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ABSTRACT Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number
of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such
as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog,
pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly
useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC
is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any
process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog.
In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the
binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem
(basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimen-
sional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing
an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the
increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution
of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate
paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures
such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer
donor for the fluorescent drug 7-aminoactinomycin D.
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INTRODUCTION

It is now well established that certain sequences of DNA can

adopt secondary structures quite distinct from typical Wat-

son-Crick duplex DNA. These secondary structures include

hairpins, cruciforms, and quadruplex structures (for review

see Wadkins (1) and Kouzine and Levens (2)). Hairpins and

cruciforms are known to form in regulatory regions of genes,

such as promoters, enhancers, and terminators, and are also

present during replication (3). Hairpins are known to form

unusually high-affinity binding sites for small molecules,

particularly the antitumor agent actinomycin D (4–8). Quad-

ruplexes are found at the termini of chromosomes and are

thought to play a role in the stabilization of telomeric DNA

and its binding to the enzyme telomerase (9,10). Agents that

target telomeric quadruplexes are thought to be potential anti-

tumor agents (11,12). Quadruplexes have also been identified

in promoters of specific genes, such as c-MYC (13–15), and

agents that bind quadruplex DNA can affect transcription of

genes regulated by these promoters. Hence, the structural

properties of DNA secondary structures are important for

our understanding of the biological role of these forms of

DNA and their potential as drug targets.

The formation of secondary structures requires that the

normally basepaired DNA strands come apart to let one or

both individual strands fold back upon itself. This process is
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similar to what occurs when a RNA polymerase binds to

DNA and induces melting of strands. In recent years, a tool

for monitoring such melting of DNA has been developed.

The cytidine analog pyrrolo-deoxycytidine (PdC; Fig. 1)

has been incorporated into synthetic DNA strands via stan-

dard solid-state synthesis. PdC is useful because it can base-

pair with guanine and also possesses an intrinsic fluorophore

(16). The fluorescence of PdC is partially quenched when

basepaired to its complement, and this quenching is elimi-

nated when the analog is unpaired. The change in fluorescence

intensity of PdC has been used to examine the movement of

T7 RNA polymerase along oligomeric DNA (17) and to

measure the kinetics of DNA repair by O6-alkylguanine-

DNA alkyltransferase (18).

In our earlier studies of DNA hairpins as targets for drug

binding, we created a series of oligonucleotides that folded

into hairpins with a consistent stem and variable loop

composition (6). Subsequently, we began to use similar hair-

pins containing PdC to probe for formation of hairpins in

larger ranges of duplex DNA. To understand the structural

effects, thermodynamics, and spectroscopic effects of PdC

in various DNA loci, we examined two different hairpins,

named 6PdC and 7PdC (Fig. 1), that contain a paired PdC

in the stem and an unpaired PdC in the loop, respectively.

We examined the fluorescence spectroscopic properties of

PdC in both locations using both steady-state and lifetime

measurements. We also demonstrate that PdC can act as a

fluorescence resonance energy transfer (FRET) donor when
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the fluorescent 7-aminoactinomycin D (7AAMD) is bound

to the hairpin loop and can act as an acceptor. We measured

the thermodynamic effects of PdC incorporation by exam-

ining the melting of the hairpins in buffers of different ionic

strengths. Finally, for 6PdC, we used nuclear magnetic reso-

nance (NMR) data to derive the three-dimensional (3D)

structure of the hairpin with a PdC paired with its comple-

mentary guanine residue. Our data indicate that PdC only

trivially affects DNA structure, whether paired or unpaired,

and provides a powerful tool for examining the process

whereby duplex DNA is in equilibrium with DNA secondary

structures.

MATERIALS AND METHODS

Oligonucleotides and chemicals

The sequences of AACC4, 6PdC, and 7PdC are shown in Fig. 1. All DNA

sequences, including those with PdC substitutions, were obtained from the

Midland Certified Reagent Company (Midland, TX). They were synthesized

by standard solid-phase methods and purified using gel filtration. DNAs

were dissolved in Tris buffer (10 mM) containing 1 mM EDTA, pH 8.0

(TE buffer), and stored at 4�C when not in use. 7AAMD was purchased

from Sigma Chemical Co. (St. Louis, MO) and used without further

purification. It was dissolved in DMSO and stored at �20�C.

FIGURE 1 DNA hairpin sequences and the structure of the PdC used in

the experiment. The PdC incorporated into the hairpins is indicated by ‘‘P’’.

PdC-Containing DNA Hairpins
A

B

C

FIGURE 2 Melting of DNA hairpins (A) 6PdC, (B) 7PdC, and (C)

AACC4 in (�) 5 mM, (B) 20 mM, (:) 50 mM, and (6) 100 mM NaCl.
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Melting curves

The 6PdC and 7PdC (hairpin DNA) containing the modified bases were

heated in a Cary Bio-100 UV-visible spectrophotometer (Varian Medical

Systems, Palo Alto, CA). The melting temperatures were the midpoint of

the transition and were measured as a function of added NaCl. Unmodified

DNA (AACC4, containing dC instead of PdC) was used for comparison.

DNAs from this family of sequences were previously confirmed to be hairpins

via concentration effects on melting (6,19). Further, the hairpin conformation

(as opposed to self-complementary duplexes) was confirmed for all three

DNA used here under our experimental conditions by nondenaturing poly-

acrylamide gel electrophoresis (data not shown). Results of these studies

are shown in Fig. 2.

Time-resolved fluorescence

The fluorescence lifetimes of PdC in various conformations were determined

using an ISS K2 multifrequency cross-correlation phase and modulation

fluorescence spectrometer equipped with excitation and emission monochro-

mators. In the phase-modulation measurements, the sample is excited with

sinusoidally modulated light. The emission is delayed in phase by an angle

f, but at the same frequency as the excitation. In this experiment, the phase

angle f and demodulation factor m were measured simultaneously and used

to calculate the lifetime t (20).

The lifetime measurements were made using a solution of dimethyl POPOP

in absolute ethanol as a reference (lifetime of 1.45 ns) at 298 K (room temper-

ature). Samples were excited at 350 nm and emissions were collected with

a >400 nm long-pass filter. The modulation frequencies were between

10 and 160 MHz. The concentrations of hairpin or duplex DNA in the samples

were 13 mM. The lifetime was determined by fits to the data using the ISS 187

Decay Analysis software and these are recorded in Table 2.

Titration curves

Binding of 7AAMD to the native and modified hairpins was achieved by titra-

tions of 7AAMD with DNA, and of DNA with 7AAMD. The binding was

monitored by changes in 7AAMD emission upon binding, as we previously

reported (4–8). The steady-state emission spectra were collected between

520 nm and 750 nm using an excitation wavelength of 450 nm on a Horiba

FluorMax-3 spectrometer (Horiba, Kyoto, Japan). A typical plot of the titra-

tion of 7AAMD with DNA is shown in Fig. 3. The concentration of 7AAMD

was fixed at 0.5 mM in a total volume of 3000 mL of 10 mM Tris-HCl, 1 mM

EDTA, pH 8.0, 25�C. The stock concentration of hairpins 6PdC and

7PdC used for titration were 328.4 mM and 334.7 mM, respectively. The

stock concentration of hairpin AACC4 and its complementary duplex

AACC4_comp (double-stranded DNA; Fig. 1) were 215.4 mM and

107.7mM, respectively. The DNA was added into the cuvette in 10 mL incre-

ments and the emission spectra were recorded. The fluorescence intensity of

free 7AAMD at 620 nm was defined as F0, and changes at this wavelength

after addition of DNA was defined as F. Titration data were recorded as

1886
DF/F0, where DF is the difference in fluorescence at each DNA concentration

from F0, the initial fluorescence of the 7AAMD. We also used the intense

change in fluorescence shown in Fig. 3 to calculate binding constants for

7AAMD and our DNAs by adding a stock solution of 1 mM 7AAMD under

the same conditions above to a cuvette containing 1.0 mM DNA in 3000 mL

of buffer (shown in Fig. 4). Both methods gave identical binding constants

for the DNA-7AAMD complexes.

Fluorescence changes were fitted to the simple noninteracting site model

of mass action. This model assumes that a ligand (L) binds to a DNA site (D)

according to:

L þ D # LD; (1)

with a dissociation constant Kd ¼ ([L][D])/[LD]. The values [L], [D], and

[LD] are molar concentrations of the free ligand, free DNA sites, and

ligand-bound DNA sites, respectively. The number of sites per DNA strand

is given by:

�
D
�
¼ n

�
D
�

o
; (2)

where [D]o is the concentration of DNA in strands or duplex, and n is the

number of sites per DNA. Fitting of data to the above model was done using

the nonlinear least-squares function of Kaleidagraph (Synergy Software,

Reading, PA) with Kd and DFmax/Fo as adjustable parameters. The value

of n was fixed at 1.0 because there is only one dG residue per hairpin and

this dG is a requirement for 7AAMD binding (6). Titrations were performed

in quadruplicate, and the computed values of Kd are reported in Table 1.

FRET

Measurements were performed to determine PdC’s effectiveness as a FRET

donor to the FRET-acceptor 7AAMD. The steady-state excitation and emis-

sion spectra for PdC and 7AAMD are shown in Fig. 5. There is good overlap

between the emission band of PdC and the excitation band of 7AAMD. The

emission spectra of PdC were therefore monitored from 400 to 550 nm as

a function of added 7AAMD using an excitation wavelength of 350 nm (where

7AAMD absorbs little). FRET was determined by the decrease in PdC fluores-

cence. A 7AAMD (stock of 78.5 mM) was added to a fixed concentration of

1 mM 6PdC or 7PdC in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0, 25�C. The

background emission of PdC was subtracted from all fluorescence spectra.

These data also allowed for the construction of titration curves based on

quenching of the PdC fluorescence at 455 nm (Fig. 6). These were calculated

as described above and the resulting Kd values were equivalent to those in

Table 1 determined by monitoring increases in 7AAMD fluorescence.

Solution structure of 6PdC

A 3D structure of the 6PdC hairpin was determined using a combination of

NMR data and molecular modeling. NMR spectroscopy was performed using

a Bruker DRX-500 instrument (Bruker, Billerica, MA) equipped with a 5 mm

Zhang and Wadkins
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FIGURE 3 Change in fluorescence of 7AAMD upon

addition of DNA. Dotted lines represent the initial fluores-

cence intensity of the 7AAMD alone. Subsequent solid

lines indicate additions of (A) 6PdC hairpin DNA or (B)

6PdC in a double-strand complex with its complementary

strand (6PdC_comp). Note that with double-strand DNA,

the 7AAMD fluorescence is quenched upon binding.
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QNP probe. The DNA sample was dissolved in a H2O/D2O (5:95, v:v) solu-

tion containing 10 mM Tris-HCl and 1 mM EDTA, pH 7.5. The concentration

of 6PdC used was 0.25 mM. The 2D nuclear Overhauser enhancement spec-

troscopy (NOESY) spectra of nonexchangeable protons were collected at

room temperature in phase-sensitive mode using 2048 complex points in t2
and 256 in t1. Four mixing times of 100 ms, 200 ms, 300 ms and 500 ms,

with a relaxation delay between scans of 5 s, were used in the NOESY exper-

iments. A water presuppression pulse sequence with a maximum excitation

center at 4.71 ppm was used in all 2D NOESY experiments. All relevant non-

exchangeable protons of 6PdC, except for 30 and 40 protons, were assigned by

routine sequential assignment procedures. The NMR data were processed and

analyzed using the SPARKY program (21). Nonexchangeable interproton

distances were derived using the equation:

rij ¼ rrefðVref=VijÞ1=6
: (3)

The volumes of NOE cross peaks were integrated using SPARKY. The

volumes of H10–H20 cross peaks were used as the references volumes and

the distance of H10–H20 was used as the reference distance because the

H10–H20 distance of the deoxyribose ring is largely independent of the sugar

conformation (2.1Å). Results are given in Tables 3 and 4.

To build a 3D model, the starting structure of 6PdC was built with

INSIGHT II software followed by energy minimization using AMBER 8.

The parameters and charges for each atom were assigned using the ante-

FIGURE 4 Binding of 7AAMD to DNA hairpins. Titration curves are

shown for the addition of 7AAMD to (:) AACC4, (B) 7PdC, (�) 6PdC,

and (6) the duplex DNA of AACC4 and its complementary strand

AACC4_comp. The values of Kd determined from the fits are recorded in

Table 2.

TABLE 1 Dissociation constants for the binding of 7AAMD to

the DNAs shown in Fig. 1

DNA Kd (mM)

AACC4 0.10 � 0.09

7PdC 0.31 � 0.10

6PdC 0.46 � 0.15

AACC4_comp 0.57 � 0.21

Data shown are for titration of a dilute solution of each DNA with a stock

solution of 7AAMD. Averages and standard deviations given are for four

separate determinations.

PdC-Containing DNA Hairpins
chamber module of AMBER 8. The naming and numbering convention

used for atoms was that given by Thompson and Miyake (22). After energy

minimization, the structure was further refined by molecular dynamics (MD)

with NMR-derived interproton distance constraints. A 100 ps MD calcula-

tion was performed. Snapshots were taken every 5 ps. The resulting struc-

tures (Fig. 7 A) and the average structure over the time course (Fig. 7 B)

are shown. The distance constraints used and the molecular modeling param-

eters needed to use the PdC residue within AMBER are available in the

Supporting Material.

RESULTS AND DISCUSSION

Melting curves

The temperature dependence of DNA absorbance at 260 nm is

shown in Fig. 2 at four different Naþ concentrations. Melting

curves for 6PdC, 7PdC, and the unmodified hairpin AACC4

are shown in Fig. 2, A–C, respectively. Having the PdC in

the loop of the hairpin (7PdC) results in behavior almost iden-

tical to that seen with the parent AACC4. We interpret this to

mean that the PdC has essentially no interactions with adja-

cent bases in this structure. When PdC is present in the stem

(6PdC), there is a slight change in the melting behavior of

the hairpins, inasmuch as the melting range over the 4 Naþ

concentrations is 9�C vs. 12–13�C for the other two hairpins.

We interpret this as an effect of the methyl group of the PdC

residue as that methyl group sticks into the effective major

groove of the hairpin (Fig. 7), displacing water and ions

needed for helix stability. Although Tris buffer was used for

comparison with ligand binding assays, the pH range during

melting remains close to physiological. Overall, the thermo-

dynamic perturbation of PdC incorporation is rather mild,

FIGURE 5 Steady-state spectra for the FRET donor (6PdC) and acceptor

(7AAMD). The excitation spectra are indicated by solid lines, and the emis-

sion spectra are indicated by dashed lines. Note the overlap between PdC

emission and 7AAMD excitation, which makes them candidates for FRET

donor-acceptor pairs.
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FIGURE 6 Quenching of PdC fluorescence upon addition of 7AAMD.

The spectra were collected with excitation wavelength at 345 nm. The initial

fluorescence of 6PdC (A) and 7PdC (B) is shown as dashed lines, whereas
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suggesting that the PdC does not distort the structure of the

DNA to any large extent.

Time-resolved fluorescence

As noted above, PdC fluorescence intensity is highly depen-

dent on its hydrogen bonding state. We examined the 6PdC

and 7PdC fluorescence lifetimes to examine the origin of

the quenching effect. We also measured the lifetime of both

of these DNAs fully basepaired with their complementary

strand of DNA (6PdC_comp and 7PdC_comp) to highlight

differences in hairpin versus duplex structures. The measured

apparent lifetime values at different salt concentrations are

recorded in Table 2. The apparent lifetimes (t1, t2) change

very little as the salt concentration increases. Two lifetimes

were required to fit our phase delay and modulation data,

which is in agreement with recently published data obtained

using a pulsed laser source (23). Our two lifetimes are slightly

different from those found by Marti et al. (23) probably

because their excitation pulse width (10 ns) was too wide to

accurately measure the short lifetime (0.8 ns in their study

versus 1.4 ns in ours), leading to a slight discrepancy in the

longer lifetime (8.6 ns in their study versus ~6.5 ns in ours).

The lifetimes in Table 2 clearly indicate the full basepair-

ing of the stem in 6PdC. The lifetimes of the hairpin alone or

fully basepaired to its complementary strand (6PdC_comp)

are nearly identical. The hairpin form does have slightly

longer lifetimes, indicating somewhat less structure than

the fully duplexed form. In contrast, the 7PdC hairpin loop

is clearly unpaired. The values of t1 are a full 1 ns longer

than those found in the basepaired DNAs, whereas the t2

values are a full 3 ns longer.

Titration curves

To investigate the effect of PdC on the ability of DNA hair-

pins to bind ligands, we compared a previously characterized

hairpin, AACC4, with 7PdC and 6PdC. We used the fluores-

cent compound 7AAMD (an antitumor drug and inhibitor of

transcription) because of our extensive experience with this

compound binding to DNA secondary structures. For further

comparison, we included AACC4_comp (duplex DNA). The

steady-state fluorescence spectra were used to monitor the

titrations (Fig. 3).

The fluorescence spectra during titrations for all the hair-

pins were very similar; thus, only the spectra for the added

6PdC are shown (Fig. 3 A) as representative. The initial fluo-

rescence of 7AAMD is indicated by the dashed lines in

Fig. 3, A and B. The increasing intensities of fluorescence

upon addition of hairpin are clearly visible (Fig. 3 A) and

are indicated by solid lines. The emission maximum of fully

bound 7AAMD was at 620 nm for all hairpins, with or

solid lines indicate a decrease in fluorescence. Titration curves derived

from the data are shown in C for (�) 6PdC and (B) 7PdC. Fitting of these

titration curves gives values for Kd identical to those recorded in Table 2.

Zhang and Wadkins



FIGURE 7 The NMR-restrained structure of 6PdC. The

20 snapshot structures taken during a 100 ps MD simula-

tion are shown in panel A. The average structure from the

simulation is shown as a stereo pair in B. This figure was

generated using Molscript (26) and Raster3D (27).

PdC-Containing DNA Hairpins 1889
without a PdC residue. These data were used to determine

binding affinities and were identical to those obtained by

adding 7AAMD to a stock solution of DNA (Table 1).

The fluorescence spectra of titration for duplex DNA

(6PdC_comp) are shown in Fig. 3 B. Note that the fluores-

cence of 7AAMD is quenched when it is bound to duplex

DNA, in stark contrast to that seen with hairpins. This differ-

ence is due to the hairpin loop protecting the phenoxazone ring

system of 7AAMD from quenching by polar solvents (8). The

quenching of fluorescence upon binding to DNA was used

to determine the binding affinities of 7AAMD to these

DNAs. This quenching effect is unusual in that binding of

7AAMD to a number of duplex DNAs results in modest

enhancement of fluorescence (5). However, we previously

observed quenching when 7AAMD was bound to poly

d(AGT) (4). In poly d(AGT), duplex DNA is formed con-

taining a dG:dG mismatch. Clearly, more investigation is

needed to understand the effect; however, it may be that

the extended ring system of PdC interacts with 7AAMD in

such a way that a PdC:dG basepair electronically resembles

a dG:dG mismatch.

The changes in fluorescence spectra when 7AAMD was

added to DNA were used to derive the titration curves shown

in Fig. 4. It should be noted that for hairpins, the changes of

fluorescence intensities (F� F0) are positive, whereas for the

duplex DNA the change of fluorescence intensity (F� F0) is

negative. For plotting convenience in Fig. 4, the change of
fluorescence intensity of duplex DNA was �(F � F0). The

dissociation constants (Kd) are listed in Table 1. The dissoci-

ation constants for all DNAs used are not greatly different.

However, the difference in Kd for each DNA follows the

order AACC4 < 7PdC < 6PdC < duplex AACC4_comp.

This suggests that there are steric and electronic interactions

between 7AAMD and the PdC residues that reduce affinity

of the drug for the hairpin, and that these unfavorable inter-

actions are reduced considerably when the PdC is located in

the loop of the hairpin rather than the stem-loop interface.

Overall, as with the melting experiments, the perturbation

is slight enough so as not to diminish binding of an interca-

lating ligand to sequences containing PdC. However, an

important caution is that 7AAMD intercalates from the

minor grove of DNA, with its cyclic polypeptide rings buried

in the minor groove. The methyl group of PdC points into the

major groove of DNA (see below; Fig. 7). It remains to be

determined how this might affect a ligand that binds DNA

from the major groove.

FRET

The transfer of the excited-state energy from an initially

excited donor to an acceptor is known as FRET. The relative

orientation of the donor and acceptor transition dipoles, and

the distance between the donor and acceptor molecules play

a role in the rate and efficiency of energy transfer. Fig. 5
TABLE 2 Fluorescence lifetimes (ns) of PdC as a function of Naþ concentration

[Naþ] 6PdC f 6PdC_comp f 7PdC f 7PdC_comp f

0.002 M t1 1.44 � 0.09 0.37 1.34 � 0.07 0.64 2.81 � 0.08 0.60 1.25 � 0.1 0.54

t2 6.61 � 0.16 0.63 6.33 � 0.39 0.36 9.24 � 0.33 0.40 7.24 � 0.4 0.44

0.022 M t1 1.45 � 0.14 0.44 1.31 � 0.05 0.62 2.83 � 0.12 0.48 1.22 � 0.1 0.56

t2 6.76 � 0.26 0.56 6.36 � 0.29 0.38 9.35 � 0.51 0.52 7.35 � 0.45 0.43

0.042 M t1 1.38 � 0.15 0.41 1.35 � 0.06 0.64 2.82 � 0.1 0.49 1.20 � 0.08 0.54

t2 6.59 � 0.39 0.58 6.39 � 0.29 0.35 9.27 � 0.38 0.50 7.29 � 0.29 0.43

0.062 M t1 1.47 � 0.07 0.47 1.28 � 0.05 0.64 2.79 � 0.1 0.51 1.20 � 0.07 0.56

t2 6.88 � 0.16 0.52 6.22 � 0.22 0.35 9.24 � 0.47 0.48 7.42 � 0.37 0.42

0.082 M t1 1.40 � 0.05 0.48 1.32 � 0.06 0.66 2.71 � 0.18 0.52 1.20 � 0.07 0.57

t2 6.90 � 0.12 0.51 6.39 � 0.27 0.34 9.25 � 0.7 0.47 7.52 � 0.4 0.41

0.102 M t1 1.36 � 0.06 0.47 1.30 � 0.05 0.65 2.72 � 0.12 0.53 1.23 � 0.11 0.58

t2 6.78 � 0.17 0.51 6.30 � 0.24 0.34 9.26 � 0.47 0.47 7.65 � 0.4 0.39

Averages and standard deviations are from 10 separate determinations.
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shows the steady-state spectra for the FRET donor (6PdC)

and acceptor (7AAMD). The emission spectrum of donor

(DNA) and the excitation spectrum of acceptor (7AAMD)

have good overlap, indicating the close spacing of energy

levels of the excited state of PdC and the ground-state tran-

sition energy of the 7AAMD, making the two fluorophores

candidates for acting as donor-acceptor pairs.

TABLE 3 Proton resonance assignments (chemical shift in

ppm) for the 6PdC hairpin

base H2, 8/H6 H5/H10 CH3 H20/H200 H40/H50, 500

A1 8.041 6.095 NA 2.558/2.717 3.676/3.98/4.148

T2 7.289 5.593 1.320 2.083/2.386 4.017/4.120

A3 8.218 6.163 NA 2.569/2.815 4.02/4.06/4.124

T4 7.042 5.584 1.299 1.876/2.278 4.053/4.155

A5 7.954 6.172 NA 2.293/2.426 4.125/4.267

PdC6 7.953 5.446 1.823 1.936/2.625 4.028/4.109

C7 7.686 6.016 NA 1.971/2.36 4.098/4.141

C8 7.648 5.976 NA 1.887/2.266 3.934/4.395

C9 7.372 5.642 NA 1.756/2.212 3.672/4.397

C10 7.952 5.745 NA 2.548/2.629 4.011/4.046

G11 7.908 5.960 NA 2.538/2.802 3.968

T12 7.178 5.724 1.444 2.067/2.454 4.086/4.162

A13 8.208 6.120 NA 2.544/2.765 4.081

T14 7.039 5.576 1.348 1.846/2.257 4.053/4.155

A15 8.109 6.140 NA 2.575/2.773 4.051/4.14/4.282

T16 7.143 5.968 1.363 2.013/2.595 3.908/4.386

TABLE 4 Interproton distances for the 6PdC hairpin derived

from NOE data

H2/H6/

H8-H10/H5

H2/H6/

H8-T(CH3)

H2/H6/

H8-H20/H200
H2/H6/H8-

H2/H6/H8-

H20/H200-
H10/H5

T2-A1 3.18 4.01 3.70

3.40

A3-T2 3.75 2.85

2.66

T4-A3 3.92 3.72 3.29

3.24

A5-T4 4.33 2.32

2.87

C6-A5 3.86 2.87 4.92 2.92

3.24 2.75

C7-C6 4.20 2.71 2.86

3.10 2.79

C8-C7 3.73 3.18 3.18

2.91 2.70

C9-C8 5.34 3.16 2.81

3.45 2.13

C10-C9 3.01 3.94

2.40

G11-C10 3.60 4.15

1.94

T12-G11 3.64 3.60 4.44

3.61

A13-T12 3.74 3.86 4.78

3.28

T14-A13 3.14 3.92 3.40

3.29

A15-T14 4.63 3.02 4.93

2.90

T16-A15 3.68 3.85 3.09 4.28

1.74

Biophysical Journal 96(5) 1884–1891
We were able to observe FRET by the gradual quenching

of the donor (PdC) emission as a result of binding of the

acceptor (7AAMD) to the hairpins (Fig. 6). We would expect

to see a concomitant enhancement of 7AAMD fluorescence

with the quenching of PdC, but this is precluded by the over-

whelming increase in fluorescence of 7AAMD upon binding

of hairpin in the absence of a PdC donor (Fig. 3). As with

other fluorescence changes, the quenching of PdC allowed

us to make measurements of the Kd values for binding, and

these were in agreement with the data in Table 1. Our results

indicate that quenching of PdC in the presence of an acceptor

ligand does occur, and that this process may allow for

identification of specific ligand binding sites when PdC is

incorporated into DNA sequences other than those examined

here.

Solution structure of 6PdC

As a final study of the effect of incorporating PdC into a DNA

hairpin, we used NOESY and molecular modeling to deter-

mine the 3D structure of the 6PdC hairpin. NMR resonances

were assigned by routine sequential assignment procedures.

The base H8/H6/H2 and H10/H5 region of the NOESY spec-

trum was used to assign these protons in a sequential manner.

Cross-peaks in the thymidine H6 to methyl region of the

NOSEY spectrum allowed unambiguous assignment of T2,

T4, T12, T14, T16, and PdC 6-methyl protons. Compared

with the chemical shift of thymidine methyl groups, the

6-methyl of PdC is located downfield by ~0.4 ppm, most

likely due to the extended conjugated aromatic ring of PdC.

The spectrum was also used to assign all H20 and H200 reso-

nances, and were further confirmed by analyzing the H10/
H5–H20/H200 region. Only partial H30 and H40 resonances

were assigned and no exchangeable protons were assigned

due to the limitation of the amount of the sample. However,

these were not needed to arrive at a molecular model that

was consistent with the assigned resonances (Fig. 7).

After a 100 ps MD simulation with distance constraints was

performed, the family of structures that are consistent with the

NOESY data were determined, as shown in Fig. 7. In agree-

ment with melting and ligand-binding data, the PdC intro-

duced at the 6 position is fully basepaired with the G11 and

does not lead to any distortions of the helical structure of

the hairpin. The two dC residues closest to the hairpin stem

(C7 and C10) are partially stacked over the G11-PdC base-

pair, and this may be the source of the slight deviation of

the melting curves for 6PdC vs. 7PdC and AACC4 (Fig. 2)

and the slightly lower affinity of 7AAMD for this hairpin.

This stacking may also contribute to the shorter fluorescence

lifetimes of 6PdC vs. 7PdC as well, since stacking interactions

have been suggested to be the mechanism that results in

quenched fluorescence of PdC in duplex versus melted

DNA (24). Overall, the determined structure maintains a

B-like conformation in the stem with a fairly unstructured

loop region.



PdC-Containing DNA Hairpins 1891
CONCLUSIONS

In this study we examined the physical effects of the deoxy-

cytidine analog PdC on the structure of DNA hairpins. PdC

has been used to probe the melting of duplex DNA by T7

RNA polymerase (17) and to measure the kinetics of DNA

repair by O6-alkylguanine-DNA alkyltransferase (18).

However, until now, the physical consequences of incorpo-

rating this modified base have not been fully explored. We

demonstrated that there is very little perturbation of the

DNA structure upon incorporation of PdC. Thermal stability,

ligand binding, and 3D structures of PdC incorporated into

both the stem and loop of DNA hairpins are all quite similar

to the hairpins containing an unmodified dC residue.

Our results have important implications for studying DNA

secondary structures. To date, PdC has most often been used

with duplex DNA or DNA-RNA hybrids (25). We extend

PdC’s use to the probing of DNA secondary structures (in

this case, DNA hairpins). Our data indicate that this modified

base can be used effectively to differentiate paired and

unpaired bases in such secondary structures, and should be

similarly applicable for related secondary structures such

as cruciforms and quadruplexes. Work is under way in our

laboratory to characterize PdC incorporated into such

structures.

SUPPORTING MATERIAL

MD simulation of DNA containing PdC is available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(09)00220-3.

The computational methods and NMR experiments used to derive hairpin

structures were supported by National Science Foundation grants EPS-

0556308 and MRI-0421319.
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