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The Origin of Short Transcriptional Pauses
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ABSTRACT RNA polymerases are protein molecular machines that transcribe genetic information from DNA into RNA. The
elongation of the RNA molecule is frequently interrupted by pauses, the detailed nature of which remains controversial. Here
we ask whether backtracking, the central mechanism behind long pauses, could also be responsible for short pauses normally
attributed to the ubiquitous pause state. To this end, we model backtracking as a force-biased random walk, giving rise to a broad
distribution of pause durations as observed in experiments. Importantly, we find that this single mechanism naturally generates
two populations of pauses that are distinct both in duration and trajectory: long-time pauses with the expected behavior of diffu-
sive backtracks, and a new class of short-time backtracks with characteristics similar to those of the ubiquitous pause. These
characteristics include an apparent force insensitivity and immobility of the polymerase. Based on these results and a quantitative
comparison to published pause trajectories measured with optical tweezers, we suggest that a significant fraction of short pauses
are simply due to backtracking.
INTRODUCTION

The ability of cells to adapt to environmental conditions, to

reproduce, and to serve varying roles within an organism

critically depends on the control of gene expression (1). A

major part of this regulation occurs at the level of transcrip-

tion, which is traditionally divided into an initiation, elonga-

tion, and termination phase. During elongation, the RNA

polymerase (RNAP) molecule moves along the DNA

template creating an RNA copy of the genetic information.

This motion typically exhibits two different modes: bursts

of rapid elongation, interspersed by pauses with a vanishing

mean velocity. Pauses appear to be induced by a variety of

mechanisms, and pause locations and lifetimes are stochastic

and biased by template sequence (2). Generally, pauses can

be classified into pause states where the enzyme either forms

an inactive configuration without appearing to displace along

the DNA template, or pauses where the enzyme forms an

inactive configuration by displacing in the rearward direction

along the DNA template. Both classes of pauses have been

studied extensively with biochemical and single-molecule

techniques. Examples of the first type of pauses include

a state that is stabilized by a RNA hairpin forming in the

nascent transcript (3,4), and the ubiquitous pause (5) (both

with lifetimes <25 s). The ubiquitous pause is thought to

correspond to an internal structural rearrangement of the

enzyme, but has not been characterized at the biochemical

level (6). The second type of pause is referred to as a back-

track, manifesting itself through a displacement of the RNAP

molecule in the upstream direction opposite to normal tran-

scriptional elongation (7–10). Pauses from both classes

may be preceded by yet another pause state, the elemental
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pause (11). This pause is not discussed here, since its lifetime

is too short to show up in single molecule data. While the

backtracked pause is expected to be sensitive to a force

applied along the direction of the backtracking displacement,

the lifetimes and density of nontranslocated pause states are

insensitive to such forces (5). While nontranslocating pauses

simply act to reduce the overall rate of transcription during

elongation, backtracking is also implicated as a prerequisite

for removing copy errors by transcript cleavage and contrib-

utes significantly to transcriptional fidelity (12–14). The

general structure of the DNA-RNA-RNAP complex is main-

tained while backtracked, preserving the nine-basepair

hybrid between the nascent RNA and the DNA template

strand (see Fig. 1 a). Upon backtracking, the polymerase

moves rearwards and the polymerization reaction ceases

until the enzyme is realigned with the polymerizing 30 end

of the RNA molecule. However, the enzyme can reside in

different translocation states while backtracked (10); and

since no chemical energy is consumed, the associated motion

can be described as a one-dimensional random walk along

the DNA strand (15–18) .

It has previously been suggested that backtracking may be

able to account for both short- and long-time pauses, since

a random-walk mechanism can give rise to a nonexponential

distribution of pause durations (15,19). While this is an

attractive explanation for the experimentally measured broad

distribution of return times (5,15,19), it is not clear that this

simple mechanism alone will generate the two distinct pop-

ulations of pauses that are observed. Here we show that

a random-walk pause scheme will naturally do this, and is

able to account for characteristics of the short-time ubiqui-

tous and long-time backtracked pauses. Specifically, we

calculate the force dependence of such pauses and their

respective average trajectories, and compare these to pub-

lished experimental data. This comparison enables us to
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FIGURE 1 (a) Schematic drawing of RNAP with an

applied assisting force f. The integer n corresponds to the

number of RNA bases that protrude past the active site.

(b) Corresponding schematic free-energy landscape. (c)

The return time distribution normalized to the particles

that return within a finite time. Due to this normalization

and the specific assumption that the transition state is cen-

trally positioned, d ¼ a/2, the distribution is invariant with

respect to f /�f. (Inset) Chance of returning within a finite

time, pret ¼
RN

0
JðtÞdt, as a function of force. For negative

forces, only the fraction exp {f/f0} returns, where f0 ¼
kT/a z 12 pN at physiological conditions.
determine the basic hopping time between adjacent states

while backtracked, an important parameter that directly

sets the characteristic lifetime of the short pauses. Interest-

ingly, this time coincides with the lifetime of ubiquitous

pauses, thus showing that backtracking alone will generate

many short pauses that are hard to distinguish experimentally

from the ubiquitous pause. We therefore suggest that a signif-

icant fraction of short pauses are not caused by ubiquitous

pausing but instead result from backtracking.

THE MODEL

We model backtracking as diffusion in a one-dimensional free-energy land-

scape (15–19) (see Fig. 1 b), focusing on general characteristics that survive

averaging over different template sequences (5,10,15). Unbounded random

energy landscapes can, in principle, give rise to anomalous diffusion (20,21).

Because the energy landscape of the backtracking polymerase is strictly

bounded by the possible states of the nine basepair hybrid, the enzyme

will undergo normal diffusion. We therefore ignore sequence dependence,

and in the absence of an overall forcing, we take the free-energy landscape

to be periodic. Each free-energy minimum corresponds to a displacement of

the polymerase by an integer number of basepairs from the active elongation

position. The application of a force f tilts the free-energy landscape by add-

ing the energy fa per step, with a ¼ 0.34 nm being the physical extent

of a basepair. The landscape is bounded on one side by an absorbing state
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corresponding to the active elongation pathway. The hopping rates between

the free-energy minima are given by Kramers rates (22,23) (see Fig. 1 c),

kout ¼ k0 exp

�
f d

kBT

�
; kin ¼ k0 exp

�
� f ða� dÞ

kBT

�
: (1)

Here, k0 is the bias-free hopping rate and d describes the physical distance

along the force coordinate from a free-energy minimum to a putative transi-

tion state (see Fig. 1 b).

In this model, the duration of a backtrack corresponds to a first-passage

time, the calculation of which is extensively discussed in the literature

(24). The particular problem considered here is that of a discrete random

walk with an absorbing boundary (see Fig. 1 b) and is easily solved for

the conditional probability of being at site n at time t, given that we were

at site m at time 0 (25,26),

Pðn; tjm; 0Þ ¼
�

kin

kout

�n�m
2

expf � ðkout þ kinÞtg

½In�mð2t=t0Þ � Inþmð2t=t0Þ�:

Here the characteristic stepping time t0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
koutkin

p
¼

exp ða=2� dÞf =kBT =k0gf has been introduced, and In values are the modi-

fied Bessel functions (27). Independent of the direction stepped during

a backtrack, the total number of paired bases in the RNA-DNA hybrid

remains unchanged. Assuming that the reaction path for opening and closing

basepairs is the same at both ends of the transcription bubble (see Fig. 1 a),
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one could argue that the transition state is likely to be positioned halfway

between the free-energy minima (d ¼ a/2). In this case, the characteristic

stepping time is simply t0 ¼ 1/k0, and thus force-independent. In general,

the position of the transition state might not be located halfway, and it might

even depend on force, d ¼ d(f).

Pause lifetimes and their force dependence

To allow for a comparison to experiments (5,15), we use the theoretical

return time distribution to identify two characteristic times and discuss the

effect of an externally applied force. Since the system always enters at

and exits from the backtrack position n ¼ 1, the probability distribution of

first-passage return times t is given by (25)

JðtÞ ¼ koutPð1; tj1; 0Þ ¼ koute
�ðkout þ kinÞt I1ð2t=t0Þ

t=t0

: (2)

This distribution has two characteristic times t1 ¼ t0 and

t2 ¼ 1=ð
ffiffiffiffiffiffiffiffi
kout

p
�

ffiffiffiffiffiffi
kin

p
Þ2, which gives three asymptotic return time regimes

(see Fig. 1 c). For pause durations t� t1, the probability density falls off expo-

nentially with the rate kout þ kin. For intermediate pause durations

t1� t� t2, the decay is algebraic with exponent�3/2. For larger t, the alge-

braic region is cut off by an exponential with characteristic time t2. It should

also be noted that, for opposing forces, only the finite fraction

exp(f/f0) of the pauses is able to exit, with the rest embarking on nonreturning

excursions (see inset in Fig. 1 c). The distribution in Eq. 2 (see Fig. 1 c) agrees

with pause-duration histograms collected in single molecule experiments (see

(5), inset in Fig. 4 a; and (15), Fig. 3 c), showing that backtracking offers

a simple explanation for the broad distributions observed. If backtracking

was indeed the cause of most of the short pauses in this histogram (5), their

characteristic duration would be of order of the hopping time t0. The short-

time regime of the experimental distribution has been fit with a time constant

of ~1 s (5), which suggests that the backtracking hopping time is of the same

order. Single-molecule optical tweezer recordings of individual backtracked

polymerases at basepair resolution do indicate that t0 falls in this regime (see

Fig. 5 in (28), and see below), lending credence to the above interpretation.

If backtracking was responsible for a significant fraction of all pauses, then

pause lifetimes would be expected to display a dependence on externally

applied force (6). However, this is not seen experimentally for short pauses

with lifetimes <25 s (5). On the other hand, our theory predicts that an

apparent insensitivity will arise when only the algebraic part of the distribu-

tion is sampled. If one measures pause durations larger than the maximal t0
for the force range considered (due to experimental limitations (5,15)) and

defines short pauses to be of a duration that is less than the smallest t2, the life-

time of these short pauses will necessarily be insensitive to external force even

though they are caused by backtracking.

Having discussed the general backtracking mechanism and how it could

account for pauses of different durations, we now turn to an analysis of

the typical trajectory, which is another characterizing feature of the different

pause types. By direct comparison to published experimental data (10), we

are also able to give a quantitative and independent estimate of the back-

tracking hopping rate t0, which is crucial for the arguments above.

Average paths

Although the notion of a random walk mechanism underlying backtracking is

generally accepted, it has not yet been fully appreciated that this implies that

most backtracks must be of short duration and only go back a few bases. In

what follows, we demonstrate that long and short backtracks are very different

in terms of the average backtracking path traversed, and each display distinct

asymptotic behaviors characteristic of the two pause classes identified in exper-

iments. These originate from the discreteness of the lattice: while the short-time

backtracks are strongly dependent on the lattice spacing a, this spacing can be

absorbed into an effective diffusion constant for the long-time backtracks.

Experimentally recorded traces of short and long pauses display a clear differ-
ence in their respective mean trajectories (10). We find that this is also true for

backtracks: short-time random walk backtracks hardly displace from the active

configuration, whereas long-time diffusive backtracks enter on average with

a large number of successive backward steps, and exit the pause in the reverse

manner. The steep entrance and exit can be qualitatively understood, since to

avoid a rapid exit one must start off by going far into the backtrack, and remain

far away from the absorbing state until just before the time of return. To make

this more quantitative, consider the probability of being at position n at time t,

given an exit at time T. This probability is given by

PTðn; tÞ ¼
Pð1; Tjn; tÞPðn; tj1; 0Þ

Pð1; Tj1; 0Þ

¼ Tt0

tðT � tÞ
n2Inð2ðT � tÞ=t0ÞInð2t=t0Þ

I1ð2T=t0Þ
;

which is invariant with respect to t / T � t and depends on force only

through a possible rescaling of the characteristic stepping time t0. With

a transition state located halfway between two adjacent backtracked posi-

tions, this force dependence also vanishes (see above). The asymptotic forms

of the average trajectory in the short- (S) and long- (L) time regimes separate

into a penetration depth lS, L and a shape function LS, L according to

hnðtÞiT�
1 þ lSðT=t0ÞLSðt=TÞ; t; T � t0

lLðT=t0ÞLLðt=TÞ; t; T[t0
;

�
(3)

with the asymptotic forms given by

lSðxÞ ¼ ðx=2Þ2; LSðyÞ ¼ 4yð1� yÞ;
lLðxÞ ¼ 2

ffiffiffiffiffiffiffiffi
x=p

p
; LLðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4yð1� yÞ

p :

The shape functions and penetration depths are illustrated in Fig. 2, a and b.

For short excursions, the polymerase only takes a few steps into the back-

track with a well-defined average velocity, and the average penetration depth

for the entire backtrack scales as T2. For long excursions, the polymerase

takes many steps into the backtrack, the average path starts out diffusively,

and the average penetration depth scales as
ffiffiffi
T
p

. Here, the shape function LL

can be split into three distinct phases (see Fig. 2 b, right-hand panel). This is

in good agreement with experimental observations where long backtracks

a

b

FIGURE 2 (a) The maximum depth of the average backtrack as a function

of pause duration (computed numerically; solid line) and the corresponding

short-time (dashed) and long-time (dash-dot) asymptotic behaviors. (b) An

illustration of the average trajectory in the two regimes. Short trajectories

remain shallow throughout the backtrack (left-hand panel), whereas long

trajectories display the three regimes reported in Shaevitz et al. (10)

(right-hand panel). They start diffusively in regime I with a steep entrance

into the backtrack, remain at a distance in regime II, and return in regime

III in a manner reverse to that of regime I.

Biophysical Journal 96(6) 2189–2193
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can be split into three qualitatively different regimes (10), a rapid entry into

the backtrack (phase I), followed by a longer and flatter region (phase II),

and a rapid exit (phase III). Shaevitz et al. (10) present experimental data

for the average of the initial time evolution for pauses lasting >20 s.

From the above, one can show that the backtracking path becomes indepen-

dent of the pause length T in region I of the long pauses,

hnðtÞiL�
1 þ 2t=t0; t� t0

4
ffiffiffiffiffi

t
pt0

q
; t0 � t� T :

(
(4)

The absence of a T dependence enables us to make a least-square fit of t0 to

the experimental data of Shaevitz et al. (10) over the time interval from the

first entrance into the backtrack up to some suitable time tmax. Instead of

using the above asymptotic forms, which would have to be matched to cover

the full interval, we instead fit to a numerical approximation of the asymp-

totic form for a T [ t. The estimated value of t0 and the mean-square

residue is insensitive to tmax within the range of 0.5–2 s, and is best fit by

t0 ¼ 0.54 s (using a force of f z �8 pN as applied in the experiments;

see Fig. 3). This time constant sets the lower corner time t1 (t1 ¼ t0, see

Fig. 1 c) for short-time backtracks, and is of the same order as the short char-

acteristic time constant of ubiquitous pauses (1.2� 0.1 s; see (5)). In conclu-

sion, the bacterial polymerase appears to step approximately twice per

second while backtracked, which will naturally give rise to a large number

of short-time backtracks with a lifetime comparable to the one that has previ-

ously been associated with the ubiquitous pause.

DISCUSSION

Here we have asked whether backtracking, which is thought

to be the central mechanism behind long pauses during tran-

scriptional elongation, could also be responsible for short

pauses normally attributed to the ubiquitous pause state. By

modeling backtracking as force-biased diffusion in a periodic

one-dimensional free-energy landscape, we demonstrate that

the single mechanism of random walk backtracking naturally

generates two classes of pauses: long-time pauses with the

expected behavior of diffusive backtracks, and a novel class

of short-time backtracks with characteristics similar to those

ascribed to the ubiquitous pause. While sequence-induced

variation in the backtracking rates will have a large effect

on the lifetimes of short-time backtrack pauses, we do not

FIGURE 3 Single parameter fit of the asymptotic long-pause shape func-

tion for regime I to data from Shaevitz et al. (10), giving a characteristic time

t0¼ 0.54 s (solid line). Also shown are the corresponding asymptotic curves

of Eq. 4 (dashed lines). The best fit to a line has a mean-square error that is

3.5 times larger than the fit to the full theory presented here.
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expect such an effect for long-time backtracks since they

sample many positions and effectively (self-) average over

sequence. In accordance with this, a few sequence-specific

short-time pause durations have been reported to be exponen-

tially distributed (2) with varying time constants. To discern

whether this exponential behavior crosses over to a power

law behavior for longer pause durations (as we suggest

here), large data sets are needed. Such large data sets are avail-

able when including data from all pauses (5,15), where the

power-law regime predicted here is observed.

In summary, our analysis gives a simple explanation for

the broad distribution of pause durations, the apparent force

insensitivity of the lifetime of short-time pauses, as well as

the distinct trajectory shapes observed in the experiment.

Importantly, the characteristic time associated with short-

time backtracks is similar to that of the ubiquitous pause

state, as we show by a comparison to published single mole-

cule pause trajectories. The obvious interpretation of these

results is that a significant fraction of short pauses is simply

due to backtracking, contrasting the view that short pauses

are largely caused by the nontranslocating ubiquitous pause

state. Since a couple of nontranslocating pauses of ~1 s dura-

tion have been identified (2), exactly how many of the short

pauses correspond to the ubiquitous pause state and how

many correspond to a short-time backtrack remains to be

determined.
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