass vials (15 ml volume) with sealed caps

and left in a water bath at 85�C for 10 min. The vials were then subjected

to a vortex to shake the samples. This step was repeated twice to assure

complete and homogeneous mixing of the components. Finally, the vials

containing homogeneous samples were quenched at 4�C to allow the study

of truly equilibrium morphologies from room temperature upward, in agree-

ment with the procedure previously described by Caffrey et al. (28) to

prevent formation of metastable states. Because the isoeletric point (pI) of

Arginine is 10.8, at the pH used for the formulation (pH 7), Arginine is posi-

tively charged. For the preparation of small angle x-ray scattering (SAXS)

samples, quartz capillaries tubes (~7 cm length, 1 mm thick) were immersed

in the 15 ml glass vials (~12 cm length) at temperatures ~80–85�C (10–15�C
higher than the temperature at which the L2 þ water is formed) and they

were filled by simple capillarity. They were then cooled to room
FIGURE 1 Schematic concepts toward the possible use

of OEA-water liquid crystals in excess water as vehicle

to deliver amino acids and other hydrophilic guest mole-

cules.
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temperature, removed from the vials and sealed by rapid-cure epoxy. Before

measurements were taken, they underwent the same quenching treatment

used for the vials.

Cross-polarized optical microscopy (CPOM)
and turbidity

CPOM was used as a quick and easy inspection method to determine the

phase boundaries of LC phases showing birefringent behavior (crystalline

OEA, Lamellar). Samples contained in sealed glass vials were placed in

a homemade setup consisting of a water bath in between two polarizers

crossed at 90� and were illuminated by a halogen light source from behind

one polarizer. The temperature was increased at 2�C steps allowing detection

of birefringence in the temperature range from 30 to 80�C. For each

isothermal step, samples were allowed to equilibrate in the isothermal water

bath for at least 30 min, securing the achievement of LC thermodynamic

conditions.

Turbidity relies on the scattering of visible light by large (~mm) inter-

faces and was used to detect the coexistence of water and a specific

mesophase. The same temperature steps used by CPOM were employed

for turbidity screening.

SAXS

SAXS experiments were carried out to further refine the phase diagrams

tentatively constructed by cross-polarized microscopy, to afford a distinction

among the different types of bicontinuous cubic phases (and other possible

isotropic nonbirefringent phases) and to determine the main lattice parame-

ters of the observed LC structures.

SAXS diffractograms were acquired on a SAXSess instrument by Anton

Paar (Gratz, Austria) equipped with a line collimation set-up. The system

used a Cu Ka radiation source in a sealed tube (l ¼ 1.542 nm). The beam

was attenuated by a semi-transparent nickel foil beam stop. The sample

holder was temperature controlled in the range comprised from �4 to

90�C. Measurements were performed using capillaries of 1 mm in diameter,

in the q-range of 7.7x10�2 to 28.5 nm�1. Acquisition time was typically 30–

40 min. To reduce the noise and to cancel out the effect of LC mono-

domains contribution in the final SAXS diffractograms, the capillaries

were slightly rotated every 10 min. The time allowed for equilibrating

samples was 45 min for temperatures between 42 and 55�C and 30 min

for temperatures above 55�C.

All scattering signals were treated with SAXSquant software (Anton

Paar).

UV spectroscopy

An UV spectrometer (evolution 100, Thermo Electron) was used to measure

absorption in water solutions. First, a wavelength scan was performed to

determine the suitable wavelength of measurements (l ¼ 200 nm). Then,

a series of arginine solutions ranging from 0.0005 to 0.0035 wt % were

prepared to construct a calibration curve at 200 nm, where the absorbance

SCHEME 1 Chemical structures of the compounds used in preparation

of the different liquid crystalline structures.
increases linearly with arginine concentration. The arginine solution from

cubic phases in excess water was isolated by centrifugation and then diluted

(1000 times) to allow measurements in the linear regime and resulting

measurements were then corrected to account for dilution. The final value

of arginine concentration in water was determined by interpolation from

the calibration curve. The determined concentrations were the average

values of two independent experiments (the difference in absorbance in

each pair of experiments is % 0.012).

NIR Fourier transform spectroscopy

Near IR spectra were performed using a spectrometer (FT-NIR MPA,

Bruker, Ettlingen, Germany) to detect possible interactions between OEA

and Arginine. Measurements were carried out in the wavelength range

from 1000 to 2500 nm at room temperature. The thicknesses of the prepared

samples were of the order of 5.0 mm.

RESULTS

Phase diagrams and topologies of LC structures

Fig. 2 depicts the SAXS scattering spectra with indexed

peaks at 42.0�C for the mixtures of OEA-water at 20 wt %

water and with 0.0, 2.5, 5.0, 7.5 and 10.0 wt % arginine

and 5.0 wt % glucose. Fig. 2 also reports the diffractogram

recorded for an OEA-water mixture with 50 wt % water

and with 5.0 wt % arginine, that is, in excess water condi-

tions. It can be clearly observed from the diffratograms

that samples prepared by mixing OEA with solutions having

a lower arginine content (0.0, 2.5) exhibit a bulk Ia3d cubic

morphology, whereas coexistence of Ia3d and Pn3m cubic

morphologies can be clearly resolved in the sample contain-

ing 5.0 wt % of arginine (see Table 1 for the attribution

of peak sequences in Ia3d and Pn3m phases). Single Pn3m

cubic phase is observed in samples containing 7.5 and 10.0

wt % arginine, whereas in the presence of excess water,

the Pn3m cubic phase is the only LC phase detected, which

is consistent with literature data on monolyceride-water

systems (21,22).

From diffractograms such as those reported in Fig. 2, the

lattice parameter of the individual LC phases present in bulk,

coexisting or present in excess with water, could be easily

determined by:

a ¼ 2p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p

; (1)

where q is the scattering vector at which a maximum in scat-

tering intensity is found and h, k and l are the corresponding

Miller indexes of the group space corresponding to the LC

structure observed.

The results are summarized as a function of temperature

and arginine content for samples having 20 and 50 wt %

content, respectively in Table S1 and Table S2 of the Sup-

porting Material. In the Pn3m bulk phase of the various

mixtures, the general tendency of the variation of lattice

parameter with temperature is a monotonous decrease. This

is consistent with results reported by Caffrey et al. (28)
Biophysical Journal 96(4) 1537–1546
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and Mezzenga et al. (19) in other types of monoglyceride-

water binary systems and was previously rationalized by

the increased flexibility and rearrangement of the lipid

hydrophobic tails with temperature as well as the progressive

dehydration of polar heads. Trends for the lattice parameter

of the Ia3d with temperature are less straightforward,

possibly because of the extended coexistence region of this

phase together with the Pn3m. More interestingly, the effect

of both arginine and glucose content is reflected by a system-

atic decrease in the lattice parameter for all the LC structures

considered, where the decrease is proportional to the concen-

tration of arginine and glucose, and with glucose having

a more pronounced effect than arginine. Finally, as expected,

increasing water content led, in all cases, to increased lattice

parameters.

By combining SAXS, turbidity measurements and CPOM

analysis, it was possible to efficiently and rapidly construct

FIGURE 2 SAXS spectra for the lyotropic liquid crystalline structures

observed at different composition ratios at 42�C. The spectra a, b, c,

d and e correspond to constant water/lipid ratio of 20.0% wt and arginine

concentrations of 0.0, 2.5, 5.0, 7.5 and 10.0% wt, respectively. The spectrum

f represents water/lipid ratio of 20.0% wt, and glucose concentration of

5.0%. The spectra g and h represent water/lipid ratio of 50.0% wt and argi-

nine concentration of 5.0 and 2.5% wt, respectively. The SAXS spectrum in

the right top inset of the figure corresponds to the L2 phase sample having

water/lipid ratio of 20.0% wt, 2.5% wt arginine and 70�C.
Biophysical Journal 96(4) 1537–1546
the phase diagrams for the various OEA-water-arginine

mixtures, as previously reported for other lipid/water

mixtures (19). More specifically, CPOM allowed us to

screen for the presence of anisotropic phases, (such as

lamellar or hexagonal) and crystalline OEA states, which

all show birefringence versus optically inert isotropic meso-

phases, such as the bicontinuous cubic phases; turbidity

enabled detecting coexistence of specific phases with water

and SAXS allowed to confirm the attribution of individual

phase diagram regions to a specific crystalline group space,

or combination thereof for the coexistence regions.

Fig. 3 shows the phase diagram of the pure OEA-water

binary system. A large region corresponding to bicontinuous

cubic phases is observed between 10 and 25% water content

and temperatures ranging between 37�C and 67�C. With the

support of SAXS analysis at fixed composition of 20% water,

Ia3d reverse bicontinuous cubic phase is identified between

40�C and 55�C, whereas between 55�C and 67�C coexistence

of Ia3d and Pn3m cubic phases is observed. The Ia3d-Pn3m

transition occurring upon a temperature increase is in agree-

ment with the behavior shown by monoolein-water (28) and

monolinolein-water systems (19). Between 67�C and 70�C,

Pn3m coexists with water, as argued by combining SAXS

data and the turbidity aspect of the samples. Finally, beyond

70�C, the sample still remains turbid, but the corresponding

SAXS diffractogram shows a single broaded peak character-

istic of reversed micellar isotropic fluid (L2), indicating that L2

phase coexists with excess water. Therefore, the present

binary system does not exhibit a reversed hexagonal phase

at higher temperatures, as it is the case for the most common

types of monoglycerides. Pure L2 phase exists in a narrow

window between 47�C and 67�C and 10 and 15% water.

Finally, between 37�C and 70�C and for water content

exceeding 25%, the Pn3m coexists at thermodynamic equilib-

rium with excess water.

Figs. 4–7 show the effect of increasing arginine content on

the phase diagram. The large bicontinuous cubic phase

region characteristic of OEA-water mixture shrinks substan-

tially with the increase of arginine content. Furthermore, the

Ia3d phase is rapidly destabilized by the presence of argi-

nine, in favor of the Pn3m phase. For example, the maximum

temperature at which the Ia3d can be observed is: 67.5�C,

66�C and 60�C for 0.0, 2.5 and 5.0% arginine content,

respectively, whereas Ia3d phase is completely suppressed

starting from 7.5% arginine content or more. Furthermore,

TABLE 1 Miller indices (hkl) and Bragg peak ratio for Ia3d and

Pn3m bicontinuous cubic phases

Ia3d Pn3m

(211) O6 (110) O2

(220) O8 (111) O3

(321) O14 (200) O4

(400) O16 (211) O6

(420) O20 (220) O8

(332) O22 (221) O9
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100% bulk Ia3d reversed bicontinuous cubic phase is

observed only for a 2.5% maximum arginine content; at

5% arginine, the Ia3d is always observed in coexistence

with Pn3m phase. Since Ia3d is in general greatly stabilized

by water hydrating the monoglyceride polar heads (29), the

results discussed above suggest that the major effect of argi-

nine in the water channels is to dehydrate the lipid polar

head.

These results are supported also by trends observed for the

onset temperature at which Pn3m and water start to coexist.

Indeed, at 20 wt % water, the temperature at which Pn3m

starts to coexist with water decreases as a function of argi-

nine concentration in the following order: 67.5, 67.0, 60.0,

47.5, and 43.0�C when 0.0, 2.5, 5.0, 7.5 and 10.0 wt %

aqueous arginine solutions are used, respectively. The

temperature at which the Pn3m melts into the isotropic L2

liquid follows similar trends and decreases gradually as

a function of arginine content according to the following

order: 70.0, 70.0, 65.0 and 62.0, when 0.0, 2.5, 5.0 and

7.5 wt % aqueous arginine solutions are used, respectively.

The only exception is observed for the highest arginine con-

taining sample (10.0 wt % aqueous arginine), where the

onset of the L2 transition is observed at 64�C.

The shrinking of the bicontinuous cubic phases with argi-

nine is also evident on the composition window at which

these are observed whereas for the pure OEA-water system,

the Ia3d bicontinuous region extends down to 10% water for

all the ternary systems and the Ia3d cubic phase appears only

starting at 15% water.

For the sake of comparison, the LC behavior of OEA with

mixtures of aqueous glucose solutions has been also

FIGURE 3 Phase diagram of water-OEA lipid system as obtained by

combining CPOM and SAXS. The dashed line on the phase diagram depicts

the SAXS results corresponding to water/lipid composition ratio of 20.0 wt

%. The small letters (a, b, c, and d) are given to distinguish the temperature

intervals of the different cubic phases. The abbreviation (L2) refers to the

reversed micellar isotropic fluid.
investigated. The samples studied have the same water/OEA

ratio (20 wt %) and identical concentrations of glucose (2.5,

5.0, 7.5 and 10.0 wt %) as the OEA-water-arginine system.

FIGURE 4 Phase diagrams of water-OEA lipid system as obtained by

combining CPOM and SAXS at 2.5% wt arginine. The blue dashed lines

correspond to the SAXS results of water-OEA lipid system in presence of

glucose solution at constant water/lipid ratio of 20.0 wt %, and concentration

of glucose of 2.5% wt. The small letters a0, b0, and c0 across the blue dashed

lines are given to distinguish the temperature intervals of the different cubic

phases of water-OEA lipid system in presence of glucose solution. The

abbreviation ‘‘Lam’’ refers the presence of a lamellar phase.

FIGURE 5 Phase diagrams of water-OEA lipid system as obtained by

combining CPOM and SAXS at 5.0% wt arginine. The blue dashed lines

correspond to the SAXS results of water-OEA lipid system in presence of

glucose solution at constant water/lipid ratio of 20.0 wt %, and concentration

of glucose of 5.0% wt. The small letters a0, b0, and c0 across the blue dashed

lines are given to distinguish the temperature intervals of the different cubic

phases of water-OEA lipid system in presence of glucose solution. The three

selected points A, B, and C located at 42.0�C in the phase diagram corre-

spond to water/lipid ratios of 25.0, 50.0, and 100.0%, respectively (details

are presented in the Discussion section).
Biophysical Journal 96(4) 1537–1546
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Because the molecular masses of arginine (174 g/mole) and

glucose (180 g/mole) differ by ~3%, identical concentrations

by weight of glucose or arginine essentially have the same

FIGURE 6 Phase diagrams of water-OEA lipid system as obtained by

combining CPOM and SAXS at 7.5% wt arginine. The blue dashed lines

correspond to the SAXS results of water-OEA lipid system in presence of

glucose solution at constant water/lipid ratio of 20.0 wt %, and concentration

of glucose of 7.5% wt. The small letters a0, b0, and c0 across the blue dashed

lines are given to distinguish the temperature intervals of the different cubic

phases of water-OEA lipid system in presence of glucose solution. The

abbreviation ‘‘Lam’’ refers to the presence of a lamellar phase. The three

selected points A, B, and C located at 42.0�C in the phase diagram corre-

spond to water/lipid ratios of 25.0, 50.0, and 100.0%, respectively (details

are presented in Discussion section).

FIGURE 7 Phase diagrams of water-OEA lipid system as obtained by

combining CPOM and SAXS at 10.0% wt arginine. The blue dashed lines

correspond to the SAXS results of water-OEA lipid system in presence of

glucose solution at constant water/lipid ratio of 20.0 wt %, and concentration

of glucose of 10.0% wt. The small letters a0, b0, and c0 across the blue dashed

lines are given to distinguish the temperature intervals of the different cubic

phases of water-OEA lipid system in presence of glucose solution. The

abbreviation ’’Lam’’ refers to the presence of a lamellar phase.
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molar equivalent content. The order to order transitions re-

vealed by SAXS results on these samples are represented by

the dashed blue lines on the phase diagrams (Figs. 4–7). It

can be clearly observed that at low glucose concentrations

(2.5 and 5.0 wt %), the tendency to destabilize the Ia3d cubic

phase is greatly reduced compared to the arginine homolog

series, as this phase is maintained over a large temperature

window still in the 5.0% glucose mixture. Furthermore, at

higher glucose concentrations (7.5 and 10.0 wt %), where

the Ia3d phase is suppressed also in the glucose series, the

bulk Pn3m cubic phases exist in larger windows compared

to homolog arginine series, since the Pn3m-water coexistence

region begins in the former case systematically at higher

temperatures. In addition, the glucose series shows a reduced

tendency toward the coexistence of Pn3m and Ia3d cubic

phases. Indeed, the temperature range of coexistence for

Ia3d and Pn3m for samples mixed with 2.5 and 5.0 wt %

glucose is 60.0–65.0�C and 50.0–65.0�C, respectively, as

opposed to the respective 55.0–67.0�C and 39.0–60.0�C for

the homolog 2.5 and 5.0 wt % arginine solutions, respectively.

Finally, with the exception of 2.5 wt % concentration, the

onset temperature of coexistence of Pn3m with water is

greatly reduced when arginine is used, as opposed to glucose;

this difference being as high as 15�C when 7.5% arginine or

glucose are used.

These results highlight the very different impact of argi-

nine and glucose on OEA-water LC phases, where the

arginine shrinks the bicontinuous cubic phase in a more

remarkable way. This behavior has to be attributed to

the different hydrophilic nature of the two guest molecules

considered. First of all, at the pH considered in this study

(7.0) arginine is positively charged, bearing two ammo-

nium positive charges and one negative charge in the

carboxyl group; it is therefore substantially more difficult

to concentrate charged molecules (arginine) within the

water channels of the liquid crystalline phases, as

compared to a neutral molecule (glucose). Furthermore,

the solubility in water of arginine is much less than that

of glucose: although a maximum of 15.91% arginine can

be dissolved in water, glucose and water constitute a fully

miscible pair. Consequently, arginine needs to be hydrated

by a larger amount of water compared to glucose,

decreasing the effective amount of water molecules avail-

able for the hydration of OEA polar heads. This is consis-

tent with the systematic destabilization of Ia3d in favor of

the Pn3m phase. Finally, although glucose (6-hydroxyl

groups per molecule) is expected to participate in direct

hydrogen bonding with the OEA hydrophilic head, argi-

nine is less likely to behave similarly. One additional indi-

rect evidence of this possible scenario is provided by near-

IR spectra of mixtures of OEA with pure water and argi-

nine solution (10.0 wt %) presented in Fig. 8. Both spectra

are nearly identical, suggesting that no preferable interac-

tions of arginine with polar headgroups of OEA take

place.
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DISCUSSION

Quantitative estimation of arginine concentration
inside and outside the Pn3m liquid crystalline
phases

Because the phase diagrams of the OEA-water-arginine

systems all exhibit a large region of coexistence of Pn3m

and water solutions, it becomes very interesting to determine

the concentration of arginine within the free bulk water and

inside the Pn3m coexisting phase. Indeed, bringing added

insight into this point would allow us to determine whether

the Pn3m-based dispersions, which can be formed by adding

excess water to bulk Pn3m phase of OEA-water-arginine,

can be used to efficiently deliver the arginine in the

surrounding aqueous environment.

To establish this point unequivocally, four samples were

prepared from water solutions with 5.0 and 7.5 wt % arginine

and total amount of water of 50.0 and 70.0 wt %. The

samples were then centrifuged (12,000 rpm) isothermally

at 42�C for a period of 20 min; this allowed separating excess

water from the mixture while preserving the Pn3m phase.

Thereafter, the concentration of arginine could be estimated

in the separated solutions by means of UV spectroscopy.

In all the experiments, the measured concentration of argi-

nine in the free water was systematically found to exceed the

concentration in the initial solution: for 50% water mixture,

the measured arginine concentrations were 7.525 wt % and

10.402 wt % as opposed to initial 5.0% and 7.5% concentra-

tions, respectively; for samples containing 70.0 wt % water,

the measured arginine concentrations were 8.308 and 8.798

wt %, respectively. These data support a delivery of arginine

from the Pn3m water channels to the external water phase, as

would also be expected based on simple osmotic pressure

considerations.

FIGURE 8 NIR spectra of water-OEA system as a function of arginine

concentration in water.
These data do not allow, however, quantifying directly the

amount of transferred arginine, as this amount needs to be

normalized with the respect to the quantity of water which

is free and the amount of water which is encapsulated within

Pn3m channels.

To do so, the weight fraction of Pn3m and coexisting free

water has to be determined. In what follows, the typical

procedure to estimate the absolute value of arginine trans-

ferred from the Pn3m channels to the coexisting water is dis-

cussed for the sample prepared by mixing OEA with arginine

solution (5.0 wt %) and a water/lipid ratio of 50.0 wt.%.

Because compositions in the phase diagrams do not

account on the x axis for arginine content, the mass of the

lipid, water and arginine have to be renormalized first to

a total of 100%, which is done in Table S3 using the amount

of components typically used for the formulation of the

various mixtures considered (see the Supporting Material).

The three selected points A, B, and C, located at 42.0�C in

the phase diagram of Fig. 5 correspond to water/lipid ratios

of 25.0, 50.0, and 100.0%, respectively.

Point A represents the first point on the phase diagram at

which the Pn3m starts to coexist with water. Point C repre-

sents the last point in the phase diagram at which Pn3m

and water-arginine solution coexist, that is 5.0% arginine,

95% water and 0% Pn3m. Point B represents the equilibrium

composition between the Pn3m dispersed phase and the argi-

nine-water solution for which a 7.5 wt % arginine content in

free water is measured by UV spectroscopy.

At point B, using the composition law, and Table S3, the

overall mass fraction of lipid mOEA, the mass fraction of

Pn3m dispersion, mPn3m, the mass fraction of free water-argi-

nine solution coexisting with Pn3m, mWAFREE
, and the total

mass fraction of water-arginine solution (the free solution

plus that contained within Pn3m channels), mWATOTAL
, are

related by the following equations:

mOEA ¼
74:1

100
mPn3m

mPn3m þ mWAFREE

¼ 48:8

100
(2)

mWATOTAL
¼ mWAFREE

þ 25:9

100
mPn3m ¼

51:2

100
: (3)

Solving Eqs. 2 and 3 leads to mPn3m ¼ 0:66 and

mWAFREE
¼ 0:34. Therefore, for a total mass of the blend,

M, considering the 7.5 wt% arginine concentration measured

in the free water solution, a total 0.075$0.34$M ¼ 0.026$M
arginine is found in free water, rather than the 0.05$0.34$M
¼ 0.017$M expected for a system maintaining the original

arginine concentration.

This represents an excess of 0.009$M arginine which has

been transferred from the channels of the Pn3m to the external

water solution. It is interesting to compare this excess with

the amount of arginine encapsulated in the Pn3m, and thus

to evaluate the residual content of arginine in the Pn3m
Biophysical Journal 96(4) 1537–1546
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dispersions. This content can be evaluated directly from point

A in Fig. 5 as 0.259$0.66$0.05$M¼ 0.009$M. It is then found

that essentially all the arginine is transferred from the Pn3m

phase to the surrounding water solution in excess, which is

somewhat surprising since based on pure osmotic pressure

considerations; one would expect similar concentrations in

the water solutions within and outside water channels.

Analog calculations carried out for the 7.5% initial argi-

nine concentration in the 50% water-to-lipid mixture, as

well as for the 5% and 7.5% arginine initial concentrations

in the 70% water-to-lipid mixtures lead to the same conclu-

sions, that the complete amount of arginine is transferred

from the Pn3m to the coexisting water. A possible explana-

tion for this tendency to expel all the arginine, and which is

in line with the observed effect of arginine on the entire

phase diagrams, can be found in: i), the poor hydrophilic

nature of arginine and ii), the fact that arginine is charged.

Indeed, since only 15.91% of arginine can be dissolved in

water, to prevent macroscopic phase separation and maintain

all the arginine within the Pn3m channels, most of the water

has to be made available to hydrate arginine, thus dehydrat-

ing the OEA polar heads. In such a scenario, the free

unbound water within the Pn3m channels, available to

decrease the arginine chemical potential, is expected to be

small to nil. Consequently, the effective chemical potential

of arginine inside the Pn3m channels is unaffordablely

high, providing the driving force for its complete expulsion
Biophysical Journal 96(4) 1537–1546
toward the surrounding coexisting water. The fact that argi-

nine is also positively charged at pH 7.0 further increases the

chemical potential of arginine within the Pn3m water chan-

nels, enhancing the driving force for migration (and thus

dilution) toward the external water phase. Fig. 9, highlights

the proposed mechanisms of arginine in the dehydration of

OEA polar tails.

The OEA-water-arginine systems discussed in this work

constitute an ideal candidate for the delivery of amino acids

in aqueous environment. Indeed, not only the OEA-water

system has unique nutritional behavior, but amino acids

can also be efficiently encapsulated in these bulk systems

to be completely released in water excess environment.

Although we have no information on how fast the release

of arginine is achieved, it can speculatively be argued that

this rate could be manipulated by the way Pn3m dispersions

are stabilized in water. For example, manipulation of the pH

can be envisaged as a tool to control the charges and thus the

chemical potential of encapsulated hydrophilic guest mole-

cules. This will have the direct consequence of decreasing

their tendency to migrate to the external water phase, and

thus, possibly also their release rate. These are only some

of the possible open questions that need to be addressed by

a comprehensive exhaustive study on the formulation of

OEA-water mesophases as delivery systems. We are actively

pursuing the investigation on these directions and we hope to

be able to address these issues in future work.
FIGURE 9 (A) Schematic diagram illustrating the mode

of hydration of OEA polar heads by water molecules in

absence of arginine. (B) A schematic diagram revealing

the dehydration action of arginine molecules on the OEA

polar heads, and the subsequent change in curvature of

the OEA-water interface.
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CONCLUSION

We have investigated the phase behavior of lyotropic liquid

crystals formed by self-assembled mixtures of oleoylethano-

lamide and arginine-water systems. Oleoylethanolamide,

a natural analog of the endogenous cannabinoid anandamide

with a unique metabolic role in the decrease of weight intake,

was selected as a possible alternative to traditional mono-

glycerides and arginine was selected as a target amino

acid. The phase diagrams and morphologies of oleoylethano-

lamide-water-arginine liquid crystalline structures were

determined by combining CPOM and SAXS. The results

show that the phase behavior and stability of the liquid crys-

talline phases are highly dependent on arginine concentra-

tion. Upon increasing arginine concentration, transitions

from Ia3d cubic phase to Pn3m cubic phase were observed,

together with remarkable shrinking of the whole phase

diagram region in which bicontinuous cubic phases are

stable. By comparing the effect of arginine with that of

glucose as a low molecular weight hydrophilic compound,

it was argued that arginine is an efficient dehydrating agent

for the oleoylethanolamide polar head, resulting in the desta-

bilization of Ia3d reversed cubic phases in favor of Pn3m

cubic phases.

Due to an extended coexistence region of Pn3m cubic

phase and water-arginine solutions, oleoylethanolamide-

water-arginine liquid crystals were tested as possible delivery

systems for amino acids in aqueous environment. A quantita-

tive estimation of the variation in the content of arginine

within the Pn3m channels between the case of pure Pn3m

bulk phases and the Pn3m phase coexisting with excess water

and arginine, indicated that all the amino acid is released in

the surrounding environment when excess water is present,

leaving the Pn3m formed by oleoylethanolamide and water,

with virtually all the arginine expelled. The reason for such

a behavior was found in: i), the relatively low hydrophilicity

of arginine, which has tendency to dehydrate oleoylethanola-

mide polar heads and ii), the charged nature of arginine,

which increases its chemical potential within Pn3m water

channels.

These results demonstrate that oleoylethanolamide-water

liquid crystals can efficiently encapsulate amino acids and

are promising systems for a controlled release of these and

other hydrophilic molecules in aqueous environment.

SUPPORTING MATERIAL

Tables are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(08)03580-7.
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