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ABSTRACT A large set of three-dimensional structures of 264 protein-protein complexes with known nonsynonymous single
nucleotide polymorphisms (nsSNPs) at the interface was built using homology-based methods. The nsSNPs were mapped on
the proteins’ structures and their effect on the binding energy was investigated with CHARMM force field and continuum elec-
trostatic calculations. Two sets of nsSNPs were studied: disease annotated Online Mendelian Inheritance in Man (OMIM) and
nonannotated (non-OMIM). It was demonstrated that OMIM nsSNPs tend to destabilize the electrostatic component of the
binding energy, in contrast with the effect of non-OMIM nsSNPs. In addition, it was shown that the change of the binding energy
upon amino acid substitutions is not related to the conservation of the net charge, hydrophobicity, or hydrogen bond network at
the interface. The results indicate that, generally, the effect of nsSNPs on protein-protein interactions cannot be predicted from
amino acids’ physico-chemical properties alone, since in many cases a substitution of a particular residue with another amino
acid having completely different polarity or hydrophobicity had little effect on the binding energy. Analysis of sequence conser-
vation showed that nsSNP at highly conserved positions resulted in a large variance of the binding energy changes. In contrast,
amino acid substitutions corresponding to nsSNPs at nonconserved positions, on average, were not found to have a large effect
on binding affinity. pKa calculations were performed and showed that amino acid substitutions could change the wild-type proton
uptake/release and thus resulting in different pH-dependence of the binding energy.
INTRODUCTION

Each individual possesses unique characteristics reflecting

their genotype, i.e., the uniqueness of the individual’s

DNA (1). For example, almost all nucleotide bases

(99.9%) are exactly the same in all people; however, the re-

maining 0.1% account for ~1.4 million individual-specific

differences (single nucleotide polymorphism, SNP) that

occur in humans. These differences may be within the coding

or noncoding regions of DNA and may or may not result in

amino acid changes, which, in turn, can either be harmless or

disease causing (2). From a computational biophysics point

of view, SNPs resulting in amino acid changes (nonsynony-

mous SNP, nsSNP) are of particular interest because such

changes should affect the stability of proteins and protein-

protein complexes.

From a biological perspective, the major factor contrib-

uting to the complexity of biological systems is the high

degree of connectivity on the molecular scale. In particular,

many proteins responsible for cellular functions rely on inter-

actions with other proteins to perform these functions. If the

structures of the corresponding protein-protein complexes

are available, then we will have the opportunity to apply

theoretical biophysical methods to model the energetics of

protein-protein complexes (3–9) and apply the results in

structure-based drug design (10). Thus, understanding
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protein-protein interactions and their roles in cell function

will help reveal the molecular mechanisms of protein recog-

nition and model the effect of perturbations on biological

network, in particular, the effects of nsSNPs on protein-

protein interactions (11–14).

The effects caused by nsSNPs can be broadly grouped into

four distinctive categories (15) (although the effects may be

mutually dependent) depending on what type of system or

process have been affected by nsSNPs: 1), protein folding,

stability, flexibility, and aggregation; 2), functional sites,

reaction kinetics, and dependence on the environmental

parameters, such as pH, salt concentration, and temperature;

3), protein expression and subcellular localization; and 4),

protein-small molecule, protein-protein, protein-DNA, and

protein-membrane interactions (see review and references

within (15)). Among these categories, the effect of nsSNPs

on protein stability (16–18) attracted most of the attention

of the scientific community. The mechanisms of the effect

of nsSNPs on protein stability could vary from geometrical

constraints (the mutation of a small side chain to a bulky

side chain in the protein interior), to physico-chemical effects

(replacement of hydrophobic residue with polar residue), to

the reversal of a charge within a salt bridge, or to the disrup-

tion of hydrogen bonds (19). For example, the nsSNPs re-

sulting in changes of functionally important residues should

be almost always deleterious as they would block protein

function (20,21). However, since there are only a few func-

tional residues within an entire protein sequence, the proba-

bility for such mutations is low (22). The possibility of an
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nsSNP affecting the subcellular location of a corresponding

protein was reported in a recent study that showed that in

~1% of cases the disease is caused by protein subcellular

delocalization (23). In addition to the above mentioned

effects, nsSNPs can change the kinetics of the corresponding

reactions as was experimentally shown in patients with

chronic lymphocytic leukemia (24) and inflammatory

diseases (25), or they can affect pharmacokinetics (26);

however modeling these effects is computationally difficult.

Although studies of the consequences of nsSNPs on proteins

have drawn much attention recently, the effect of nsSNPs on

protein-protein interactions has not been extensively investi-

gated. This lack of attention may be a result of an insufficient

number of three-dimensional (3D) structures of protein-

protein complexes for which nsSNPs are known.

The recent progress made in experimental 3D structure

determination, led by the Structural Genomic Initiatives

(27), in addition to advances in computational modeling

(28,29), have made it possible to predict the effects of

nsSNPs by mapping them on corresponding structures or

on protein and protein-protein models. Indeed, structural

information was used in many studies to reveal the role of

SNPs on protein function and stability. A recent study on

human nsSNPs and disease-associated mutations in ortholo-

gous genes revealed that ~70% of disease-associated

mutations were in protein sites that most likely affect protein

function (30–33). Moreover, it was found that disease muta-

tions are much more likely to occur at sites with low solvent

accessibility (32). Recently, a structure-based approach that

models residue-residue interaction networks was reported

(34). It applied graph theoretical measures to predict the resi-

dues that are important for structural stability. These results

imply that nsSNPs impact protein function and stability by

affecting their structures, which in turn might cause changes

in protein-protein or protein-ligand interactions.

It should be mentioned that most of the efforts in the field

so far have been aimed at predicting deleterious mutations,

since such predictions could be used for early diagnostics

and potential drug discovery (23,31,32,35–38). However,

the goals of our study are: 1), to investigate the possibility

that disease-causing and harmless nsSNPs affect protein-

protein interactions differently, and 2), to reveal the basic

principles of the effects of naturally occurring interfacial

nsSNPs on protein-protein interactions. The rationale behind

our approach is that any mutation at a protein-protein

complex interface should, in principle, somehow affect the

binding energy, and even harmless nsSNPs can also cause

dramatic changes in the phenotype resulting in natural differ-

ences among individuals. To deduce the effect of nsSNPs on

protein function, further investigation of the effect of nsSNPs

on protein-protein interaction network is needed, combined

with detailed analysis of the importance of the perturbed

interactions for normal cellular function.

In this study, we use homology modeling to construct 3D

models of a large number of protein-protein complexes (264)
with known nsSNPs at their interfaces. The effect of amino

acid substitution resulted from nsSNPs on the protein-protein

binding energy was calculated using a standard force field

(CHARMM (39)), in contrast to previous studies that applied

descriptors or semiempirical functions. In addition, specific

attention was paid to possible ionization changes and charge

reorganization caused by the nsSNP mutations. The calcu-

lated effects are grouped into categories that describe several

distinctive mechanisms of nsSNPs affecting the energetics of

protein-protein interactions. The role of charge relaxation is

also investigated.

METHODS

Sequence alignment, template detection,
and model building

The first task was to extract query amino acid sequences associated with

nsSNPs and to search for available 3D structures or for 3D structures that

are homologous to the query sequences. The locus-id files for humans

were downloaded from build 126 of the dbSNP database, which contains

the SNPs associated with gene names and locations on genes. These files

also included accessions for protein sequences associated with the SNPs.

The protein sequences, which were found to be associated with SNPs,

were compared against the set of human protein structures (potential struc-

tural templates) (National Center for Biotechnology Information (NCBI)

Molecular Modeling DataBase (MMDB)) (40), using Blast algorithm (41).

The human structures that were found at an E-value of 10E–5 or better

were kept, resulting in 5.6 millions alignments. If a 3D structure of a query

protein was available, no modeling was required. Query proteins that

matched any of the entries in the Online Mendelian Inheritance in Man

(OMIM) database (42–44) were marked as ‘‘annotated’’ disease-causing.

The rest of the entries were considered undetermined with respect to possible

disease association and are referred to in the article as ‘‘nonannotated’’ or

‘‘non-OMIM’’.

At the second stage of processing, additional criteria were used requiring

that 80% of the query sequence be mutually aligned with the structural

template (nsSNPs that were not mapped in the alignment were discarded).

Only templates corresponding to protein-protein (or domain-domain)

complexes were used for modeling 3D structures of nsSNP-containing

sequences. During this procedure, we recorded whether or not the SNP

was on the interface for each chain/domain pair. It was done using query-

template Blast alignments. Interface residues were defined as those being

8 Å from each other (distance was measured between Ca atoms) on different

chains/domains (45). These positions were flagged as interfacial residues.

The detected templates and corresponding sequence alignments were used

as input for the homology modeling. The 3D models were built with the

NEST program using the sequence alignment between queries and structural

templates (46). Identical alignments were discarded. The number of models

built for different degrees of modeling difficulty were as follows: 1), 1257

models were built by side chain replacement where query and template

sequences differed only by a few residues and the models were built by

mutating corresponding residues in the original chain and 2), 5274 models

were built with the NEST program. Because of the restrictive alignment

criteria applied above, in most of the cases, the alignment had very few

gaps/insertions, and thus the models were very close to the template struc-

tures. In total, 6531 protein models were constructed that corresponded to

the first allele (the first allele in case of OMIM is the dominant allele,

whereas in the case of non-OMIM it is simply the first allele in the list).

Then the monomeric proteins models were joined to the corresponding part-

ners using the 3D structure of the template protein-protein complex. The

models of complexes were then evaluated according to the flagged interfa-

cial positions, and only models with nsSNPs occurring at the interface of
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protein-protein complexes were retained for our study, resulting in 264

model structures.

Energy minimization

The structures of the 264 complexes were subjected to the TINKER package

(47) using the CHARMM27 force field parameters (39). The minimization

was done running the TINKER’s minimize.x module. The minimize.x

module performs energy minimization using the Limited Memory BFGS

Quasi-Newton Optimization algorithm (47). The implicit solvent was

modeled using the Still Generalized Born model (48), and the internal

dielectric constant was set to 1.0 to be consistent with the CHARMM27

force field parameters (49). The convergence criteria applied was root

mean-squared (RMS) gradient per atom ¼ 0.01. For energy minimization

calculations, we utilized a High Throughput Distributed Computing

Resource, CONDOR, originally developed at the University of Wiscon-

sin-Madison (www.cs.wisc.edu/condor), which is now available at Clemson

University with more than 1080 single central processing units (CPUs) of

computational power.

The minimized 3D structures of the complexes with amino acids corre-

sponding to the first reported allele in the dbSNP database were then used

to generate the corresponding nsSNP mutations. Utilizing the SCAP

program (50), the mutations, corresponding to either the second allele in

the dbSNP database or the disease-causing nsSNP in OMIM database,

were introduced using the above minimized model 3D structures, while

keeping the rest of the structure rigid, including the hydrogen atoms. In

case of homooligomeric-complexes, the nsSNP mutations were introduced

on both monomers. Then, the resulting 3D structures were minimized again

with TINKER using the same protocol that was described above.

Binding energy calculations

The binding energy was calculated with the so-called rigid body approach

keeping the structures of the monomers as they were in the complexes.

Such an approach is advantageous because the internal mechanical energies

of the unbound and bound monomers are the same and do not have to be

included in the calculations of the binding energy. Thus, the single point

calculations result in binding energy

DDGðbindingÞ ¼ DGðcomplexÞ � DGðAÞ � DGðBÞ; (1)

where DG(complex), DG(A), and DG(B) are the unfolding free energy for

the complex, monomer A, and monomer B, respectively. The total binding

energy and its two components (electrostatics and van del Waals) were

analyzed. The electrostatic component of the binding energy is the sum of

the Coulombic and reaction field energies as described in detail in (51,52):

DGelðXÞ ¼ GðcoulÞ þ DGðrxnÞ; (2)

where X stands for the complex, A and B monomers, respectively. G(Coul) is

the Coulombic interaction energy, and G(rxn) is the reaction field energy,

which is calculated with Delphi program (51,52).

The total binding energy is

DGtotðXÞ ¼ DGðbondsÞ þ DGðvdWÞ þ DGðelÞ; (3)

where DG(bonds) are the bonded energy terms, DG(vdW) is the van der

Waals energy, and DG(el) is the Coulombic interactions and solvation

energy calculated with the Generalized Born (GB) model. However, since

we adopted the rigid body approach, DG(bonds) for the complexes and

free monomers is the same and cancels in Eq. (3). All of the above energy

terms were calculated with the analyze.x module in TINKER. The nonpolar

component of the binding energy was not included in the calculations

because the single point mutation is not expected to change the binding inter-

face significantly.

Changes in protein stability caused by the nsSNP mutation were calcu-

lated with respect to the energy of the target (the first reported allele or
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wild-type allele in case of OMIM nsSNPs) protein. The corresponding quan-

tity is DDDG(nsSNP), as described below:

DDDGðnsSNPÞ ¼ DDGðtarget: bindingÞ
� DDGðnsSNP: bindingÞ: (4)

The changes of the total binding energy (DDDGtot(nsSNP)), as well as the

change of its vdW (DDDGvdw(nsSNP)) and electrostatic (DDDGel(nsSNP))

components are analyzed in this work. If the change is negative, this indi-

cates that the nsSNP mutation weakens the affinity and destabilizes the

complex, whereas if the change is positive then the mutant binding is tighter.

Multiple sequence alignment

Protein sequences from different species were downloaded from the NCBI

Entrez database, using GENE search option and submitting each of the

gene’s ID as a query. Only cases for which a protein was found in more

than four species were considered, and the multiple sequence alignments

(MSAs) were built resulting in 227 out of the total 264 sequences. We

used the European Bioinformatic Institute’s ClustalW2 web service (http://

www.ebi.ac.uk/Tools/clustalw2/index.html) to perform MSAs.

pKa calculations of the ionizable states
and proton uptake/release

The pKa values of the ionizable groups were calculated using the Multi

Conformation Continuum Electrostatics (MCCE) method as previously

described (53–55). Recently, we demonstrated that MCCE can be utilized

to calculate pKas using 3D structures that were built by homology (56).

Calculations were performed for all 264 protein complexes corresponding

to the first allele, and another set of pKa calculations were done for the

protein complexes with corresponding nsSNP mutation. The calculations

were also performed on the corresponding unbound monomers, whose struc-

tures were taken from the corresponding protein-protein complex. These

results were used to predict the changes of the titratable groups’ ionization

states caused by complex formation. For each complex, we calculated the

difference of the net charge (Dq(X)) of the complex and of the unbound

monomers, called proton uptake/release:

DqðXÞ ¼ qðX : complexÞ � qðX : AÞ � qðX : BÞ; (5)

where X is the first allele or nsSNP variant, and q is the net charge of the

complex and of monomer A and B, respectively, calculated with MCCE at

a pH of 7.0. We chose a pH of 7.0 because there was no information of

what the physiological pH is for each of the proteins studied in this manu-

script. In addition, we analyzed the proton uptake/release difference between

complexes with the first allele and the nsSNP variant:

DDq¼ absðDqðdominant alleleÞ � DqðnsSNPÞÞ: (6)

p-Value calculations

The p-values were calculated performing a t-test (57–59). The distributions of

the corresponding changes of the binding energy and its components in case

of OMIM and non-OMIM sets were checked against the null hypothesis. A

large p-value indicates that the corresponding distribution is similar to the

normal distribution (null hypothesis), whereas a small p-value points out

a deviation from random distribution. A typical cut-off for p-value is 0.01,

i.e., distribution with the p-value smaller than 0.01 is considered significantly

different from random. The distribution of the variance of DDDGtot(nsSNP)

and DDDGel(nsSNP) was checked against the null hypothesis that assumes

equal variances. The SI% scale was divided into five bins, corresponding to

cases with SI% smaller than 20%, 20% < SI% < 40%, 40% < SI% <

60%, 60%< SI%< 80, and 80%< SI%< 100%. The variance of the corre-

sponding energies was calculated within each of the bins and the resulting

http://www.cs.wisc.edu/condor
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.ebi.ac.uk/Tools/clustalw2/index.html


Modeling Effects of Human SNPs 2181
FIGURE 1 Distribution of DDDGtot(nsSNP) and

DDDGel(nsSNP) in kcal/mol for OMIM and non-OMIM

cases. Solid bars, OMIM; open bars, non-OMIM.
p-value evaluated. In case of DDq, six bins were considered: 0.00 < DDq

< 0.05, 0.05 < DDq < 0.10, 0.10 < DDq < 0.15, 0.15 < DDq < 0.20,

0.20<DDq< 0.25, and DDq> 0.25. Then, the variance of the corresponding

energies within these bins and the p-value were calculated.

RESULTS AND DISCUSSION

Distribution of binding energy

The changes in the total binding energy and its electrostatic

and vdW components due to the nsSNPs were calculated

for all complexes in the data set (Fig. 1, Table 1). The distri-

butions of DDDGtot(snSNP) for OMIM and non-OMIM

cases are shown in Fig. 1 a. It can be seen that the distribu-

tions have similar shapes, showing a slight tendency toward

negative values. The mean values of electrostatic

(DDDGel(snSNP)) and vdW (DDDGvdw(snSNP)) compo-

nents of the binding energy changes are statistically different

for OMIM and non-OMIM cases (p-values are <0.006 and

0.01, respectively), although this is not the case for the total

binding energy. Fig. 1 b shows the distribution of

DDDGel(snSNP) for both OMIM and non-OMIM cases.

One can see the long negative tail of the distribution of

OMIM cases for which nsSNP substitutions destabilize

binding. Moreover, the mean of OMIM distribution of elec-

trostatic energy is significantly different from zero and shifted

toward negative values although this is not the case for non-

OMIM distribution of electrostatic component (Table 1).

This indicates that, overall, there is a tendency for OMIM

nsSNP substitutions to weaken the electrostatic component

of the binding energy, although there are many examples

where disease nsSNPs make binding tighter as well. The

effect is less pronounced for the total binding energy.
From an electrostatic point of view, replacing the wild-

type amino acid (dominant allele) at a protein-protein inter-

face with another amino acid (amino acid which corresponds

to nsSNP) is expected to be a destabilizing event. Indeed, in

our previous study of 654 protein-protein and domain-

domain complexes, we demonstrated that the electrostatic

component of the binding energy tends to be optimized

(60) with respect to random shuffling of the amino acid

sequences of the corresponding binding partners. Thus, since

wild-type (dominant allele) interactions across the interface

are optimized, any change should make the binding affinity

weaker. Indeed, the destabilization effect upon disease

substitutions is the most pronounced in case of the electro-

static component of binding energy (DDDGel distributions

is shifted toward negative values with a p-value of

<0.003). However, the tendency of OMIM mutations to

destabilize the electrostatic component of the binding energy

is not very strong, which perhaps stems from the fact that

nsSNP substitutions are not random, rather they are con-

strained mutations accepted by the cell. At the same time,

for non-OMIM substitutions the electrostatic component

should be optimized for both alleles and consequently the

mean of DDDGel(nsSNP) is not statistically significantly

different from zero (p-value is 0.06).

Despite the differences, in the majority of the cases, both

OMIM and non-OMIM substitutions were calculated to have

little effect on binding. Since we investigate nsSNP substitu-

tions at the interface of protein complexes, this observation

deserves further investigation. The next sections investigate

possible patterns and correlations between different types of

amino acid substitutions and their calculated effects on

binding energy.
TABLE 1 Parameters of distributions of total binding energy difference and their components in kcal/mol together with the

corresponding p-values (the null hypothesis that mean value R 0 is rejected if p < 0.01)

Group No.

DDDGtot DDDGvdw DDDGel

Mean Std p-Value Mean Std p-Value Mean Std p-Value

OMIM 45 �1.65 3.80 0.003 �1.03 3.32 0.02 �2.35 5.51 0.003

Non-OMIM 219 �0.70 4.36 0.009 0.14 3.03 0.75 �0.45 4.39 0.06

Polar (P) 62 �0.27 3.77 0.28 0.38 3.94 0.77 �0.83 4.74 0.09

Charge (C) 76 �2.01 6.38 0.004 �0.33 2.25 0.1 �1.37 6.59 0.04

Small (S) 94 �0.74 2.39 0.002 �0.03 2.49 0.45 �0.78 2.58 0.002

Hydrophobic (H) 32 0.32 2.50 0.77 �0.36 4.46 0.32 0.74 3.23 0.09

Biophysical Journal 96(6) 2178–2188
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FIGURE 2 Illustration of nsSNPs at interface of protein-

protein complexes: (a) TTR (transthyretin, gene ID:

4507725), red, A chain; blue, E chain; green, Ser in A85;

yellow, F in A85; magenta, N in E63. (b) DYNLRB1

(Roadblock-1, gene ID: 7661822), red, A chain of target;

light red, A chain of SNP variants; blue, B chain of target;

sky blue, B chain of SNP variant; green, K in A75; yellow,

E in A75; magenta, D in B61 of target; pink, D in B61 of

SNP variant. (c) HBB (b-globin, gene ID: 4504349), red, B

chain; blue, C chain; green, V in B34; yellow, L in B34. (d)

GSTM2 (glutathione S-transferase M2, gene ID: 4504175),

red, A chain; blue, B chain; green, M in A130; yellow, K in

A130; magenta, M in B50.
Effect of nsSNPs on binding energy with respect
to amino acid characteristics

In this section, four different classes of amino acids were

considered based on the amino acids’ physico-chemical

properties: polar (S, T, H, N, Q, Y), charged (E, D, K, R),

hydrophobic (W, I, L, M, F), and small (P, A, G, C, V).

We adopt this simplified classification to ensure that each

class has enough representatives in our data set. Of course,

many other classifications exist, including more detailed

definitions of the subgroups. Below we investigate the

effects of nsSNP mutations on the DDDGtot(snSNP),

DDDGvdw(nsSNP), and DDDGel(nsSNP) separately for

each class (more detailed analysis including analysis of the

effects of substitutions between classes is given in the Sup-

porting Material).

Binding energy changes caused by a substitution of a polar
amino acid

There are 62 cases in our data set for which a polar residue

corresponding to the first allele and located at the interface

of the protein-protein complex is substituted by another

variant (Table 1). Overall, there is no statistically significant

bias for energy to be shifted upon substitution toward lower

or higher values.

From an electrostatic point of view, a polar/another

amino acid substitution tends to be an unfavorable event in

the majority of cases (p ¼ 0.09). In another words, removal

of a polar group at the interface, despite structural refine-

ment, makes electrostatic binding energy less favorable.

Further analysis of such cases showed that a removal of

a polar residue disturbs the hydrogen bond network at the

interface. Substitution of a polar residue with either small,

charged, or hydrophobic groups tends to make the electro-

static component of binding weaker. A small residue will

create energetically unfavorable cavities, a charged residue
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will pay a large desolvation penalty, and a hydrophobic

residue will not be able to provide the required hydrogen

bonds. However, exceptions are cases when a polar group

is replaced by another polar residue whose side chain can

satisfy the required geometry. In the last case, the electro-

statics may not change or even become more favorable.

A particular example of a polar/hydrophobic substitu-

tion is shown in Fig. 2 a. It demonstrates that removal of

a polar residue and substitution with a hydrophobic residue

results in the placement of the hydrophobic side chain in

a polar environment, an event that weakens the binding

affinity. A typical case is Transthyretin (TTR), which is

a plasma protein that binds retinol and thyroxine. Many

distinct forms of amyloidosis are related to different nsSNPs

in TTR. For example, the nsSNP (refSNP ID: rs11541784)

results in a change of the polar (Ser) residue into a hydro-

phobic residue (Phe). The nsSNP Phe residue is located in

a polar environment and reduces the binding affinity by

0.717 kcal/mol.

Binding energy changes caused by a substitution
of a charged amino acid

There are 76 cases in our data set in which a charged residue

located at the interface of the target protein-protein complex

is substituted in the nsSNP variant (Table 1). The values of

the means of DDDGtot(nsSNP) and its electrostatic compo-

nent DDDGel(nsSNP) are negative and this bias is statisti-

cally significant (p-values 0.004 and 0.04, respectively),

which means that the target protein-protein complexes are

more stable compared to the nsSNP variants.

Substituting a charged with another residue is, overall, an

unfavorable event with respect to protein-protein association

(Table 1). Removal of a charged residue that forms a salt

bridge across the interface in the target complex leaves the

charged partner without favorable pair-wise interactions.
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The remaining charged residue pays a huge desolvation

penalty upon complex formation, which in the nsSNP variant

may not be compensated by favorable pair-wise interactions.

This provides an intuitive explanation why distributions of

both the DDDGtot(nsSNP) and DDDGel(nsSNP) are shifted

toward negative values .

The mutation of a charged amino acid to another charged

amino acid (charged/charged) is an interesting case. The

mutation could preserve the charge (Asp 4 Glu; Lys 4
Arg) or invert the charge (Asp,Glu 4 Lys, Arg). Presumably,

a mutation that preserves the charge should have a lesser effect

on the binding energy as compared with charge-reversal

mutations. However, our analysis showed that this is not

always the case. Overall, all mutations of the target charged

residue to another charged residue were found to be unfavor-

able events (Table 1). Even in the case of Glu to Asp substitu-

tions, like aldolase B (Glu to Asp in position 64), which is

a mutation (refSNP ID: 2854709) that preserves the net charge

of the complex, the change of the binding energy is huge:

DDDGtot(nsSNP) ¼ �9.06 kcal/mol, DDDGvdw(nsSNP) ¼
�1.58 kcal/mol, and DDDGel(nsSNP) ¼ �11.30 kcal/mol.

This change is due to the fact that the side chain of Asp is

shorter than the Glu side chain, and the nsSNP introduced

Asp cannot form a strong salt bridge with the original partner

Lys in position 270 of the other chain in this homo-dimer

complex. Another example (Fig. 2 b) is the case of charge

reversal in Roadblock-1 (DYNLRB1), which is a homo-

dimeric protein that may be involved in tumor progression,

as the upregulation of this gene is associated with hepatocel-

lular carcinomas. The corresponding nsSNP (refSNP ID:

rs11537531) of this protein results in the change of a Lys

amino acid to a Glu amino acid at the complex’s interface.

In the target protein complex, the distance between Lys75

from chain A and its partner Asp61 from chain D is only

1.62 Å, resulting in a very strong hydrogen bond and pair-

wise electrostatic interactions. However, in the nsSNP

variant, the positively charged Lys is replaced by Glu, a nega-

tively charged residue. Due to minimization, the distance

between the nsSNP residue and the original Asp61 from chain

D increases to 9.99Å because of the repulsive charge-charge

interaction between the two negatively charged groups (Fig. 2 b).

This reduces the effect, but the binding energy is still much

less favorable as compared with the dominant allele. The cor-

responding energy changes are DDDGtot(nsSNP) ¼ �11.13

kcal/mol, DDDGvdw(nsSNP) ¼ �4.42 kcal/mol, and

DDDGel(nsSNP) ¼ �3.08 kcal/mol. This is an example of

a structural relaxation that reduces the effects of charge

reversal.

Binding energy changes caused by a substitution of a small
amino acid

There are 94 cases in our data set for which a small residue

located at the interface of the target protein-protein complex

is substituted into the nsSNP variant (Table 1). Overall, the

total binding energy and electrostatic components are signif-
icantly (both p-values are 0.002) shifted toward negative

values, which indicates that nsSNP destabilizes the complex.

Substitution of a small with another amino acid almost

always will result in sterical clashes. The volume of a small

amino acid is much smaller than the volume of the other resi-

dues. Thus, there will be no room for a bulky amino acid side

chain at the interface. Such a replacement will cause distor-

tion of the interface and will weaken the binding (Table 1). A

typical example is the histidine triad nucleotide binding

protein 1 (HINT1), Gene ID: 4885413. The nsSNP codes

for Gly to Arg substitution in position 92 of B chain. The

substitution introduces a new charged residue, which pays

a large desolvation penalty, and the resulting change in the

electrostatic component of the binding energy DDDGel(nsSNP)

is �9.23 kcal/mol).

However, there are also opposite examples, indicating that

protein complexes can tolerate small amino acid substitutions

at the interfaces. A typical example is Human b-globin (HBB),

which regulates developmental expression. The correspond-

ing nsSNP (refSNP ID: rs1141387) in this protein replaces

a Val residue with a Leu amino acid. Despite the difference

in these two amino acids’ volumes, the structure of

the complex does not change by much, resulting in smaller

energy differences: DDDGtot(nsSNP) ¼ �0.98 kcal/mol,

DDDGvdw(nsSNP) ¼ �0.01 kcal/mol, and DDDGel(nsSNP)

¼ �1.21 kcal/mol (Fig. 2 c). The main reason for this small

difference is that both side chains are partially exposed to the

solution, and there is room for a larger Leu side chain.

Binding energy changes caused by a substitution of a hydro-
phobic amino acid

There are 32 cases in our data set in which a hydrophobic

residue located at the interface of the target protein-protein

complex is substituted by the nsSNP variant (Table 1). The

mean values of all energy distributions are not significantly

different from zero. In general, substituting a hydrophobic

residue at the interface with another residue does not have

a large effect on protein-protein binding. Perhaps this is

due to the fact that hydrophobic groups do not form specific

interactions. Thus, the effect of a replacement of a particular

hydrophobic side chain with another residue depends on the

geometry of the interface and the ability of the substituted

side chain to form new interactions. For example, a polar

or charged residue, substituting a hydrophobic one, could

increase the binding affinity only if the corresponding

residue manages to create new favorable interactions across

the interface. If this does not occur, then the mutation should

weaken the binding. Such a case is shown in Fig. 2 d. Gluta-

thione S-transferase M2 (GSTM2) is an important enzyme

that contributes to the metabolism of phase II biotransforma-

tion of xenobiotics. The corresponding nsSNP (refSNP ID:

rs1056799) changes the target amino acid Met to Lys in posi-

tion A130. However, the new charged residue cannot form

favorable interactions with any other residue across the inter-

face since it is in a hydrophobic environment. As a result, the
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solvation loss cannot be compensated for, and the mutation

weakens the binding.

Correlation of the calculated effect on the binding
affinity and residue conservation

MSAs were used for phylogenetic analysis and for deter-

mining the evolutionary relationships between different

species. Only positions corresponding to interfacial sites

were considered. A position in the MSA that is totally or

highly conserved indicates strong evolutionary constraints,

and the substitution of such a highly conserved amino acid

is expected to have significant effects on protein structure,

function, and interactions. In contrast, an amino acid that is

not conserved among different species is, perhaps, not

crucial for the structure, function, and interactions of that

particular protein complex.

We began our analysis with a case corresponding to

a highly conserved site. Position B34 in human b-globin

(HBB) is totally conserved among the species (Fig. 3 a).

The nsSNP causes a mutation that changes Val residue to

Leu. As result, the total binding energy, van der Waals and

electrostatic components are more favorable in the target

complex compared with the nsSNP variant. The correspond-

ing changes of the binding energy are DDDGtot(nsSNP) ¼
�0.98 kcal/mol, DDDGvdw(nsSNP) ¼ �0.01 kcal/mol, and

DDDGel(nsSNP) ¼ �1.21 kcal/mol.

Another example is glutathione S-transferase M2

(GSTM2) (Fig. 3 b). Position A130 is not conserved; in hu-

mans it is a Met residue, however, in other species the same

position is a Lys amino acid. The nsSNP induces a Met /
Lys change in the human protein, a mutation that is already

seen in other species. Perhaps this explains why such a drastic

change (a hydrophobic to a charged group) has little effect on

the binding affinity. The corresponding changes of the

binding energy are DDDGtot(nsSNP) ¼ �0.53 kcal/mol,

DDDGvdw(nsSNP) ¼ 0.28 kcal/mol, and DDDGel(nsSNP)

¼ �0.26 kcal/mol.

The magnitude of the binding energy change as a function

of the degree of conservation is shown in Fig. 4. It can be

seen that as the degree of conservation increases (calculated

in terms of percent identity, SI%) the maximal amplitude

of both the DDDGtot(nsSNP) and the DDDGel(nsSNP)
increases as well (illustrated by the broken lines in Fig. 4).

The effect culminates at high SI% (SI% > 80%) where the

variance of the magnitude of both the DDDGtot(nsSNP)

and the DDDGel(nsSNP) is significantly different, i.e., the

null hypothesis about the equality of variances between the

bins was rejected with p < 0.00001 (see Methods section).

Note that this result corresponds to significant variance of

the binding constant resulting to either increase/decrease or

no change of the affinity. The points located close to the hori-

zontal axis and corresponding to highly conserved positions

(Fig. 4) indicate that in some cases, a mutation of a highly

conserved amino acid may not affect the binding affinity.

In these cases, the effect depends on the geometry of the

interface and where the site is situated. These highly

conserved sites are predominantly located at the periphery

of the binding interface and apparently are not important

for the binding affinity. Fig. 4 provides indirect support

demonstrating that the calculated effects are reasonable,

since no large binding energy change was calculated to be

associated with nonconserved positions in the MSA.

Effect of nsSNPs on proton uptake/release

Fig. 5 shows the change of the corresponding binding energy

as a function of the absolute difference of the proton uptake/

release for target complexes and an nsSNP variant calculated

at pH ¼ 7.0. No correlation between either the magnitude or

variance of the binding energy change and DDq was found.

At the same time, it can be seen that most DDq are close

FIGURE 3 MSA. Blank frame is nsSNP position. (a) HBB (b-globin,

gene ID: 4504349); (b) GSTM2 (glutathione S-transferase M2, gene ID:

4504175).
FIGURE 4 Change of the binding energy in kcal/mol as

a function of the amino acid conservation (SI%). The

broken lines are guides for the eye and follow the maximal

amplitude of binding energy change. (a) DDDGtot(nsSNP);

(b) DDDGel(nsSNP).
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FIGURE 5 Change of the binding energy in kcal/mol as

a function of calculated proton uptake/release (absolute

value of DDq). (a) DDDGtot(nsSNP); (b) DDDGel(nsSNP).
to zero, indicating that at least around a pH of 7.0 the

pH-dependences of the binding energy are the same for the

target complex and the nsSNP variant. However, this is not

necessarily the case for the entire pH-dependence. At the

same time, there is significant percentage of cases in which

the DDq is different from zero. This indicates that nsSNP

mutations not only change the binding energy but also result

in a different pH-dependence of the binding. This could have

a significant physiological importance; however, there is

practically no experimental data available for comparison.

In general any substitution can lead to ionization changes.

The above results indicate that amino acid substitutions cor-

responding to nsSNPs not only change the binding energy

but could also result in changes in the ionization states of

the titratable groups. Such an effect could occur not only

when a titratable group is involved in the target/ nsSNP

mutation but could also occur in each of the other cases as

well. This is because any substitution changes the geometry

of the interface and thus affects the electrostatic potential of

all ionizable residues. However, in this study we did not

perform charge relaxation, i.e., no attempt was made to

adjust the residues’ ionization states according to the pKa

calculations because the calculated proton uptake/release is

a fractional number. Modeling fractional ionization in single

point calculations is impossible and any attempt would be an

error (see for details (61)). However, a more sophisticated

approach involving ensemble presentation could take into

account these ionization changes and will result in a reduc-

tion of the magnitude of the energy change caused by the

nsSNP mutation. Thus, all of the data points (Fig. 5) corre-

sponding to DDq that are significantly different from zero

may get closer to DDDG (nsSNP)¼ 0, i.e., closer to the hori-

zontal axis. Perhaps this is an effect that occurs in vivo and

results in toleration of nsSNP mutations. Site-directed muta-

genesis experiments and complementary numerical calcula-

tions have proven the charge-compensatory effect (62–64).

Perhaps, the charge-compensatory effect is the reason that

maximal DDq (Fig. 5) is only ~0.6 units, despite that some

nsSNPs cause charge reversal.

CONCLUSION

This analysis is focused on nsSNPs located at protein-protein

interfaces. Protein-protein interactions are essential for cell

function, and nsSNPs affecting these interactions are ex-
pected to have significant impacts on the protein interaction

network. Indeed, our analysis showed that OMIM and some

non-OMIM nsSNP might have a significant effect on

binding energy especially on the electrostatic component.

Although the effect is statistically significant, the majority

of amino acid substitutions corresponding to nsSNP does

not affect the binding affinity by much. This observation

should be taken with caution. A small change of the binding

affinity by a kcal/mol or even less could still disrupt the func-

tionality of the interaction network or change the kinetics of

the corresponding reaction (24,25). However, investigating

this effect requires modeling protein-protein networks,

a task that is far beyond the goals of this study.

Two data sets were considered in this study: nsSNPs that

are known to be disease-causing (OMIM data set) and

nsSNPs that were not annotated to be disease-causing

(non-OMIM). The distributions of the change in the binding

energy and its components in both the OMIM and

non-OMIM cases were found to be different although the

difference is small. However, looking at the electrostatic

component of the free energy we found that it is significantly

shifted toward negative values for OMIM nsSNP, while this

is not the case for non-OMIM nsSNPs. This indicates that

disease-causing nsSNPs tend to destabilize the electrostatic

component of protein-binding energy, in contrast with non-

OMIM nsSNPs.

Although a large number of nsSNPs did not affect protein

interactions by much (perhaps showing the plasticity of

protein interfaces and their ability to tolerate amino acid

changes), an even larger fraction of the nsSNPs did affect

the affinity. In fact, about half of nsSNPs destabilize/stabilize

the complexes by more than 1 kcal/mol. In addition, we find

that 31.8% of nsSNPs affect protein-protein binding by more

than 2 kcal/mol and 23.9% by more than 3 kcal/mol.

As was mentioned previously, in the case of non-OMIM

complexes there is no information about which nsSNP is

the dominant allele. However, our numerical protocol builds

a 3D model of the first allele in the list, minimizes the struc-

ture, and then introduces a side chain mutation at the nsSNP

position and minimizes the mutant structure. Could this

protocol bias the calculations? Since DDDG(nsSNP) is

a difference between two binding energies, the change of

the order will simply change the sign of the DDDG(nsSNP).

If the numerical protocol is not biased, then we should see that

the effect of, for example, a P/C mutation is opposite to the
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effect of a C/P variation. Comparing the means reported in

the Supporting Material, Table S1, we can see that this is the

case, except for C/H and H/C (in both cases the means of

the distributions of DDDGtot(nsSNP) were found to be nega-

tive). However, this is the smallest subset in our study

composed of only five cases, many more examples are

needed to draw a conclusion.

Another important issue to address is how sensitive the

results are in respect to the computational protocol and force

field used. Recently we have demonstrated that the calcula-

tions of absolute value of the binding energy are very sensi-

tive to both computational protocol and force fields (65). The

same study (65), however, found that the distribution of the

binding energy and the general trends are almost insensitive

to the force field and protocol used. Since this study is not

aimed at computing the absolute binding energy, but rather

the change of the binding energy upon single amino acid

substitution, the effects of force field and computational

algorithm are expected to largely cancel out.

It is expected that a mutation that changes the physico-

chemical property of a position at the interface of the corre-

sponding protein-protein complex should affect binding

affinity. However, our results indicate that this is not neces-

sarily the case. The outcome of the mutation depends on

a variety of factors, whose interplay determines the effects

of the substitution. In addition, some positions are located

in structural regions that allow for structural relaxations.

From an energetics perspective, an amino acid substitution

may not always affect the binding affinity. An example

includes a charged residue for which the favorable pair-

wise interactions are almost entirely cancelled by an unfavor-

able desolvation penalty. Another example is weak hydrogen

bonds formed at the interface. A third example is a partially

exposed hydrophobic residue at the periphery of the inter-

face. Substitution of such residues with another may not

affect the binding affinity; in fact, the nsSNP mutation could

strengthen the binding.

A highly conserved position within the protein sequence is

often related to an important biological function. Multiple

sequence alignment analysis showed that most of the posi-

tions corresponding to interfacial nsSNPs in our data set

are highly conserved. It was shown that the variance of the

total binding energy and its components of the highly

conserved positions is larger as compared with the variance

of positions with lower conservation. However, a significant

fraction of nsSNP occurring at conserved positions was

calculated not to change the binding energy by much. This

observation indicates that conservation of amino acids in

certain interface positions does not occur to preserve binding

affinity. Rather, such conservation may reflect the preserva-

tion of the binding mode or specificity. An interesting case is

an nsSNP mutation that introduces an amino acid found in

another species. Since such a mutation was evolutionarily

accepted in the other species, the overall effect on protein-

protein affinity is expected to be small. In further work, we
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will explore this observation and will determine the effects

of introducing mutations to any other 20 amino acids.

We showed here that that the change of the binding energy

from the target complex to the nsSNP variant is not related to

the conservation of the net charge, hydrophobicity, or

hydrogen bond network. This result implies that one cannot

simply use the physical-chemical properties of amino acids

to evaluate the effects an nsSNP has on protein-protein inter-

actions. Rather, as we have done here, detailed structure-based

energy calculations must be performed to predict these effects.
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