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ABSTRACT Proteins can be influenced strongly by the electrolyte in which they are dissolved, and we wish to model, under-
stand, and ultimately control such ionic effects. Relatively detailed Monte Carlo (MC) ion simulations are needed to capture
biologically important properties of ion channels, but a simpler treatment of ions, the linearized Poisson-Boltzmann (LPB) theory,
is often used to model processes such as binding and folding, even in settings where the LPB theory is expected to be inaccurate.
This study uses MC simulations to assess the reliability of the LPB theory for such a system, the constrained, anionic active site of
HIV protease. We study the distributions of ions in and around the active site, as well as the energetics of displacing ions when
a protease inhibitor is inserted into the active site. The LPB theory substantially underestimates the density of counterions in the
active site when divalent cations are present. It also underestimates the energy cost of displacing these counterions, but the error
is not consequential because the energy cost is less than kBT, according to the MC calculations. Thus, the LPB approach will
often be suitable for studying energetics, but the more detailed MC approach is critical when ionic distributions and fluxes are
at issue.
INTRODUCTION

Many protein functions involve the binding of molecules to

specialized sites on proteins that include one or more ionized

groups. The energetics and dynamics of such binding reac-

tions are modulated by the nature of the electrolyte in which

they occur; ionic strength and the magnitudes of ionic

charges are particularly important determinants of electrolyte

effects. The relationship between the ionic environment and

the thermodynamics of molecular recognition is thus of

profound biological importance, as shown by the tight regu-

lation of the ionic compositions of different compartments in

cells and tissues. This relationship is also of practical interest.

For example, a drug that works by binding a protein must act

in the appropriate physiological compartment, with its

specific ionic concentrations; and an enzyme used in an

industrial process may need to be engineered to function in

a highly nonphysiological environment. Moreover, changes

in ionic concentrations can trigger many physiological

actions (1–4). Changes in the concentrations of Ca2þ ions,

in particular, are used widely by nature to carry specific bio-

logical information. For example, Ca2þ is the activator of

contraction in skeletal and cardiac muscle.

The analysis of ionic solutions began nearly a century ago

with Poisson-Boltzmann (PB) theory, which was introduced

by Gouy and Chapman to describe charged planar interfaces,

and then used by Debye and Hückel in its linearized form to

account for the nonideality of solutions of spherical ions. The

derivation and limitations of PB theory have been discussed

in textbooks of physical chemistry (5), electrochemistry
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(6–11), and biophysical chemistry (12–14) for a long time.

The generalization of PB to nonequilibrium, which leads to

the drift-diffusion equations, was introduced in plasma

physics (15–19) and has formed the foundation of computa-

tional electronics (20–25). The nonequilibrium version has

been extended to deal with ion channels as well under the

name Poisson-Nernst-Planck (26–33). Concurrently, the

development of fast computers and numerical methods

have led to broad application of the linearized Poisson-Boltz-

mann (LPB) theory to molecules of complex shape, like

proteins and nucleic acids (34–37).

LPB theory represents a specific implementation of the

primitive model (PM) of electrolytes, in which the solvent

is represented by a dielectric continuum and the ions are con-

sidered as charged hard spheres. LPB further simplifies the

ions by representing them as a continuous distribution of

charge whose density responds to the electrostatic field

produced by the biomolecule of interest. The effect of the

size of the ions on their interaction with the biomolecule is

described by the distance of closest approach of the ionic

atmosphere to its atoms. (This distance effectively defines

a Stern layer in the sense of Gouy-Chapman double-layer

theory.) The LPB theory neglects steric interactions and

correlations among individual ions; it includes only correla-

tions of the ions with the imposed mean electric field. The

neglect of these two effects compensates to a considerable

extent for some properties of bulk solution (38), so the PB

approach is more successful than one might expect.

However, the balance between these two effects depends

on conditions: size effects become more important at high

concentrations, whereas ion correlations due to electrostatics

seem to be more important for low concentrations and higher
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valence ions. It is also important to recognize that the linear-

izing approximation of the LPB holds only when the interac-

tion of an ion with the potential field is less than kBT, or ~25 mV

for a 1:1 electrolyte. Based on these considerations, one may

anticipate that the LPB theory will be severely stressed in

conditions of high electrostatic potential and a confined envi-

ronment, where both nonlinearity and steric interactions

become important. This has, in fact, been the conclusion of

many workers in the field of electrochemistry (9–11,39,40).

This study aims to evaluate the validity of LPB theory by

comparing it with a more detailed implementation of the PM

that includes nonlinearity along with steric interactions and

correlations among individual ions. A number of modern

statistical mechanical theories of ionic solution might be

used for this purpose, including modifications of the Pois-

son-Boltzmann theory (38), the mean spherical approxima-

tion MSA (41), the hypernetted chain HNC approximation

(42–44), and second-order integral equations (45). Density

functional theories (46–48) have been especially successful

lately, with recent developments to account for large spatial

variations in concentration (49) and for strong ionic coupling

(50). The applicability of these theories is currently limited to

systems described by one spatial coordinate, such as one

dimensional or spherically symmetrical systems, so they

are not readily applied to biomolecular systems described

in full atomic detail. (They have, however, been applied

with some success, to complex biomolecular systems repre-

sented by reduced models (30,49,51–62).) In this study, we

use Monte Carlo (MC) simulations of the electrolyte because

they provide exact results for a given model, apart from

statistical uncertainties, and can be applied straightforwardly

to complex, inhomogeneous ionic systems.

MC simulations of the PM have been used to model bulk

electrolytes (63) and the double-layer geometry (63). The

full PM implemented by such simulations has been shown

to reproduce faithfully the structure of the diffuse double

layer near a charged surface or macromolecule and to accu-

rately account for many experimental observations. One

example is charge inversion, which accounts for attractive

interactions between like-charged macroparticles (64,65) in

phenomena such as the condensation of DNA molecules

(66) and cement cohesion (67), and also for the reversal of

the sign of electrophoretic mobility (68). The presence of

divalent ions and ionic correlations are crucial in these situ-

ations. In addition, simulations of ionic selectivity in Ca2þ

(30,51,52,56–60,62) and Naþ (61) channels highlight the

importance of accounting for the finite size of ions. The

success of the PM in reproducing experimental phenomena

is, perhaps, counterintuitive, given that it treats water as

a dielectric continuum. Evidently, much of the physics is

accounted for by long ranged electrostatic effects manifest

in the structure of the diffuse double layer around charged

solutes, and ion-ion interactions manifest in the activity coef-

ficients of ions in solution and the selectivity of Ca2þ and

Naþ channels. The details of water structure seem to be
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less important, and averaging over the details of water struc-

ture does not change the main conclusions.

HIV protease (HIVP) is a particularly interesting test

system for evaluating the LPB theory against a more detailed

MC implementation of the PM. For one thing, HIVP is a key

drug target for the treatment of HIV infection and AIDS, so

learning more about its physical chemistry may ultimately

contribute to the development of new therapeutics. In addi-

tion, the enzymatic activity of HIVP is sensitive to the concen-

tration of salt (69) and inhibition assays are typically carried

out in 1 M NaCl solution. Finally, HIVP poses a particular

challenge to the LPB theory: its tunnel-like binding site is

confining and furthermore contains two central aspartyl

groups whose net charge can range up to �2e.

This study is based on the PM and uses both MC simulations

and LPB theory to study the distribution of ions in and around

the active site of HIV protease. The representation of the

protease is simplified somewhat to facilitate these initial MC

calculations. In addition, the active-site charge is allowed to

range up to the nonphysical value of�3e to provide a glimpse

of how LPB deals with highly charged systems. In addition,

calculations with and without a bound ligand bear on the impact

of the electrolyte on the thermodynamics of ligand-binding.

METHODS

Model of HIV protease and inhibitor KNI-272

Monte Carlo and LPB calculations were carried out for a simplified model of

HIV protease with and without a bound inhibitor, KNI-272 (Fig. 1). Atomic

coordinates were drawn from PDB (70,71) file 1HPX (72), and each atom

was assigned a hard-sphere radius equal to the value of Rmin from the Len-

nard-Jones term of the CHARMM force field (73) as implemented in the

program Quanta (Accelrys, San Diego, CA), except that all hydrogen radii

were set to 1.2 Å. The protein comprises 1844 atoms and the ligand 87.

All atomic charges of the protein and ligand were set to zero, except that

FIGURE 1 Crystal structure of HIV protease drawn from PDB entry

1HPX. The bound inhibitor, KNI-272 (122), is not shown here so that the

tunnel-like binding-site is visible. The surface of the ion-excluding volume

for an ion of diameter d¼ 2 Å, computed with UHBD, is shown in cyan;

nonhydrogen atoms are shown in green; and the location of the protein

charge in these calculations, Cg of Asp25, is highlighted in red. Graphics

generated with the VMD program (121).
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a single point-charge of �1e, �2e, or �3e was placed at the center of the

gamma carbon of Asp25 (Fig. 1) to model realistic (�1e, �2e), and unreal-

istic but informative (�3e), ionization states of the two active site aspartates.

This is one of the two catalytic aspartyl groups, and it is located in the wall of

the active site tunnel essentially equidistant from the two openings of the

active site. The dielectric constant of the molecular interior was set to equal

that of the aqueous solvent, 78.46. This value, which overestimates the

polarizability of the protein and ligand, was chosen to isolate the most basic

consequences of steric interactions among ions and electrostatics beyond the

mean field. The conformations of the protein and the ligand were held fixed

during all calculations; only the dissolved ions of the electrolyte were

allowed to move. Calculations were carried out for all combinations of:

Protein alone or protein-ligand complex.

1:1 or 2:1 electrolyte.

Ionic radius of 1 Å, 1.5 Å or 2 Å; cations and anions are given the same

size in our calculations.

Anion concentration of 0.058 M, 0.103 M, 0.148 M, or 0.208 M.

Protein charge of �1e, �2e, or �3e

for a total of 2 � 2 � 3 � 4 � 3 ¼ 144 calculations by each method.

MC simulations of the electrolyte

MC simulations of the electrolyte were carried out in the canonical (NVT)

ensemble; that is, the volume of the simulation cell, the temperature and the

numbers of ions were held fixed. The energy function comprised hard-sphere

interactions among the ions and between the ions and the protein or protein-

ligand complex, along with Coulombic interactions among the mobile ions

and between the mobile ions and the protein charge. Coulombic interactions

were uniformly reduced by the solvent dielectric constant 78.46 and temper-

ature was set to 300 K. The protein was placed at the center of a cubic

simulation cell with the solitary charge at the origin. The dimensions of the

simulation cell were set large enough to allow the formation of bulk electro-

lyte far from the protein at the edge of the box; the length ranged between 148 Å

and 226 Å, depending on ionic concentration. The total number of ions was

set to make the full system, ions and protein, electroneutral. Edge effects were

eliminated by the use of periodic boundary conditions. Long-range correc-

tions are negligible at this value of the dielectric constant and system size.

Sampling was accelerated by using a biased importance sampling method

that has been used before in ion channel simulations (55). In this technique,

ion exchange between a small subvolume—a sphere containing the protein

and centered on the solitary charge—and the large bath is oversampled.

When the ion selected for a trial move is located in the sphere, the trial

move is into the bath; when the ion to be moved is located in the bath, the trial

move is into the sphere. The resulting bias is removed by adjusting the accep-

tance probability of the MC step according to the ratio of the two subvolumes.

To avoid expensive computational loops involving all atoms, we used the

linked-cell method (74,75), which reduces the number of ions that must be

checked for overlap with the ion subjected to the trial move. The simulations

were continued until they yielded smooth radial density profiles of the

dissolved ions as a function of the distance from the protein charge.

LPB calculations

The LPB equation was solved for the same protein and protein-ligand

systems by the method of finite differences with the program UHBD (76).

The dielectric constant was set to 78.46 both in solvent and in the protein

and ligand, to match the MC calculations. Mobile ions were excluded

from the interior of the protein and ligand by preventing the ionic atmo-

sphere from entering a region defined by the union of their atoms with their

hard-sphere radii incremented by the ionic radius. The ionic strength was set

to match that of the corresponding MC run.

Finite difference calculations used a 2-stage ‘‘focusing’’ method (77)

starting with a 100 Å � 100 Å � 100 Å finite difference grid with 1 Å

spacing centered ~2 Å from the gamma carbon of Asp25. Boundary poten-
tials were computed by applying the Debye-Hückel equation to the source

charge, with the approximation of a uniform electrolyte of the appropriate

ionic strength. The second stage used a 40 Å � 40 Å � 40 Å grid with

0.4 Å spacing, centered on the same point as the coarse initial grid and

with boundary conditions drawn from the coarse grid potentials.

Calculation of ionic and potential distributions

For the MC calculations, radial distribution functions (RDFs) were

computed by averaging ionic concentrations in spherical shells of radius r

centered on the protein charge to yield the mean concentration as a function

of distance, c(r). The RDF graphs in Results are all reported as c(r)/c0, where

c0 is the bulk concentration of the ionic species. Thus, for a 2:1 electrolyte

with 0.15 M anions, the anion RDFs are divided by 0.15 M and the cation

RDFs are divided by 0.075 M. As a consequence, all the RDF graphs

approach 1 at long distance from the protein charge. Note that those portions

of each spherical shell that lie in the protein or ligand interior have zero ionic

concentration because the protein and ligand sterically exclude the ions. The

ion-accessible volume of a spherical shell is termed Veff(r), the total volume

of a shell is termed Vtot(r), and the ion-accessible fraction of a shell is Veff(r)/

Vtot(r). The RDFs reported in Results are averages over Vtot(r), except for the

bottom panel of Fig. 2, where the averages are taken over only Veff(r); the

two averages are related by the factor Veff(r)/Vtot(r).

For the LPB calculations, the concentrations of cations and anions were

computed at each point of the finite difference grid, the grid points were

grouped into radial shells around the source charge, and the mean concentra-

tion within each shell was computed. Following the LPB theory, the concen-

tration of each ionic species i was computed at grid point (j,k,l) as

ciðj; k; lÞ ¼ coð1� zi ftotðj; k; lÞ=kBTÞ; (1)

where kB is Boltzmann’s constant, T the temperature, zi the ionic charge and

ftot the electrostatic potential generated by the source charge in the protein

and the ion atmosphere.

In the MC calculations, the mean concentration in each spherical shell was

computed as a simple average over the ensemble of ionic configurations

generated by the simulations. The charge profile was computed as

qðrÞ ¼
P

i

zieciðrÞ, where zi is the valence of ionic species i, e is the charge

on a proton and r is the distance from the source charge of the protein. The

electrostatic potential f(r) due solely to the ionic atmosphere as a function of

the distance from the origin was estimated by applying Poisson’s equation to

this averaged charge density:

1

r2

�
d

dr

�
r2dfðrÞ

dr

��
¼ �4p

3
qðrÞ; (2)

where 3 is the dielectric constant. We use the boundary condition that the total

potential is zero at the edge of the simulation cell r¼L/2, where L is the length

of the cubic simulation box. The total potential is the sum of the potential of the

ionic cloud, f(r), and the potential of the central charge, Q/3r. The boundary

condition then can be expressed as f(L/2) þ 2Q/(3L) ¼ 0. The solution is

fðrÞ ¼ �4p

3

Zr

L=2

EðrÞdr; (3)

where

EðrÞ ¼ 1

r2

Zr

0

ðr0Þ2qðr0Þdr0: (4)

The potential generated by the ions at the protein’s source charge at the

origin is given by

fð0Þ ¼ 4p

3

ZL=2

0

r0qðr0Þdr0: (5)
Biophysical Journal 96(4) 1293–1306
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Work of displacing ions on ligand-binding

The displacement of counterions from the binding site when an inhibitor

binds incurs a free energy cost and hence reduces the inhibitor’s binding

affinity. The work of displacing ions can be obtained as the difference

between the work of hypothetically charging the protein source charge in

the presence and absence of the bound inhibitor. For LPB theory, the

work of charging is simply W ¼ 1
2
Q fQð0Þ, where fQ(0) is the reaction field

potential of the ion atmosphere when the source charge is fully charged. For

the nonlinear MC simulations, the work integrals are estimated by applying

the trapezoid rule to the electrostatic potentials associated with stepwise

increases in the source charge. For example, the work of charging the protein

to Q ¼53e is given by:

WMC ¼ e
�
f�1ð0Þ þ f�2ð0Þ þ

1

2
f�3ð0Þ

�
: (6)

FIGURE 2 Radial density functions c(r) for 1:1 electrolyte and a weakly

charged binding site, Q ¼ �1e. Plots are shown for cations, anions, and net

charge. Ionic diameter is set to d¼ 3 Å, and distances r are measured from

the source charge in the protein. All densities are normalized to the bulk

concentration c0 ¼ 0.09 M. (Upper panel) Normalized concentrations are

obtained by averaging over the entire spherical shell at each distance r, so

that the total volume of the shell includes the body of the protein from which

ions are excluded. (Lower panel) Same as upper panel except that concen-

trations are averaged over only the part of the spherical shell accessible to

ions. This distribution is obtained from c(r)/c0 by dividing by Veff(r)/Vtot(r),

the ratio of the ion-accessible volume of the shell to the total volume of the

shell. Inset graphs the ratio Veff(r)/Vtot(r).
Biophysical Journal 96(4) 1293–1306
RESULTS

Spatial distributions of ions in and around
the binding site

Optimal agreement between MC and LPB calculations is

expected when the protein charge is small, the ions in solu-

tion are all monovalent, and their concentration is low. Fig. 2

compares the spatial distributions, i.e., the RDFs, of ions

computed by both methods under such conditions: Q¼�1e;

1:1 electrolyte at ionic strength 0.09 M, with ion diameter

3 Å. The MC (symbols) and LPB (lines) results agree closely.

This consistency is gratifying because the two calculations

were carried out entirely independently, and no parameters

were adjusted in any way to bring them into agreement.

The upper and lower panels of Fig. 2 plot the same ionic

density data in two different ways. In the upper panel, the

concentration is averaged over the entire volume of the spher-

ical shell, including the interior of the protein, which sterically

excludes ions. This accounts for the dip in concentration at

about r¼ 12 Å. In the lower panel, the concentration is aver-

aged over only the volume of the spherical shell accessible to

ions, so the dip in concentration has disappeared. The inset

shows Veff(r)/Vtot(r), the ion-accessible fraction of the volume

as a function of r. This fraction was calculated from trial ion

insertions into the spherical shell and is the ratio of the number

of trial when no overlap with the protein occurred and the total

number of trials. It is evident that the concentration profiles in

the upper panel follow closely the ion-accessible volume frac-

tion. Removing this effect (as in the lower panel) magnifies

the differences between the MC and LPB results. Subsequent

graphs use the method of the upper panel to display results;

nonetheless, it will be seen that differences between MC

and LPB become apparent.

The LPB theory is expected to differ from MC when the

binding site is highly charged and multivalent ions are

present, as these conditions lead to greater nonlinearity and

crowding of ions, which the LPB theory neglects. The

nonlinearity results primarily from the exponential form of

Boltzmann factor with respect to the charge-charge interac-

tions in the system. Crowding of ions tends to occur when

their bulk concentrations are high, their diameters are large,

and a highly charged binding site attracts a large concentra-

tion of counterions into a small space. The following subsec-

tions probe the agreement between the two models with

calculations spanning the following parameter ranges: bulk

anion concentration c0 ¼ 0.058 M, 0.103 M, 0.148 M, and

0.208 M; ionic diameters d ¼ 2 Å, 3 Å, and 4 Å; protein

binding charge Q ¼ �1e, �2e, and �3e; and 1:1 and 2:1

electrolytes, like NaCl and CaCl2, respectively.

Larger protein charges and divalent cations

The consequences of increasing the binding site charge and

replacing monovalent by divalent cations are examined in

Fig. 3, which shows Q ¼ �1e, �2e, and �3e reading top
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FIGURE 3 Concentration profiles,

normalized to bulk concentrations, for

various bulk concentrations, with ionic

diameter 3 Å. Binding site charges are

Q ¼ �1e, �2e, and �3e reading top to

bottom; left and right panels are for 1:1

and 2:1 electrolytes respectively. Ionic

concentrations are 0.058 M, 0.103 M,

0.148 M, or 0.208 M for solid black,

dotted red, short dashed green, and

long dashed blue curves, respectively.

MC results are shown as lines decorated

with symbols in this and following

figures. LPB results are shown by lines

without symbols. The main panels

show cation profiles, whereas the insets

show anion profiles.
to bottom and 1:1 and 2:1 electrolytes reading left to right,

for various ionic concentrations. These data are for ionic

diameter 3 Å; other ion sizes are examined subsequently.

Here and in subsequent figures, MC and LPB results are

shown respectively by lines with and without data symbols.

In Fig. 3, different colors represent different concentrations

of ions.

The LPB results agree reasonably well with MC in the top-

left graph (Q ¼ �1e, 1:1), but the two methods diverge

markedly as charge and ion valence increase. For high

charge and valence, the MC method yields concentration

profiles that are more sharply peaked and more localized

near the source charge; i.e., at small values of r. Also, the

LPB results scale linearly with Q as required for this linear

model, whereas the MC results show marked nonlinearity

in Q. In particular, for the 2:1 electrolyte with bulk anion

concentration of 0.058 M (black curves, right panels), the

peak concentration of cations rises ~16-fold as Q increases

from �1e to �2e, and then another ~10-fold as Q rises to
�3e. (In contrast, the linear model yields only 2-fold and

1.5-fold jumps in ionic concentration for these respective

changes in Q.) Interestingly, the nonlinearity of the MC

results is somewhat less marked when the bulk concentration

of ions is higher. For example, for the 2:1 electrolyte with

bulk anion concentration now 0.208 M (blue curves, right
panels), the peak concentration increases not by 16- and

10-fold, but by ~13- and ~7.5-fold, as Q goes from �1e to

�2e and then �3e. This effect of the bulk concentration

on the degree of nonlinearity probably stems, at least in

part, from the higher degree of steric crowding and weaker

electrostatic potentials associated with higher bulk concen-

trations of ions. However, the complex interactions of terms

make it difficult to arrive at a definite explanation of this

observation.

The LPB results in Fig. 3 include negative concentrations

of anions (see insets). This nonphysical result is traceable to

the linearizing approximation of the theory: e�x will never

yield negative values, but its linearized approximation, 1� x,
Biophysical Journal 96(4) 1293–1306
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is negative if x exceeds 1. It is worth noting in this regard that

the LPB equation for the charge density or potential does not

treat cation and anion concentrations separately; instead, the

important variable in the LPB equation is charge density,

and separate cation and anion densities are computed with

Eq. 1 from the electrostatic potential obtained by solving

the LPB equation.

Consequences of ion size

Fig. 4 examines the consequences of increased ionic crowd-

ing as the sizes of the ions are increased. Lines decorated

with symbols are the results of MC calculations. Solid,

dashed, or dotted lines without symbols describe results of

LPB calculations. The layout of charts is the same as in

Fig. 3, with protein charge Q increasing top to bottom and

the 1:1 and 2:1 electrolytes in the left and right panels,

respectively. However, now the curves in each chart corre-

spond to ionic diameters 2 Å, 3 Å, and 4 Å (black, red,
Biophysical Journal 96(4) 1293–1306
and green, respectively). The bulk concentration of anions

is 0.148 M for all results in this figure, so the red graphs reca-

pitulate data shown in Fig. 3.

Comparison of the three curves in each chart shows that

ion size strongly influences the concentration profiles. For

Q ¼ �1e with a 1:1 electrolyte (top left), the LPB and MC

methods agree rather well. However, as in Fig. 3, the

methods give different results as the electrostatic forces

increase; i.e., as Q increases in magnitude to �3e and the

cationic charge increases in magnitude to þ2e. The discrep-

ancies are least marked when the ions are largest (d ¼ 4 Å,

green curves), presumably because then steric interactions

among the ions oppose the nonlinear rise in cation density,

as Q goes from �1e to �3e, in the MC calculations.

Increasing ionic diameter shifts the peaks in cation

concentration to greater distance (r), because then steric

interactions keep the ion further away from the protein

charge. The peak heights also fall with greater ionic diam-

eter. This probably results from greater steric crowding,
FIGURE 4 Concentration profiles,

normalized to bulk concentrations, for

various ionic diameters, with bulk anion

concentrations set to 0.148 M. Binding

site charges are Q ¼ �1e, �2e, and

�3e reading top to bottom; left and right

panels are for 1:1 and 2:1 electrolytes

respectively. Ionic diameters are 2 Å,

3Å, and 4 Å for solid black, dotted red,

and dashed green curves, respectively.

The main panels show cation profiles,

whereas the insets show anion profiles.
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along with the fact that the electrostatic potential generated

by the protein charge is smaller in magnitude at the distance

of closest approach of the larger cations.

Occupancy of the binding site by counterions

Binding in biological systems is usually summarized by

a single parameter. The association of mobile ions from the

electrolyte with the active site of HIV protease can be summa-

rized by the net occupancy of the binding site by cations or,

alternatively, by the net ionic charge in the binding site. These

quantities were computed by integrating the cation concentra-

tion or the net ionic charge density out to the location where

the plot of concentration vs. distance has its minimum,

~11.2 Å. Fig. 5 plots these occupancies as a function of the

protein charge (Q¼�1e,�2e, or�3e), for anion concentra-

tions of 0.148 M; note that the ordinates (y axes) have different

scales for the 1:1 and 2:1 results. As already seen in the RDF

results (above), the LPB results agree reasonably well with

MC for a 1:1 electrolyte with a singly charged binding site

Q ¼ �1e. Deviations appear when electrolytes and/or the

binding site have more than one charge. Also, the LPB results

for net charge again agree better with MC than the results for

a single ionic species, here the cations.
It is interesting to observe that, even under the most

extreme conditions examined in this study—an artificially

high protein charge of �3e, an ionic strength greater than

physiological, and a pure 2:1 electrolyte that corresponds

to a far higher concentration of divalent cations than is phys-

iologically normal—the HIV protease binding site is

still predicted by the MC calculations to contain less than

one cation on average. The occupancy of 0.8 under these

conditions corresponds to a net charge of 1.6, barely half

of that required to neutralize the �3e charge of the protein.

The net charge might be greater if the dielectric constant

of the protein interior were modeled as lower than that of

the solvent, because this would lead to a stronger source

potential in the binding site. Such a trend was previously

observed in calculations of ion binding in the selectivity filter

of Ca2þ and Naþ channels, where ionic occupancy increases

as the dielectric constant inside the protein decreases (56,

60,61).

Electrostatic potentials

The influence of the electrolyte on biochemical processes,

such as the diffusion and binding of a charged substrate to

an enzyme’s active site, is determined in large part by the
FIGURE 5 Average occupancies of

the binding site (r < 11.2 Å) for bulk

anion concentration 0.148 M and

various ionic diameters. (Upper panels)

Mean net charge. (Lower panels) Cation

occupancy. Left and right panels refer to

1:1 and 2:1 electrolytes, respectively.
Biophysical Journal 96(4) 1293–1306
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FIGURE 6 Radial profiles of the mean electrostatic

potential generated by the mobile ions for bulk anion

concentration 0.148 M, Q ¼ �2e, and various ionic diam-

eters. Left and right panels show the results for 1:1 and 2:1

electrolytes, respectively. Potential is zero at long range.
electrical potential. Fig. 6 plots the electrostatic potential

generated by the ions within the HIV protease binding site,

for cases where Q ¼ �2e and the bulk concentration of

anions is 0.148 M for both the 1:1 (left panel) and 2:1 (right
panel) electrolytes. This potential does not contain the

contribution of the binding charge Q/3r. Just as for the

RDFs (shown previously), LPB and MC differ significantly

when the electrolyte is 2:1, and the discrepancy is enhanced

in the case of smaller ionic diameters. On the other hand, the

maximal value of the discrepancy is only ~0.4 kBT/e.

The influence of the electrolyte on the energetics of the

protein can be characterized by a single number, the electro-

static potential generated by the ions at the source charge Q.

Fig. 7 plots these potentials as a function of the source charge

for the 1:1 (left panel) and 2:1 (right panel) electrolytes and

bulk concentration of anions 0.148 M. As expected, the LPB

and MC results diverge for higher values of Q and for the 2:1
Biophysical Journal 96(4) 1293–1306
electrolyte. However, the absolute magnitude of the differ-

ences between the two models remain modest: they are

well below kBT/e for Q ¼ �2e, rising to 2 kBT/e only for

the nonphysical charge of Q ¼ �3e.

Displacement of ions by an HIV protease inhibitor

When an HIV protease inhibitor binds in the active site, it

displaces the electrolyte from the solvent-occupied binding

site near the protein charge (see Fig. 1), forcing the displaced

ions to rearrange into a distribution around the protein that is

higher in energy than when they were allowed to accumulate

in the binding site. Displacing the ions requires work and

thus has implications for the energetics of inhibitor binding.

We repeated many of the calculations detailed above for the

case where a neutral model of the protease inhibitor KNI-272

occupies the binding site.
FIGURE 7 Mean electrostatic potential at the protein

binding site charge due to the mobile ions, as a function

of Q, for bulk anion concentration 0.148 M and various

ionic diameters. Left and right panels show the results for

1:1 and 2:1 electrolytes, respectively.
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FIGURE 8 MC simulation results for the effect of inhib-

itor binding on the concentration (left) and the potential

profiles (right) for a 2:1 electrolyte with bulk anion concen-

tration of 0.148 M, d ¼ 3 Å and Q ¼ �1e. Lines and

symbols denote the profiles without and with the ligand,

respectively.
Ionic distributions

The consequences of a bound ligand for the ionic RDFs and

the electrostatic potential due to the mobile ions are shown in

Fig. 8, for the MC simulations. Occupation of the binding

site by the inhibitor eliminates the peak of the RDF within

the binding site (left panel), and reduces the magnitude of

the electrostatic potential in solution due to the electrolyte

(right panel). The bound inhibitor fills the binding site and

thereby prevents ions from closely approaching the protein’s

charge and from occupying the spatially constrained binding

site. Not surprisingly, then, all results with the inhibitor

bound are less sensitive to ionic diameter d and charge Q
(data not shown).

Energetics

The work done by the inhibitor in displacing the counterions

leads to an unfavorable contribution to the binding free

energy of the inhibitor, and hence reduces the inhibitor’s

binding affinity. This work, W, is estimated from the electro-

static potential differences at the source charge, as described

in Methods. Fig. 9 plots W as a function of Q for the 1:1 and

2:1 electrolytes with bulk anion concentrations of 0.148 M,

for various ionic diameters. As expected, the work of binding

the inhibitor and thereby displacing the mobile ions signifi-

cantly increases when Q is increased, the ionic diameter

d is decreased, and the electrolyte goes from 1:1 to 2:1.

Thus, the detailed properties of the electrolyte can influence

ligand binding by determining the energetic cost of displac-

ing the ions in the binding site. On the other hand, the

absolute values of this work are not large. Even under the

artificial conditions of Q ¼ �3e, with a pure 2:1 electrolyte

at super-physiological concentration, the value of the energy

penalty is only 2 kBT. For the more realistic case where

Q ¼ �2e, the work is only ~0.25 kBT, a small quantity in

comparison with the other energies normally involved in

inhibitor-binding.
DISCUSSION

The LPB theory has been applied to proteins since 1924,

when Linderstrøm-Lang introduced the smeared-charge

model (78), which treats a protein as a sphere with a uniform

FIGURE 9 Work of displacing electrolyte on binding of inhibitor,

computed with MC and LPB methods, as a function of the protein charge,

for bulk anion concentration 0.148 M and various ionic diameters. Top

and bottom panels show results for 1:1 and 2:1 electrolytes, respectively.
Biophysical Journal 96(4) 1293–1306
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surface charge to compute protein titration curves. Tanford

and Kirkwood (79) subsequently developed a more detailed

model of protein titration that treated a protein as a low

dielectric sphere with discrete ionization sites. With the

development of high-resolution protein crystallography, the

electrostatic properties of the protein (80–83) and their ener-

getic, structural, and functional consequences (84–90)

became major foci of theoretical study, driving the develop-

ment of numerical methods for solving the LPB equation

(84,91–93) and the full PB equation (94–97) for molecular

systems of complex structure. This work ultimately led to

implicit solvent models (86,98–101) based on the LPB equa-

tion, which have been incorporated into energy models and

applied to problems including pH titration, protein folding,

and protein-small molecule binding, as reviewed in the Intro-

duction. These applications have focused largely on ener-

getics, and especially the energetic consequences of the

protein-solvent dielectric interface.

Accounting for the complex properties of transmembrane

ion channels requires more detailed implementations of the

PM, due to the large electrostatic potentials and the obvious

requirement to account for finite ion size as a basis for ionic

selectivity. Such implementations provide a surprisingly

powerful framework for understanding these complex

systems and predicting their detailed properties. For

example, the selectivity of the L-type calcium channel can

be understood by the primitive model (30,51,52,56–

59,62,102–107), especially via MC simulations of the

channel that include dielectric boundaries (i.e., polarization

effects) (61). In fact, it is possible to convert nonselective

bacterial channels—that have no homology or relation to

vertebrate channels—into calcium selective channels using

designs constructed by the primitive model (58,59,108,

109). Such implementations of the PM also can account

for the selectivity of Naþ channels (55,61) and of the ryano-

dine receptor (110,111) over a wide range of conditions and

solutions.

The study presented here was motivated by our recogni-

tion that the active sites of many enzymes share some of

the key features of ion channels that lead them to require

a more detailed form of the PM than LPB theory; in partic-

ular, they are often sterically constrained and highly charged.

We were thus motivated to ask whether the LPB provides an

adequate description of such systems. We also aim to further

delineate what types of problems require what types of elec-

trolyte model and, more generally, to highlight potentially

valuable links between the field of protein electrostatics

and that of the physical chemistry of electrolytes (9,40).

The enzyme studied here, HIVP, has a highly constrained

binding site with a localized charge of up to �2e, depending

on the pH, so we anticipated marked differences between

LPB and a more detailed MC implementation of the PM.

We examined not only the ionic distributions in and around

the active site, but also the energetic cost of displacing ions

from the binding site when an inhibitor binds. To our knowl-
Biophysical Journal 96(4) 1293–1306
edge, this is first study to examine this issue, which relates

directly to the applicability of LPB to the calculation of

protein-ligand binding energetics.

We find that the ionic distributions from the MC and LPB

calculations agree rather well under conditions where the

linearizing approximation of LPB is most applicable, and

that the two theories differ more and more widely as the

strength of the Coulombic interaction between the protein

and the ions increases; i.e., for divalent cations and strong

source charges Q. Thus, MC and LPB deviate more and

more going from the Q ¼ �1e, 1:1 case in the top left corner

of Fig. 3 to the Q ¼ �3e, 2:1 case in the lower right. These

results point to the linearizing approximation of LPB as

a major source of error, because it is precisely these high-

charge conditions where the linearizing approximation

breaks down. A previous study, which found that a similar

MC method and the nonlinear PB theory both yield similar

ionic distributions around a protein, suggests that capturing

nonlinearity by using the full PB equation should go

a long way to generating agreement with the MC calcula-

tions in our system (112). On the other hand, the prior study

does not analyze a highly charged and constrained binding

site, as done in this study, so its results cannot be assumed

to apply. As a consequence, it is not yet clear how much

of the deviation we find between MC and LPB the two

models results specifically from the linearization of the

LPB, and how much results from its neglect of steric interac-

tions and correlations among ions. This issue could be ad-

dressed by additional studies of HIVP using software that

provides a numerical implementation of the full nonlinear

PB equation for complex biomolecules (97).

We also find that LPB underestimates the work of displac-

ing ions from the charged binding site of HIV protease when

a neutral ligand binds. This observation is broadly consistent

with a prior study showing that the potential of mean force

for the approach of superoxide anion to a spherical model

of the enzyme superoxide dismutase is more strongly attrac-

tive when computed with the MC versus the LPB model

(113). However, according to both the LPB and MC calcula-

tions this energy cost is modest on the scale of the other

forces involved in protein-ligand binding. Thus, for the

extreme case of Q ¼ �3e and a pure 2:1 electrolyte, MC

yields a work of only 1.8 kBT, and the value falls below

1 kBT in all other cases considered here. For comparison,

published protein-ligand binding energies typically range

between �8 kBT and 30 kBT (114). As a consequence, the

energetic differences between LPB and MC are arguably

less troublesome than the differences in ionic distributions

discussed above. Our results are consistent with a prior study

showing that the LPB and full PB equations yield protein-ion

interaction free energies that agree with each other to within

~kBT (94). Our study extends this prior work by testing LPB

for a highly charged and sterically constrained binding site of

biomedical relevance, and by comparing LPB with MC

results, rather than with the less detailed nonlinear PB



Mobile Ions and HIV Protease 1303
equation. These results are also broadly consistent with a

prior study showing that several different electrolyte models

perform equally well in reproducing changes in the affinity

of Ca2þ for calbindin and subtilisin due to charge-changing

mutations (115).

The present calculations assigned the protein interior

a dielectric constant equal to that of the solvent. In general,

the value of the dielectric constant arguably depends on

what charge rearrangement processes are considered to

contribute to the dielectric response (116–120) so the optimal

choice of this parameter is case- and model-dependent.

Lowering the dielectric constant of the protein in this system,

based on the restricted orientational polarizability of dipolar

groups (83,117) would modify the energetics of displacing

ions from the binding site, but the net effect on the work of dis-

placing counterions is difficult to predict without detailed

calculations and can depend on the system. For example, in

Naþ channels, the dielectric constant controls the occupancy

but not the selectivity between Naþ and Kþ ions (61), whereas

in Ca2þ channels, the effects of dielectric constant depend on

ionic conditions (56). In this HIV protease system, the electro-

static consequences of lowering the protein dielectric constant

are likely to be complex, involving a stronger attractive poten-

tial generated by the anionic binding site, as well as a greater

energy cost for the presence of charge in the binding site due to

the lowering of the dielectric constant of this region. More-

over, the many-body and nonlinear nature of the MC simula-

tions makes the ionic consequences of these electrostatic

changes difficult to predict.

A central insight of this study is that an electrolyte theory

can yield very inaccurate ionic distributions while yielding

accurate energetics. This is probably because freely mobile

ions are easily redistributed by even weak electrical forces.

This observation is directly relevant to the choice of theory

for a given biomolecular application. A detailed approach,

such as MC simulation, is essential for ion channels, where

local ionic concentrations determine biologically relevant

conductances and selectivity. Detailed models may prove to

be important in other delicately poised molecular systems as

well. For example, relatively subtle energetics might deter-

mine the conformational state of a protein that is perched on

the edge of conformational disorder or transition. On the other

hand, the simple and computationally efficient LPB theory

appears to be suitable for applications that focus on relatively

robust energy changes, such as protein-ligand binding.
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