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Correlated Motions and Interactions at the Onset of the DNA-Induced
Partial Unfolding of Ets-1

Hiqmet Kamberaj and Arjan van der Vaart*
Center for Biological Physics, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona

ABSTRACT The binding of the Ets-1 transcription factor to its target DNA sequence is characterized by a highly unusual
conformational change consisting of the unfolding of inhibitory helix 1 (HI-1). To probe the interactions that lead to this unfolding,
we performed molecular dynamics simulations of the folded states of apo-Ets-1 and the Ets-1-DNA complex. The simulations
showed large differences in correlated motions between helix 4 (H4) and HI-1. In apo-Ets-1, H4 and HI-1 moved in-phase
and stabilized each other by hydrogen bonding and macrodipolar interactions, whereas in the DNA-bound state, the motion
was out-of-phase, with a disruption of the stabilizing interactions. This change in motion was due to hydrogen-bonding interac-
tions between helix 1 (H1) and the DNA. The dipolar energy between H1 and H4 was modulated by hydrogen bonds between
H1 and DNA, and, in accordance with experiments, elimination of the hydrogen bonds increased the stability of HI-1. The simu-
lations confirm that the hydrogen bonds between H1 and DNA act as a conformational switch and show that the presence of DNA
is communicated from H1 to H4, destabilizing HI-1. The calculations reveal a critical role for correlated motions at the onset of the
DNA-induced unfolding.
INTRODUCTION

The human Ets-1 transcription factor is important for embry-

onic development and angiogenesis (1–5). The protein is also

involved in various cancers, stimulating tumor metastasis and

invasiveness (6–8). Ets-1 is an independent marker for bad

prognosis in breast cancer (9,10), and its expression level in

tumors correlates with poor prognosis in colon (11,12), cervix

(13), gastric (14), oral (15), and ovary cancers (16–18). Ets-1

consists of six domains (Fig. 1 A). The pointed (PNT) domain

(residues 54–135) is important for protein-protein interac-

tions (6,19). It is adjacent to a Ras-responsive phosphoryla-

tion site at threonine 38; phosphorylation of this residue

increases Ets-1 activity (20). The C-domain, or activation

domain (residues 135–242), is involved in protein-protein

interactions and is essential for transcription activation (21).

DNA is bound by the winged helix-turn-helix motif of the

highly conserved ETS domain (residues 331–415) (22)

(Fig. 1 B). Helix H3 of this domain binds the GGAA/T core

sequence (23) in the major groove of DNA, whereas the

wing between sheets 3 and 4 interacts with the 30 minor

groove (24). The recognition of the core sequence involves

a mixture of direct and indirect readout mechanisms

(25,26). The ETS domain is flanked by the autoinhibitory

module, consisting of residues 415–440 of the F-domain

and residues 301–330 of the D- or exon VII domain (27–30).

In addition to the N-terminal part of the autoinhibitory

module, the exon VII domain also consists of an unstructured

serine-rich region (SRR, residues 243–300) (31).

The binding affinity of Ets-1 for the core sequence is

strongly mediated by the autoinhibitory module, by

calcium-dependent phosphorylation of the SRR, and by

Submitted September 29, 2008, and accepted for publication November 5, 2008.

*Correspondence: vandervaart@asu.edu

Editor: Gregory A. Voth.

� 2009 by the Biophysical Society

0006-3495/09/02/1307/11 $2.00
protein-protein interactions (6,32). The autoinhibitory

module decreases the binding affinity for DNA by 10- to

20-fold compared to the bare ETS domain (27–30). Autoin-

hibition may play an important role in the regulation of Ets-1

(32); it is interesting to note that autoinhibition is disrupted in

oncogenic v-Ets (27,33). The autoinhibition is offset by

cooperative DNA binding with AML1 (acute myeloid

leukemia 1, also named runt-related transcription factor 1,

RUNX1) through direct interactions of AML1 with the

Ets-1 autoinhibitory module of the exon VII domain

(34,35). Calcium-dependent phosphorylation of multiple

serine residues in the SRR reinforce autoinhibition by

decreasing the DNA binding affinity 50- to 1000-fold

(31,36–38). The effects of phosphorylations are additive,

producing a graded binding affinity rather than a simple

on/off switch for binding. To date, such a graded binding

affinity has been observed for only two proteins (Ets-1 and

the Kv2.1 potassium channel) (31,39).

The binding and autoinhibition mechanisms of Ets-1

involve remarkable structural rearrangements of the protein,

which are the subject of this study. Binding induces the

unfolding of inhibitory helix 1 (HI-1) of the exon VII autoin-

hibitory domain (40) (Fig. 1 B). This helix is folded in the

apoprotein, although the helix is marginally stable and confor-

mationally dynamic in the millisecond to microsecond time

range (41). Upon DNA binding, the HI-1 helix unfolds: in

the DNA-bound state, HI-1 samples a random coil configura-

tion, as measured by circular dichroism, proteolytic cleavage,

and NMR experiments (40,41). In contrast, phosphorylation

of the SRR decreases the unfolding propensity of HI-1,

leading to a lowered binding affinity for DNA (31). The

binding behavior of Ets-1 is unique: to date, only two proteins

(Ets-1 and Bam HI endonuclease) are known to partially

unfold upon DNA binding (40,42). Although the unfolded
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helices bind DNA in Bam HI endonuclease (42), in Ets-1 the

unfolded helix is located far away from the DNA (43).

How DNA binding induces the unfolding of HI-1 is the

central question addressed in this article. Important insights

into the responsible interactions have been obtained from

NMR and mutation experiments. Chemical shifts of the auto-

inhibitory module and helix 1 (H1), a long helix in the center

of the ETS domain, were perturbed upon DNA binding (44).

In crystal structures of ETS domains bound to DNA (45–50),

the amide backbone of Leu337 (residue numbering as in Ets-1)

of H1 forms a hydrogen bond with the phosphate backbone of

DNA. Ets-1 had a reduced binding affinity for nicked DNA

constructs that miss this phosphate group; the binding affinity

was also reduced for mutants at the 337 position, and for

mutants that were thought to change the position of the

H1 helix (51). Based on these findings, it has been suggested

that the hydrogen bond between Leu337 of H1 and the DNA

phosphate group is a conformational switch that triggers the

unfolding of HI-1 upon DNA binding (41,51).

To verify this mechanism, and to gain insights into how

the conformational switch induces the unfolding of HI-1,

we performed molecular dynamics simulations (52) of the

folded state of apo-Ets-1 and the Ets-1-DNA complex. The

latter state is hard to study by experimental means, since

the equilibrium is shifted toward the unfolded state. Given

the possibly long timescales of the unfolding transition

(41), we did not anticipate being able to observe the full

unfolding of HI-1 of the DNA-bound protein in the ~15-ns

simulations. Instead, we observed how the folded state

became destabilized upon DNA binding. Our main goal

FIGURE 1 Structure of Ets-1. (A) Domain structure of Ets-1 and the

secondary structure of the autoinhibitory module (AI) and the ETS domain.

(B) Structure of apo-Ets-1 D301 (left) and the D301-DNA complex (right).

DNA is recognized by the winged helix-turn-helix motif of the ETS domain.

In apo-Ets-1, HI-1 is folded into an a-helix; upon binding the GGAA/T core

sequence HI-1 unfolds. (Figs. 1 B, 4, 5 A, 6 A and 6 B were prepared with

VMD (83) and povray (www.povray.org).)
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was to identify the interactions that lead to the onset of the

unfolding; with this aim, a comparison of the motions and

interactions of the folded apo state with those of the meta-

stable, folded DNA-bound state sufficed, as will be shown

in detail below.

Our simulations support the existence of a conformational

switching mechanism involving Leu337 and Gln336, illumi-

nate the way in which the presence of the hydrogen bond

between H1 and DNA is communicated to HI-1, and identify

the mechanism by which HI-1 is destabilized upon DNA

binding. The simulations revealed a strong coupling of motion

between helices H1, H4, and HI-1, which changed in char-

acter upon DNA binding. The calculations suggest that the

onset of unfolding of HI-1 upon DNA binding is caused by

a disruption of stabilizing interactions between H4 and

HI-1, mediated by hydrogen bonding between H1 and the

DNA backbone.

MATERIALS AND METHODS

Since no structure is available for the full-length Ets-1 protein, we studied

constructs consisting of the ETS domain with (part of) the autoinhibitory

module. Such constructs have also been studied by experimental means.

For example, the binding affinity of a construct consisting of residues

280–440 (D280) was shown to be identical to the full-length protein, with

an ~10-fold autoinhibition (30,40,41). Since residues 280–300 are in the

unstructured SRR (44), high-resolution structural studies have concentrated

on apo-D301, a construct consisting of residues 301–440 with an intact auto-

inhibitionary module and ~2-fold autoinhibition (41). In addition, high-reso-

lution studies have characterized the DNA-bound state of D331, a construct

consisting of residues 331–440 (50,53). In D331, autoinhibition is abol-

ished; it contains the autoinhibitory F-domain, but not the N-terminal part

of the autoinhibitory module of the exon VII domain (30,41). Given the

availability of high-resolution structural data, we concentrated our studies

on D301 and D331.

The apo structures were modeled after the NMR structure of apo-D301

(Brookhaven Protein Data Bank (54) (PDB) entry 1R36) (41). The DNA-

bound states were modeled after the x-ray structure of the DNA-bound state

of D331 (PDB entry 1K79) (50). Since no experimental structure of the

DNA-bound folded state of D301 is available, we used residues 301–336

from the apoprotein structure 1R36 by overlaying H1 and H4 of 1K79

and 1R36 to generate the initial coordinates of this construct. The proton-

ation states of all residues were calculated using the finite-difference

Poisson-Boltzmann method in combination with a Monte Carlo sampling

of all states (55); according to these calculations, His403 and His430 are singly

protonated at N32, allowing for hydrogen bonding between His403 and

Asn400, and His430 and the backbone of Gly390. Long equilibrations were

performed to relax the structures; although the folded DNA-bound state is

metastable, unfolding was not observed in the simulation. We also per-

formed simulations of DNA-bound ‘‘electrostatic mutants’’ of D301 and

D331. In the mutants, the charges of the backbone NH group of Leu337

and the amine group of Gln336 were set to zero, to eliminate the hydrogen

bonding between these groups and the DNA backbone.

The 15 basepair DNA of the x-ray study (1K79) with the high-affinity

GGAA core sequence has two 50 overhangs. Molecular dynamics simula-

tions of Ets-1 bound to DNA from which the overhangs were deleted

showed large motions of the last two basepairs, leading to partial melting

of the tail DNA. We then adjusted the unusual hydrogen bonds at basepair

14, as suggested by Reddi et al. (26), and added a new G-nucleotide with the

3DNA program (56) at position 15 to pair the second overhang. Since simu-

lations of this construct still showed large deviations of the last two base-

pairs, we also added a 16th CG basepair; this made the DNA stable

http://www.povray.org
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throughout the simulations without the need of restraints. The simulated

DNA sequence is 50-AGTGCCGGAAATGTGC-30; the adjusted and added

basepairs did not contact the protein.

All simulations were performed using the TIP3P water model (57), using

an octahedral simulation box with a water shell around the solute of at least

14 Å at the end of the equilibration. A salt concentration of 65 mM KCL was

used; this is the concentration that was used in the experimental binding

studies (40). The ions were placed with the SOLVATE program (58) and

the total charge of the system was zero. In total, 16,551 water molecules,

36 Kþ, and 7 Cl� ions were used for the simulations of the D331-DNA

complex; 11,213 water molecules, 12 Kþ, and 15 Cl� ions for D331;

16,962 water molecules, 36 Kþ, and 9 Cl� ions for the D301-DNA complex;

and 12,566 water molecules, 12 Kþ, and 17 Cl� ions for D301. We carefully

checked the diffusion of the ions to avoid computational artifacts (59,60).

The simulations were performed with the CHARMM program (61), using

the CHARMM27 force field for protein and nucleic acids (62–64). Periodic

boundary conditions, a particle-mesh Ewald (65) treatment of the long-range

electrostatics, and SHAKE (66) were employed, and a time step of 2 fs was

used. The nonbonded interactions were truncated at 12 Å using an atom-

based approach and a potential-switching function between 10 and 12 Å

for the van der Waals interactions. Nosé-Hoover chains of thermostats

were used to control the temperature (67,68). We used different independent

chains of length 3 that were separately coupled to the water, the ions, the

protein, and the DNA degrees of freedom. For the NPT simulations, an addi-

tional chain of thermostats was coupled to the barostat. We used a velocity

Verlet integrator using the Liouville operator based on the Trotter factoriza-

tion scheme (69) for the integration of the thermostats, using three multiple

steps. This integrator is implemented as the VV2 integrator in CHARMM.

At the start of the equilibration, the protein and/or DNA were fixed during

5000 steps of minimization while allowing the water molecules and ions to

move. These fixed constraints were maintained through a gradual heating

under constant volume and temperature conditions. The equilibration was

continued for 50 ps in the NPT ensemble at 300 K and 1 atm with fixed

constraints placed on the protein and/or DNA, followed by a 500-ps simu-

lation in which harmonic restraints were placed on all protein and/or DNA

atoms, with force constants scaled according to the atomic masses. The

protein restraints were slowly lowered from mi � 84 to 0 kJ/(mol Å2) until

the bulk water reached a density of ~1 g cm�3. The volume of the bulk water

was estimated by subtracting the volume of the protein and DNA from the

total volume. Further unrestrained (NPT) MD simulations of 4 ns completed

the equilibration phase, after which we performed unrestrained production

runs of 10 ns each. Throughout the text, the zero of time refers to the start

of the production run. Snapshots were saved every 1 ps. We performed

six simulations in total (simulations of apo-D301 and apo-D331, DNA-

bound-state simulations of D301, D331, and their electrostatic mutants),

for a combined simulation time of almost 90 ns.

Helix dipole-dipole interactions were calculated by Udd ¼ ðð~m1$~m2Þ�
3ð~m1$~rÞð~m2$~rÞÞ=r3, where r is the distance and ~r the normalized vector

between the centers of the dipoles. The dipoles, ~m, were constructed from

N, H, Ca, Ha, C, and O atoms of helix residues; to obtain coordinate system

independent dipoles, the total charge of the selected atoms was zero.

We used the local block bootstrap method to increase the statistical accu-

racy of the calculated variance-covariance matrix (70). In this method, the

stored trajectory is divided into n blocks of B frames. For each of the blocks,

the B frames are randomly reordered. The randomly reordered frames are

used to calculate the matrix R
0

ij ¼ hDxiDxji=ðhDx2
i ihDx2

j iÞ
1=2

, where the

atomic fluctuation Dxi ¼ xi � hxii, and xi is the atomic position of atom i.
Repeating the procedure M times yields the variance-covariance matrix Rij

as the average value of all R
0

ij . The value of n follows from the position of

the first zero of the autocorrelation function of the atomic fluctuations; in

our case, n ¼ 20 and M ¼ 2000. To determine the significance of the Pear-

son correlation coefficient (i.e., the value of Rij significantly different from

zero), we used a 95% confidence limit. In addition, we used a null hypothesis

for values of the variance-covariance matrix close to zero (elements smaller

than 0.15), as suggested in Kubinger et al. (71). The convergence of the
normalized variance-covariance matrix (72) Rij was checked by the calcula-

tion of RðtÞ ¼ 1=N
�P

N
i;j
ðRijðtÞ � Rijðt � tÞÞ2Þ, where N is the dimension

of the variance-covariance matrix, and t the simulation time. The time shift

t was set to 100 ps; upon convergence RðtÞ/0. The variance-covariance

matrix gives useful information on the correlated motions in the system

(72), and has been frequently used in the analysis of MD simulations. We

note that nonlinear correlations may be missing from the variance-covari-

ance analysis (73); consequently, RðtÞ carries no information on the conver-

gence of higher moments of the correlation functions (74).

The quasiharmonic modes (75,76) were obtained by standard means. To

quantify the differences in quasiharmonic modes between the various simu-

lations, we followed a procedure similar to that of Tournier and Smith (77).

The motion of simulation 1 was projected onto the motion of simulation 2

according to l1;i
proj ¼

P
k Pði; kÞl1;k . Here, l1;k is the kth eigenvalue of simu-

lation 1, associated with the kth quasiharmonic mode of simulation 1. Pði; kÞ
is given by the projection of the quasiharmonic mode of simulation 1 onto

the quasiharmonic mode of simulation 2: Pði; kÞ ¼
P

j E2;iðjÞE1;kðjÞ, where

E2;iðjÞ denotes element j of the ith quasiharmonic mode of simulation 2.

These projections account for the fact that the quasiharmonic modes may

not be ordered in the same way in the simulations; for example, mode 8

of simulation 1 may more closely correspond to mode 10 of simulation 2

than to mode 8 of simulation 2. The projected eigenvalues, l
proj
1;i , are used

to calculate r1;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

proj
1;i =l1;i

q
. r1;i is a quantitative measure of the difference

in amplitude in simulations 1 and 2 for the motion described by mode E1;i.

For r1;i > 1, the amplitude of motion is larger in simulation 2, or, equiva-

lently, the motion is repressed in simulation 1. For r1;i < 1 the amplitude

is larger in simulation 1 or, equivalently, repressed in simulation 2.

RESULTS

We performed molecular dynamics simulations of the Ets-1

D301 and D331 constructs as apoprotein and bound to

DNA. D301 consists of Ets-1 residues 301–440, and D331

of residues 331–440. Whereas D301 contains the intact auto-

inhibitory module, autoinhibition is abolished in D331. To

identify the interactions that lead to the unfolding of HI-1,

we performed simulations of the folded apo state, and the

folded state bound to DNA. Fig. 2 shows the root mean-square

deviation (RMSD) from the averaged structures for the

Ca atoms of Ets-1 D331 (Fig. 2 A) and D301 (Fig. 2 B) for

the apoprotein (black) and the protein-DNA complex (dark
gray). For D301, large differences between these residue-

based RMSDs were observed for the apo and the DNA-bound

state. Upon binding DNA, the RMSD in HI-1, HI-2, and the

loop between HI-1 and HI-2 increased significantly, indi-

cating that these areas become destabilized when they bind

the DNA. In D301 and D331, the RMSD of the recognition

helix, H3, decreased slightly upon binding DNA, indicating

that this helix is held more tightly in place by DNA. Other

Ca RMSDs of D331 were very similar for the apo and

DNA-bound states.

The RMSDs of the DNA strands were similar in the D331

and D301 simulations, with a residue-based heavy atom

RMSD of ~1 Å/basepair. Slightly lower RMSD values were

obtained for the parts of the DNA that bound the protein. For

example, the 50-G4C5C6-30 bases of the primary strand had

the lowest RMSD, at 0.7 Å/basepair; this part of the DNA

was bound by Arg409 and Lys404. The 30-C8T9T10-50

bases of the complementary strand, which basepairs the
Biophysical Journal 96(4) 1307–1317
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50-G7G8A9A10-30 target sequence, had an RMSD of 0.8 Å/

basepair; these bases bind the H3 recognition helix. The tails

of the DNA had the largest RMSDs, at 1.8 Å/basepair.

A comparison of the normalized variance-covariance

matrix of protein fluctuations showed large differences

between the apo and DNA-bound states of D301 and D331

(Fig. 3, A and B). The variance-covariance matrix shows

how motion between different groups is correlated: elements

in this matrix are negative if the motion is anticorrelated (or

out-of-phase), and values are positive if the motion is corre-

lated (or in-phase). Since the variance-covariance matrix is

symmetric, the comparison between two systems can be

made easier by using the lower triangular part for one

system, and the upper triangular part for the other system.

In Fig. 3 A, the variance-covariance matrix for the Ca atoms

of D331 is shown. The upper triangular part is for apo-D331

and the lower for the DNA-bound state. Fig. 3 B shows the

Ca-atom matrix for D301. To ensure that the reported results

are not a computational artifact due to insufficient sampling,

FIGURE 2 RMSD with the averaged structures for the Ca atoms of apo-

Ets-1 (black) and the Ets-1-DNA complex (dark gray); the RMSD for the

DNA-bound electrostatic mutant is shown in light gray. (A) D331. (B) D301.
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we verified that the calculated variance-covariance matrix

had converged. In all cases, RðtÞ was an exponentially

decreasing function and convergence was reached at ~8 ns,

with RðtÞ < 0:005.

Fig. 3 shows that there are large differences between the

variance-covariance matrices of the apo and DNA-bound

states of D301. In general, correlated motions are reinforced

in the DNA-bound state. If a motion between various resi-

dues was anticorrelated in the apoprotein, it was generally

more anticorrelated in the DNA-bound state; if a motion

was correlated in the apoprotein, it was generally more

strongly correlated in the DNA-bound state. There is only

one place in which the correlation changed sign. In the

apoprotein, the motion between HI-1 and H4 was strongly

correlated, whereas in the DNA-bound state it was strongly

anticorrelated. In contrast to the large differences observed

for D301, the variance-covariance matrices of D331 are

very similar for the DNA-bound and apo states. This meant

that the change in correlated motions between the apo and

DNA-bound states of D301 are due to the presence of the

exon VII part of the inhibitory module. We note that the

correlated motions within the DNA strands and between

the protein and the DNA showed no significant differences

for D301 and D331 (data not shown). Strong, in-phase corre-

lations were observed where Ets-1 binds the DNA, for

example, between DNA and H3, H1, S3, and S4.

In the apoprotein, helices H4 and HI-1 of D301 were well

aligned. The angle between their helical axes is 50� in the

NMR apo structure, with the N-terminal end of HI-1 pointing

toward the C-terminal end of H4 (41). In the simulation, the

angle was decreased to an average of 25 5 7�. This change

happened during the equilibration period through small

adjustments of the HI-1, H4, and H5 helices (Fig. 4 A).

The resulting structure was stable throughout the production

run, with an average backbone RMSD of 2.3 Å with the

NMR structure. This RMSD value is within a normal range;

MD simulations starting from NMR structures usually have

slightly larger RMSD values than those starting from x-ray

structures (78). Of importance is a favorable interaction

between HI-1 and H4. The NMR article states that a favor-

able macrodipolar interaction is likely (41). Moreover,

NOE measurements were consistent with hydrogen bonds

formed between the amide hydrogen atoms of Phe304 and

Lys305 of HI-1, and the carbonyl oxygen atoms of Leu421

and Leu422 of H4, respectively (41). In the simulation, these

hydrogen bonds were persistently present, whereas in the

NMR structure ensemble, generally only the hydrogen

bond between Lys305 and Leu422 is present (Fig. 4, B and C).

The average distance between the amide hydrogen atom of

Phe304 and the carbonyl oxygen atom of Leu421 is 3.05 5

0.4 Å in the NMR structure ensemble and 2.13 5 0.3 Å in

the simulation; for Lys305 and Leu422, the average distance

is 2.21 5 0.3 Å in the NMR ensemble and 2.25 5 0.3 Å

in the simulation. As noted in the NMR article, in the

domain-swapped crystal structure of Ets-1 D300, HI-1 of
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FIGURE 3 Variance-covariance mat-

rices of Ca fluctuations. (A and B) The

upper and lower triangular parts repre-

sent the wild-type apoprotein and

DNA-bound state, respectively, for

D331 (A) and D301 (B). (C and D)

The upper and lower triangular parts

represent the electrostatic mutant and

wild-type DNA-bound states, respec-

tively, for D331 (C) and D301 (D).
one monomer and H4 of another form a continuous helix

with a bend of 19� at the H4-HI-1 interface, stabilized by

Phe304-Leu421 and Lys305-Leu422 hydrogen bonds (43).

This is another indication of favorable macrodipolar and

hydrogen-bonding interactions between HI-1 and H4.

Consistent with the NMR structural ensemble, persistent

salt bridges were formed between Lys305 of HI-1 and

Glu428 of H5, and Lys316 of the loop between HI-1 and

HI-2 and Glu343 of H1 in the simulation. A salt bridge

between Lys318 of the loop between HI-1 and HI-2 and

Asp347 of H1 was less frequently observed in the simulation;

this salt bridge was also less frequently present in the NMR
structure ensemble. Given that the overall RMSD with the

NMR structure was small, and that the presence of various

contacts agreed with the experimental data, we deemed the

numerical difference in H4-HI-1 helix angles nonessential

for our findings.

The good alignment of HI-1 and H4 in the apoprotein

persisted throughout the simulation (Fig. 5). Moreover, the

motion between HI-1 and H4 was highly correlated in apo-

D301 (Fig. 3 A); the helices moved in tandem. This means

that there was a continuous stabilization of HI-1 through

macrodipolar and hydrogen-bonding interactions with H4:

the macrodipolar interaction energy between H4 and HI-1
FIGURE 4 Structure of apo-D301. (A) Overlay of the NMR and simulation structure of apo-D301. H5 and H4 of the NMR structure are indicated by arrows;

the backbone RMSD is 2.3 Å. (B and C) H1, HI-1, and H4 of the NMR structure (B) and the simulation structure (C), with Phe304, Lys305, Leu421, and Leu422

shown as stick models. There is a hydrogen bond between Lys305 and Leu422 in both models, and an additional hydrogen bond between Phe304 and Leu422 in

the simulation model. The orientation of H1 is identical in both models.
Biophysical Journal 96(4) 1307–1317
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was �25 kJ/mol throughout the simulation. In contrast, in

the DNA-bound state of D301, the Phe304-Leu421 and

Lys305-Leu422 hydrogen bonds broke, and the motion

between the HI-1 and H4 helices was strongly anticorrelated.

The helices moved out of phase, and there was much less

stabilization of HI-1 through interactions with H4. The angle

between HI-1 and H4 varied between 20 and 80� with an

average of 52 5 16� (Fig. 5 C), and the macrodipolar inter-

action energy was only�8 kJ/mol on average. It is important

to note that the use of the helix-dipole model for neighboring

groups has been criticized (79). The underlying assumptions

of the model require that the distances between the dipoles

are larger than the length of the dipole, a condition which

is often not satisfied. In accordance with suggestions (79),

we also calculated the total electrostatic energies between

the helices; in all cases, the trends from these calculations

were identical to those of the helix-dipole model. Since the

helix-dipole model is widely used in biology (80,81), we

report our results in terms of this model.

Given the relatively short length of the simulation

compared to the possibly long timescales of folding/unfolding

(41), we did not expect to observe the unfolding of the HI-1

helix in the DNA-bound state. Indeed, despite the large

RMSD in the DNA-bound state, no unfolding of HI-1 was

observed in the simulation. What was observed instead can

be interpreted as the onset of the unfolding, consisting of the

FIGURE 5 Snapshots of the simulation and angles between H4 and HI-1.

(A) Structures from the MD simulations of the DNA-bound states of D301.

Shown are the initial structure and the structure at 2 ns and 6.6 ns. (B) apo-

D301. (C) D301-DNA complex. (D) Electrostatic-mutant D301 bound to DNA.
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outward motion of HI-1, away from H4 and HI-2 (Fig. 5 A).

During this motion, the Phe304-Leu421 and Lys305-Leu422

hydrogen bonds between HI-1 and H4, and the Lys305-

Glu428 salt bridge between HI-1 and H5 broke, whereas the

Lys316-Glu343 salt bridge persisted (the Lys318-Asp347 salt

bridge was intermittently present in the simulation).

To gain more insight into the change in protein motion

upon DNA binding, we performed a quasiharmonic analysis

on the Ca atoms of the apo and DNA-bound states of D301.

The lowest-frequency mode (neglecting the six translational

and rotational modes) of the apoprotein mainly showed

motion of the C-terminus, and a small bending motion of

the protein around the HI-1-H4 axis, whereas the second-

lowest mode showed small, symmetric (in-phase) bending

and stretching motion of HI-1 and H4, and a stretching

motion of H3. In contrast, the lowest mode of the DNA-

bound state consisted of a large, asymmetric (out-of-phase)

hinge-bending motion of HI-1 and H4 around H1, combined

with a large bending motion of HI-2 and the loop between

HI-1 and HI-2, and a twisting of H3 (Fig. 6 A). The second

FIGURE 6 Quasiharmonic analysis of DNA-bound D301. (A) First quasi-

harmonic mode. The mode oscillates between the thick- and thin-lined struc-

tures; the arrows indicate major motions. (B) Second quasiharmonic mode.

(C) Projection of the motion of the DNA-bound state onto the apo state

of D301. Shown are the values of rbound;i for the first 20 quasiharmonic

modes (indexed by i). These modes account for 75% of the motion in

apo-Ets-1 and for 90% of the motion in the Ets-1-DNA complex. For

rbound;i > 1, the amplitude of motion is larger in the apoprotein, whereas

for rbound;i < 1, the amplitude is larger in the DNA-bound state. The first

10 quasiharmonic modes are described in the text.
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mode of the DNA-bound state showed a large bending and

stretching motion of HI-1, HI-2, and the loop between HI-1

and HI-2 away from H4 and the rest of the protein (Fig. 6 B).

A projection of the DNA-bound modes onto all the modes of

the apoprotein showed that the amplitude of these types of

motions was much larger in the DNA-bound state than in

the apoprotein (Fig. 6 C). Of the first 10 quasiharmonic

modes of the DNA-bound state, modes 4, 6, and 10 also

involved motions with much larger amplitude in the DNA-

bound state (Fig. 6). These motions involved bending of

the loop between HI-1 and HI-2 (mode 4), stretching

(mode 6) and twisting (mode 10) of HI-1, HI-2, and the

loop between them (mode 6), and in-phase bending of

H4 and H5 (mode 10). Motions that were repressed in the

DNA-bound state involved the bending of H3 (modes 3, 5,

and 7–9), motion of the C-terminus (modes 3, 5, 8, and 9),

and bending of H1 (modes 3, 5, and 8); generally, these

repressed modes also showed small (compared to modes 1

and 2) bending or stretching motions of HI-1 and HI-2.

What interactions caused the observed changes of motion

in D301 upon DNA binding? A first indication of the impor-

tance of hydrogen bonds between H1 and DNA comes from

an analysis of the macrodipolar interaction energies between

H1 and H4 in the apo and DNA-bound states of D301 and

D331. For apo-D301, the macrodipolar interaction energy

between H1 and H4 was 5.0 kJ/mol (Fig. 7 A), and for

apo-D331 it was 5.4 kJ/mol (Fig. 7 B). In their DNA-bound

states, this interaction energy was 7.5 kJ/mol for D301

(Fig. 7 C) and 9.2 kJ/mol for D331 (Fig. 7 D). Large drops

in the H1-H4 macrodipolar energy were observed when no

hydrogen bonds were present between H1 and DNA. Two

different hydrogen bonds between H1 and DNA were
observed: between the amide backbone of Leu337 and the

DNA phosphate, and between the side chain of Gln336 and

the DNA phosphate. Leu337 is a highly conserved residue

at the N-terminal end of the H1 helix, and has been shown

to strongly mediate DNA binding (51). It is thought to

form a strong hydrogen bond, due to the facilitating macro-

dipolar moment of helix H1 and the negative charge of the

phosphate group (51,80). In the crystal structure of

GABPa/b-DNA, the side chain of Gln336 (residue number-

ing as in Ets-1) of the ETS domain forms a hydrogen bond

with the DNA phosphate (47). Mutation studies of Ets-1

suggest that this residue modulates the binding affinity

for DNA (51). In the simulation of the DNA-bound state

of D301, the Leu337 hydrogen bond with DNA was present

until ~7 ns, and the Gln336 hydrogen bond was present

during large sections of the first 7 ns of the production run.

At 7 ns, the Leu337 hydrogen bond broke, and for 1 ns no

hydrogen bonds were formed between H1 and the DNA.

During this time, the H1-H4 macrodipolar interaction energy

declined toward its apo value. After 8 ns, both hydrogen

bonds were present again, and the H1-H4 macrodipolar

interaction energy went back to higher values. For D331,

the Leu337 hydrogen bond was present during the first

5.6 ns of the production run, during which the Gln336

hydrogen bond was intermittently present. At 5.6 ns, the

hydrogen bonds between H1 and the DNA broke, and the

H1-H4 macrodipolar interaction energy decreased toward

its apo value. At 7.8 ns, the Gln336 hydrogen bond reformed,

and the H1-H4 interaction energy went back to its initial

value. These results suggest that the interactions between

H1 and H4 are mediated through hydrogen bonding of H1

with DNA.
FIGURE 7 Macrodipolar interaction energy between

H1 and H4, with running averages shown as white lines,

for (A) apo-D301, (B) apo-D331, (C) DNA-bound D301,

and (D) DNA-bound D331. In C and D, below the curves,

hydrogen bonding between Gln336 and DNA is indicated

by black bars, between Leu337 and DNA by dark gray

bars, and no hydrogen bonding between H1 and DNA by

light gray bars.
Biophysical Journal 96(4) 1307–1317
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The modulation of the dipolar interaction energy between

H1 and H4 by the hydrogen bonds between H1 and DNA sug-

gested that these hydrogen bonds may also play a role in the

change of the correlation between the motion of HI-1 and

H4 upon DNA binding. To test this hypothesis, we performed

simulations of D301 and D331 in which the charges of the

amide backbone of Leu337 and the amine of the side chain

of Gln336 were set to zero. Hydrogen bonding is a purely elec-

trostatic interaction in the CHARMM force field that we

employed (62,63). By setting the charges to zero, we elimi-

nated the hydrogen-bonding capabilities of the backbone of

Leu337 and the side chain of Gln336. If the hydrogen bonds

of DNA with Leu337 and Gln336 played a role in the sign

reversal of the correlation between HI-1 and H4 upon DNA

binding, we expected to see changes in the variance-covari-

ance matrix of the DNA-bound ‘‘electrostatic mutant’’. Since

the mutant was still bound to the DNA, we expected not to

fully recover the apo values, but instead to obtain a matrix

with values in between the apo and DNA-bound values if

hydrogen bonding between H1 and DNA was important.

Fig. 3, C and D, shows the variance-covariance matrices

for the DNA-bound mutants D331 (C) and D301 (D). The

upper triangular part of the matrices is for the DNA-bound

electrostatic mutant, the lower triangular part for the wild-

type protein bound to DNA (see also Fig. 3, A and B, lower
triangles). Comparison of the DNA-bound mutant D301

variance-covariance matrix (Fig. 3 D, upper triangle) to

the apo (Fig. 3 B, upper triangle) and DNA-bound state

of D301 (Fig. 3, B and D, lower triangles) showed significant

differences. The correlation between H4 and HI-1 is still

negative in the DNA-bound state of the mutant, but signifi-

cantly less negative than for the wild-type protein. The

variance-covariance matrix elements between other parts of

the DNA-bound mutant were also in between those of

the wild-type apoprotein and DNA-bound complex. For

example, the correlation between HI-1 and H1 is more nega-

tive in the DNA-bound mutant than in the apo-wild-type, but

less negative than in the wild-type DNA-bound state. The

correlation between H1 and H4 is more positive in the

mutant than in the apo-wild-type, but less positive than in

the wild-type DNA-bound state. In contrast, very small

differences were observed between the DNA-bound D331

mutant (Fig. 3 C, upper triangle) and the apo (Fig. 3 A, upper
triangle) and DNA-bound wild-type D331 (Fig. 3, A and C,

lower triangles).

In addition to the effect on the variance-covariance matrix,

the elimination of the hydrogen bonding between H1 and

DNA also had large effects on other aspects of the motion

of the protein. In Fig. 2, the RMSD with the averaged struc-

tures for the Ca atoms of the DNA-bound states of mutant

D301 (Fig. 2 A) and mutant D331 (Fig. 2 B) are shown in

gray. For the mutant D301, the RMSD values for HI-1,

HI-2, and the loop between HI-1 and HI-2 are in between

the apo-wild-type (black) and wild-type DNA-bound states

(dark gray). The RMSD values of H4 of the mutant are close
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to the apo-wild-type values, whereas all other RMSDs match

the wild-type DNA-bound values. For D331, no large differ-

ences in RMSDs were observed between the apo-wild-type

and DNA-bound structures, and the mutant DNA-bound

structure. In Fig. 5 D, the angle between H4 and HI-1 for

the DNA-bound electrostatic mutant D301 is shown. This

angle was 30 5 8� throughout the simulation, close to the

value of 25� for apo-wild-type D301 (Fig. 5 B). Finally,

the quasiharmonic modes of the DNA-bound mutant D301

were similar to those of the DNA-bound wild-type D301,

but the amplitude of outward motion of HI-1, HI-2, and

the loop between HI-1 and HI-2 was much reduced. Fig. 8

shows the projection of the wild-type DNA-bound D301

modes onto the DNA-bound mutant modes. This figure

shows that the amplitudes of mode 1 (the out-of-phase

bending of HI-1 and H4, Fig. 6 A) and mode 2 (the bending

of HI-1 and HI-2 away from the protein, Fig. 6 B) are

repressed in the mutant.

DISCUSSION

We have performed MD simulations of the folded states of

Ets-1 D331 and D301 as apoprotein and bound to DNA to

probe the interactions that lead to the DNA-induced unfold-

ing of HI-1. Given the possibly long timescales of the un-

folding transition (41), we did not anticipate observing

a complete unfolding of HI-1 of the DNA-bound protein in

our ~15-ns simulations. Our main goal was to identify the

interactions that lead to the onset of the unfolding; for this

aim, simulation of the entire unfolding process was not

necessary. We did observe the onset of unfolding, which

consisted of the breaking of the backbone Phe304-Leu421

FIGURE 8 Projection of the motion of the DNA-bound state of D301 onto

the motion of the DNA-bound state of the electrostatic mutant D301. Shown

are the values of rwildtype;i for the first 20 quasiharmonic modes (indexed by i).

For rwildtype;i > 1 the amplitude of motion is larger in the mutant, whereas for

rwildtype;i < 1 the amplitude is larger in the wild-type protein.
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and Lys305-Leu422 hydrogen bonds between HI-1 and H4,

the breaking of the Lys305-Glu428 salt bridge between HI-1

and H5, and the outward motion of HI-1, away from H4

and HI-2. We also performed simulations of DNA-bound

states of ‘‘electrostatic mutants’’ in which certain charges

were neutralized, to uncover the role of the hydrogen-

bonding interactions between helix H1 and DNA.

Our main result is that the protein motion changed in char-

acter upon binding DNA. In the apoprotein, the motion of HI-

1 and H4 was correlated, whereas in the DNA-bound state the

motion was anticorrelated. In addition, in the apoprotein HI-1

and H4 were well aligned, whereas in the DNA-bound state

this alignment was lost. These results indicate that HI-1 is

stabilized in the apoprotein through favorable interactions

with H4. These interactions persist over long timescales, since

the helices move in tandem. Upon DNA binding, the stabi-

lizing interactions between HI-1 and H4 were disrupted: the

backbone Phe304-Leu421 and Lys305-Leu422 hydrogen bonds

broke, the helices moved out of phase (disfavoring a contin-

uous stabilization), and the macrodipoles were misaligned.

Although we did not observe the actual unfolding of HI-1 in

our simulations, large outward motions of the helix were

observed. The data indicate that the disruption of stabilizing

interactions between H4 and HI-1 trigger the unfolding of

HI-1. These results agree with experimental data: chemical

shift data showed a perturbation of H4 upon DNA binding

(44), and NMR data (41) also indicate critical roles for the

Phe304-Leu421 and Lys305-Leu422 hydrogen bonds. The simu-

lations augment the experimental observations by providing

detailed structural insights into the role of H4 at the onset of

unfolding. Our calculations suggest an important role for

the Lys305-Glu428 salt bridge between HI-1 and H5, which

breaks upon DNA binding. The importance of this salt bridge

could be verified by mutation experiments.

Electrostatic data indicates that the interactions between

HI-1 and H4 are modulated by hydrogen bonding of H1

with the DNA backbone. Macrodipolar interactions between

H1 and H4 were strongly dependent on the presence of

a hydrogen bond between H1 and DNA, and the DNA-

bound D301 electrostatic mutant showed decreased anticor-

related motion between HI-1 and H4, and a decreased RMSD

of HI-1 compared to the DNA-bound wild-type protein. The

simulation indicated the importance of two hydrogen-

bonding groups: the amide backbone of Leu337 and the

side chain of Gln336. The importance of these groups is in

agreement with mutation experiments (51) and confirms

that the hydrogen bonds between H1 and DNA form

a conformational switch (47,51).

Our simulations support a central role for correlated motions

and interactions between H1, H4, and HI-1 at the onset of

unfolding. The presence of DNA is sensed by H1, and trans-

mitted to H4, which destabilizes HI-1 by a disruption of

hydrogen bonding and macrodipolar interactions. The impor-

tance of correlated motions for binding is certainly not unique

to Ets-1: correlated motions are often essential for protein
function. Molecular dynamics simulations can provide direct

and comprehensive insights into these correlated motions

(82), providing new data that complement experiments.

This material is based upon work supported by the National Science Foun-

dation under its programs Partnerships for Advanced Computational Infra-

structure, Distributed Terascale Facility (DTF), and Terascale Extensions:

Enhancements to the Extensible Terascale Facility. Computer time was

also provided by the Fulton High Performance Computing Initiative at

Arizona State University.
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