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Computer Modeling Reveals that Modifications of the Histone Tail Charges
Define Salt-Dependent Interaction of the Nucleosome Core Particles

Ye Yang,† Alexander P. Lyubartsev,‡ Nikolay Korolev,†* and Lars Nordenskiöld†*
†School of Biological Sciences, Nanyang Technological University, Singapore; and ‡Division of Physical Chemistry, Arrhenius Laboratory,
Stockholm University, Stockholm, Sweden

ABSTRACT Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solu-
tions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the
complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the
histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of
NCPs were constructed to represent different extents of covalent modification on the histone tails: (nonmodified) recombinant
(rNCP), acetylated (aNCP), and acetylated and phosphorylated (paNCP). The simulation cell contained 10 NCPs in a dielectric
continuum with explicit mobile counterions and added salt. The NCP-NCP interaction is decisively dependent on the modification
state of the histone tails and on salt conditions. Increasing the monovalent salt concentration (KCl) from salt-free to physiological
concentration leads to NCP aggregation in solution for rNCP, whereas NCP associates are observed only occasionally in the
system of aNCPs. In the presence of divalent salt (Mg2þ), rNCPs form dense stable aggregates, whereas aNCPs form aggre-
gates less frequently. Aggregates are formed via histone-tail bridging and accumulation of counterions in the regions of NCP-
NCP contacts. The paNCPs do not show NCP-NCP interaction upon addition of KCl or in the presence of Mg2þ. Simulations
for systems with a gradual substitution of Kþ for Mg2þ, to mimic the Mg2þ titration of an NCP solution, were performed. The
rNCP system showed stronger aggregation that occurred at lower concentrations of added Mg2þ, compared to the aNCP system.
Additional molecular dynamics simulations performed with a single NCP in the simulation cell showed that detachment of the tails
from the NCP core was modest under a wide range of salt concentrations. This implies that salt-induced tail dissociation of the
histone tails from the globular NCP is not in itself a major factor in NCP-NCP aggregation. The approximation of coarse-graining,
with respect to the description of the NCP as a sphere with uniform charge distribution, was tested in control simulations. A more
detailed description of the NCP did not change the main features of the results. Overall, the results of this work are in agreement
with experimental data reported for NCP solutions and for chromatin arrays.
INTRODUCTION

In the nucleus of the eukaryotic cell, most of the DNA exists as

linear domains of uniform DNA-histone complexes, the

nucleosomes. The regular central part of the nucleosome is

the nucleosome core particle (NCP), which consists of

146–147 bp of DNA wrapped as a 1.70- to 1.75-turn super-

helix around an octamer composed of two copies of each of

the four different histone proteins H2A, H2B, H3, and

H4 (1,2). Double-stranded linker DNA of variable length

connects the NCPs to each other, forming nucleosomal arrays

that condense into the 30-nm chromatin fibers (3–5). Each of

the core histones has an unstructured, flexible, highly

conserved N-terminal domain, called the ‘‘histone tail’’

(1,6). The tails protrude out through the DNA superhelix

and can make contacts with both the wrapped and linker

DNA, as well as with the other NCPs and proteins present

in chromatin. Since the histone tails are necessary for both

secondary and tertiary condensation (3,4), it is generally

presumed that they participate in both intra- and interarray

nucleosome-nucleosome interactions (7). The histone tails

are essential for maintenance of the higher-order compact
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folded structures of chromatin and for regulation of transcrip-

tion and replication (8,9).

In vitro observations show that even in the absence of

another nuclear protein, the linker histone H1, folding of the

array of nucleosomes into a secondary 30-nm chromatin fiber,

as well as further interarray oligomerization into tertiary chro-

matin structures, can occur upon increase of monovalent salt

(KCl, NaCl) or by addition of Mg2þ (3–5). This is a clear indi-

cation of an electrostatic mechanism (10–12). It was shown

that isolated (linker-free) NCPs display similar behavior, i.e.,

NCP-NCP aggregation is observed upon increase of concentra-

tion of mono- and di-, tri-, and tetravalent cations (13–18). The

NCP carries a net negative charge of about �148 e, as it is

a highly negatively charged central particle (�236 e) to which

eight flexible and positively charged (net chargeþ88 e) chains

are attached. The underlying mechanism that leads to attraction

between NCPs and subsequent aggregation is not known in

detail. The NCP aggregation and nucleosomal array folding

and aggregation (oligomerization) is mediated by charged

histone tails, since tailless (trypsin-treated) NCPs and chro-

matin arrays do not show aggregation or folding, implying

that tails perform a crucial role in compaction of the chromatin

((4), and references cited therein).

The picture is additionally complicated by the fact that,

in vivo, these functions of the histone tails might be regulated
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by posttranslational covalent modifications of the amino

acids. The most frequent modification is the acetylation of

the lysine amino acid, which changes the distribution and

net amount of charged groups in the tails (6,19,20). Acetyla-

tion of the lysine results in removal of a positive charge.

Another modification, namely phosphorylation, adds nega-

tive (�2 e) charge to the histone tail. Thus, one can expect

that global and local variation of electrostatic interactions

between the tails and surrounding molecules is an important

component of chromatin structure and dynamics.

Through many years, acetylation in the histone tails and its

influence on biological, structural, and dynamic properties of

chromatin has been intensively studied and reviewed in count-

less publications. Below, we give a limited selection of

possible citations, with emphasis on early original work and

on recent reviews. It is now generally acknowledged that 1),

acetylation of the histone tails correlates with transcriptionally

active regions in chromatin (see, e.g., (21–24)); 2), acetylated

regions of chromatin are more sensitive to nuclease digestion,

which indicates higher accessibility of DNA (25,26); 3), acet-

ylated chromatin shows higher solubility in normal salt

(NaCl, KCl) and in the presence of millimolar concentrations

of Mg2þ (26–28).

Recently, histones have become available in large and pure

quantities by the application of overexpression techniques.

Reconstitution of NCPs and model chromatin arrays, result-

ing in large homogeneous amounts of such well-defined

objects, in principle makes it possible to determine the contri-

butions of individual tails and specific alterations within them

(acetylation, mutation, phosphorylation, etc.) to the associa-

tion of chromatin and its component, the NCP. The majority

of published data has been obtained from averaged pooled

chromatin products or from solutions of NCPs obtained by

nuclease treatment of the chromatin ((4,13,18,29–32), and

references cited therein), but a growing number of works

focus on precisely defined chromatin and nucleosomes

prepared by such recombinant methods (18,33–39). On the

other hand, there is only a limited amount of data available

for systems with modifications of the individual histones,

such as mutants lacking tails, containing only the globular

part of the histone molecule (17), or with selected tail lysines

replaced by glutamine, mimicking acetylation (33–39). Avail-

able results indicate that acetylation or the absence of tails

stabilize NCPs or arrays in the solution state during the course

of precipitation and promote unfolding of compact chromatin

arrays (17,33–35,40–42). It has been found that the H3 and H4

tails (17,34,41), and specifically the K16 lysine of H4 (33,37),

are instrumental in compaction of individual arrays.

Since isolated NCPs display properties qualitatively similar

to those of chromatin arrays in terms of the experimentally

observed salt-induced compaction, this system is a good start-

ing point for theoretical modeling that can address funda-

mental electrostatic interactions, and is also of considerable

relevance for understanding the chromatin system. Interarray

aggregation studies of recombinant systems, for which the
standard experiment is titration with Mg2þ ions that induces

precipitation, is particularly relevant in this context (33–39,

43). During this titration experiment, individual arrays first

compact at low amounts of added Mg2þ (<1 mM). At higher

concentrations, folded arrays aggregate and the effects of

linker DNA are expected to be less important (than for

compaction of the individual array). The experimental work

shows the importance of tail-mediated interactions between

nucleosomes from different arrays during this interarray

aggregation. The detailed mechanism of this electrostatically

driven process is still not completely understood. In particular,

the importance of the charged flexible tails, and the effects on

them of covalent modifications that change their charge, have

yet to be fully established. From the computational point of

view, modeling the aggregation of several arrays would,

however, be very demanding. The tail-mediated interactions,

leading to aggregation of isolated (linker-free) NCPs, which

can also be induced by Mg2þ (13,18), bears considerable

resemblance to the interarray aggregation process. Computer

modeling of this Mg2þ-induced aggregation of NCPs, while

being of interest in its own right, can shed light on chromatin

interarray fiber formation, since this process, with its under-

lying mechanism, is very similar to the interarray aggregation.

In our view, the theoretical description of interactions in

chromatin lags behind the knowledge gathered in experimental

studies. In particular, when it comes to the description of the

hallmark Mg2þ-induced NCP and chromatin array compaction

and aggregation experiment, the majority of existing chromatin

and NCP models fail to describe the electrostatics at a level

necessary to properly account for physics of the systems. It is

notable that in this respect only, some approximate descrip-

tions of the NCP-NCP interaction are available for models of

the NCP with fully charged histone tails, and many models

lack the explicit presence of flexible tails. Recent theoretical

studies related to chromatin folding have begun to include

descriptions of the histone tails in coarse-grained models of

the NCP and nucleosomal arrays (44–50). The work by Muhl-

bacher et al. (46) reports a limited account of the dependence of

NCP-NCP interaction on the number of charges and the charge

density in the histone tails. A common drawback of all the

models we know of (45–49,51), with the exception of our

work, is that the electrostatic interactions and the presence of

salt are treated highly approximately, either with effective

potentials or within a mean-field linearized Poisson-Boltz-

mann (Debye-Hückel) approximation. As a result, entropically

induced tail bridging, as well as ion-ion correlation attraction

mechanisms, has not simultaneously been taken into consider-

ation. A description that explicitly considers the mobile ions is

crucially important, since the Mg2þ-induced compaction of

NCPs and intramolecular folding, as well as interarray aggre-

gation of chromatin, is the standard experiment used to monitor

the effects and properties of the tails in these processes. The

distinct effects of divalent ions cannot be described by a Debye-

Hückel treatment, where all effects of ion valence and salt

concentration are contained in the ionic strength. In the related

Biophysical Journal 96(6) 2082–2094



2084 Yang et al.
field of DNA compaction and aggregation induced by multiva-

lent ions and caused by like-charge attraction, this fact has been

well established for several years (52–55).

In this work, we present what to our knowledge is the first

demonstration that computer modeling allows a description

of the salt-dependent and histone-tail-mediated aggregation

of the NCPs, including the effects of net charge and their posi-

tion in the histone tails. We use a coarse-grained continuum

model with explicit ions that was introduced in our previous

work (44). The NCP is described as a negatively charged

sphere with attached flexible chains, whose length and number

of charges mimic the real system (Fig. 1). To the best of our

knowledge, our approach is the only model existing in the liter-

ature about nucleosome and chromatin modeling that explicitly

considers the mobile ions, which is necessary in describing the

mechanisms of compaction and aggregation of these systems.

We model three different states of the nucleosome core particle:

‘‘recombinant’’, representing fully charged tails; ‘‘acetylated’’,

mimicking the tails carrying two acetylated lysines; and ‘‘acet-

ylatedþ phosphorylated’’, where in addition to the acetylation,

one negatively charged particle (modeling a phosphorylation

site) was inserted into each of the eight histone tails. Explicit

presentation of the mobile ions (Kþ, Mg2þ, and Cl�) allows

description of the strong specific influence of divalent Mg2þ

on the NCP-NCP interaction. The results of the simulation

are in agreement with the experimentally observed increase

of solubility of the nucleosomes and nucleosomal arrays

upon acetylation of the histone tails. In control simulations,

we also tested the importance of our approximation using the

spherical model to describe the shape and charge distribution

of the nucleosome core. A more detailed model with DNA

described as charged beads wrapped around a spherical core,

mimicking the globular part of the histone octamer, was found

to maintain the major properties of the system.

METHODS

Coarse-grained models of the nucleosome core
particle

We used a model of the NCP and salt conditions similar to that used in our

previous work (44). The NCP was described as a spherical particle

(‘‘core’’) of effective radius 5.1 nm with net charge �236 e combined with

eight strings of linearly connected particles representing the histone tails.

The charge of the central particle reflects the electrostatic balance between

147 basepairs of double-stranded DNA (charge �294 e) and the net positive

charge, þ58 e, of the amino acids comprising the globular domains of the

histones. The volume and averaged charge density of the central sphere in

our NCP model are roughly equal to those of the cylinder approximation of

the real NCP. Details of the NCP model are given in our previous work

(44) and in the Supporting Material for this work. The real NCP geometry,

with DNA wrapped around a histone octamer core, forming a cylindrically

shaped particle, as well as the known asymmetry in the charge distribution,

may be important for NCP aggregation properties. The majority of the net

negative charge is located on the periphery of a cylindrically shaped NCP

with the top and bottom of the cylinder core being mostly neutral, with small

negatively charged islets on each side. The issue of whether a very simplified

presentation of the globular part of the NCP as a single negatively charged
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sphere can capture the major features of the salt-induced and tail-mediated

NCP-NCP interaction is important to address. To tackle this problem we per-

formed some additional simulations with a more detailed NCP model that

describes the histone octamer as a sphere with negatively charged beads

representing DNA wrapped around it. Some selected data from the molecular

dynamics (MD) simulations are described in the Supporting Material.

The number, charge, and charge distribution of particles in the ‘‘histone

tails’’ were varied to model three different states of the NCP, here denoted

FIGURE 1 Models of the nucleosome core particle. The position of the

tails relative to the core is determined from the atomic model of the NCP.

(a) Top view for the model of the ‘‘recombinant’’ NCP. Each blue circle

represents one bead (basic unit carrying charge and mass) in the model.

(b) Variation in the number of beads and charges of individual beads to

represent different types of histone tails in the NCP models for ‘‘acetylated’’

NCP (aNCP) and for phosphorylated plus acetylated NCP (paNCP). In the

righthand column, the positions of the modeled modifications in the amino

acid sequence of the tail are listed. Small beads with a þ1 e charge (blue),

larger beads with no charge (green), and largest beads with a �2 e charge

(red) represent unmodified, acetylated, and phosphorylated amino acid

bead positions, respectively. Four different distributions of the uncharged

particles within the tails were modeled, keeping the same number of

uncharged particles in each tail. In the first model, the relative positions of

the neutralized sites match the sites of lysine acetylation frequently observed

in vivo (upper section). In the second model, acetylation sites are evenly

distributed. The two other models (not shown in figure) were designed

with two uncharged beads placed at the ends of the tails (called the

‘‘head’’ and ‘‘root’’). In the paNCP model (lower section), acetylation sites

correspond to those in the native model of aNCP;, only serine phosphoryla-

tion sites are listed at right.



Salt-Dependent Interaction of Nucleosome 2085
as ‘‘recombinant’’ (nonmodified) (rNCP), ‘‘acetylated’’ (aNCP), and ‘‘phos-

phorylated þ acetylated’’ (paNCP) (Fig. 1). The rNCP model represents the

NCP with unmodified, fully charged histone tails; the aNCP model mimics

the situation where two positively charged amino acids in each of the histone

tails have been acetylated. There are few accounts about the precise degree

and positions of acetylation in experimental studies addressing the influence

of acetylation on properties of nucleosomes or nucleosomal arrays. To

a certain extent, our model of the acetylated NCP corresponds to the ‘‘hyper-

acetylated’’ fraction of NCPs studied by others (56,57) (on the average,

17 sites of acetylation per octamer), or the ‘‘highly acetylated’’ fraction of

the nucleosomal arrays investigated by Tse et al. (28) (~12 acetylated sites

in each octamer). Most of the simulations with the NCP model carrying

two acetylation sites in each histone tail were carried out with the ‘‘native’’

aNCP (Fig. 1 b, upper section). The relative positions for acetylation in the

‘‘native’’ aNCP model were assigned taking into account the information

about acetylation sites most frequently occurring in vivo (58–60). When

not specifically pointed out, the abbreviation ‘‘aNCP’’ refers to this version

of distribution of the modified beads in the histone tails. To distinguish

between the general (reduction of the tail charge) and specific (position of

modification within the tail) influences of acetylation, three additional models

of aNCP were studied. In all of these models, there were two uncharged parti-

cles in each tail, but the positions of the modification were changed compared

to the ‘‘native’’ aNCP: in the ‘‘even’’ model, the uncharged beads were

distributed approximately evenly inside each tail (Fig. 1 b, middle section).

In the ‘‘root’’ model of the aNCP, two uncharged beads were placed close

to the negative core; and in the ‘‘head’’ model, the end of each tail contains

two uncharged particles. These altered models of the aNCP were studied

under salt conditions similar to those in the systems of ‘‘native’’ aNCP.

The paNCP model addresses the situation of ‘‘extreme’’ modification of

the NCP, where in addition to acetylation of two lysines in each tail, one

serine in each histone tail has been phosphorylated (Fig. 1 b, lower section).

Little is known about the degree of phosphorylation of NCPs in vivo, but it is

clear that a high degree of acetylation and phosphorylation in the same

nucleosome, as occurs in our paNCP model, is unlikely to occur in nature.

The relative positions of the phosphorylated sites were assigned using

data on serine phosphorylation within the histone tails (61–63). The ratio-

nale behind this model (paNCP) was to study the general electrostatic effect

on NCP condensation for the combined reduction of positive tail charge as

well as the introduction of negative charges in the tails.

The distance between the charged groups of the histone tails (0.7 nm) was

evaluated assuming an extended conformation of the polypeptide chain and

an even distribution of Lysþ/Argþ amino acids. The effective radius of

‘‘normal’’ lysine particles with charge þ1 e was 0.25 nm. The ‘‘acetylated

lysine’’ was represented as a neutral particle that had a radius of 0.45 nm.

The phosphorylated amino acid was modeled as a sphere with a�2 e charge

and an effective radius of 0.55 nm. This takes into account the increase in size

of these amino acid side chains upon modification. To accommodate the nega-

tively charged particle modeling the phosphorylated amino acid, the distance

between ‘‘lysine’’ residues was increased to 1.0 nm and a particle with

charge �2 e was inserted in the middle. The number of charged groups in

each tail of the recombinant NCP model was set according to the charges of

the real histone tails: H2A, þ9 e; H2B,þ14 e; H3, þ11 e; H4, þ10 e (using

the amino acid sequence from Cheung et al. (64) and considering the

N-terminal amino group to be protonated). The total charge of the histone tails

in the rNCP model wasþ88, which, with the charge of the central unit, yields

a total charge for the rNCP of �148 e, whereas the aNCP model has a net

charge of�164 e, and the net charge of the paNCP model was�180 e. Addi-

tional details of the model are given in the Supporting Material.

Molecular dynamics setup

The interaction potential (force field) of the coarse-grained model had three

parts: electrostatic, short-range, and bond potentials. The electrostatic inter-

action was defined in a standard manner, as a sum of Coulombic potentials

from all the charges in the system, in dielectric media with Bjerrum length

lB ¼ e2

4p3r 30kBT ¼ 0.713 nm for 3r ¼ 78, and T ¼ 300 K. The P3M version of
the Ewald summation method (65) was used to compute the long-range part

of the electrostatic forces and energies.

The short-range potential, acting between any pair of elements (NCP

center particles, particles comprising the histone tails, and ions) was (44)

Ushort

�
rij

�
¼
����� kT
�

a
rij�sij

�9

N

rij > sij

rij < sij

; (1)

where rij is the distance between elements ‘‘i’’ and ‘‘j’’, sij¼ siþ sj is the sum

of their hard-core radii, and a ¼ 0.3 nm is a parameter having the sense of

effective thickness of the soft repulsion potential. For hard-core radii, we

used s¼ 4.7 nm for the NCP central unit and s¼ 0.1 nm for ions and particles

of the histone tails, except in the cases described separately below. The potential

of Eq. 1 has an effective interaction radius siþ sjþ a, which gives an effective

size of the NCP core of ~5.1 nm and an effective single-charged ion radius of

0.25 nm. To account for the larger size of the hydrated Mg2þ ion, the phosphate

group, and the acetylated lysine in the histone tail, the corresponding hard-core

sizes were s¼ 0.2, 0.3, and 0.4 nm, respectively. Generally, the calibration of

the force field parameters for the coarse-grained simulations was done based on

comparison with all-atom molecular dynamics simulations of small fragments,

though no detailed fitting of the effective potentials has been made.

The bond potential acting between connected particles had the form

UbondðrÞ ¼ kT

�
r � req

D

�2

:

The parameters were D¼ 0.1 nm with equilibrium distance req¼ 0.7 nm for

neighboring lysines (acetylated and positively charged) and req ¼ 0.5 nm

between the phosphate group and the closest particle in the tail. The particles

closest to the core of the NCP were fixed by harmonic bonds to the center of

the core and to some other particles of the other tail to fix the exit points of the

tails at positions close to those determined for the corresponding Ca atoms of

the histone tails in the crystal structure of the NCP (1). For details, see our

previous article (44) and the Supporting Material for this article.

Langevin molecular dynamics simulations were carried out using the

ESPResSo package (66) with modifications to include the interacting potential

described by Eq. 1. Since the solvent is not included explicitly, the molecular

dynamics should be considered as a tool to generate the canonical ensemble,

producing the same kind of results as Monte Carlo simulations. For strongly

charged polyelectrolyte systems, the molecular dynamics method is a more

efficient way to sample the configuration space compared to the standard

Metropolis Monte Carlo algorithm, which displays convergence problems for

simulations of highly charged systems with moving polyions. Cluster move-

ment techniques have been developed with the Monte Carlo algorithm to

overcome this problem (see (67) and references cited therein). We found the Lan-

gevin MD method within the ESPResSo package to be very effective. In the last

decades, constant-temperature molecular dynamics with thermostats of different

kinds was often used in polyelectrolyte and other coarse-grained simulations.

The systems were simulated at temperature 300 K using a molecular

dynamics algorithm with a Langevin thermostat. Masses are given in

reduced units and were set to 1 for the histone tail beads and for the ions,

and to 50 for the NCP core. The ratio of the masses of the NCP core to

the masses of tail beads and ions was made substantially smaller than the

real one, with the purpose of providing faster sampling of the configuration

space. Under the assumption that the chosen reduced mass unit corresponds

to 100 a.u., the time step used in the simulations was ~16 fs. The Langevin

thermostat parameter g was set to 0.01 in units of the time step. With such

a low value, this parameter does not account for the real friction of moving

particles through the solvent, but provides only a small correction to the

Newtonian equations of motion, keeping the temperature constant. The

dynamics in such a simulation is artificially accelerated due to the low fric-

tion and low mass of NCPs, and may be qualitatively reconstructed by

scaling the time with some factor. Since we are interested only in equilib-

rium configurations, we do not evaluate this factor, and report only the

number of MD steps made. However, it should be pointed out that the
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configurations generated in this way are not artificial, and do represent the

equilibrium ensemble for sufficient convergence of the simulation runs.

MD simulation runs

Most of the MD simulation runs were carried out for a cubic simulation cell

with a size of 40 nm, containing 10 similar NCPs starting with a configura-

tion where the NCP particles were randomly placed and well separated from

each other (>15 nm intercore distance). The number of ions in the simula-

tion cell with 10 NCPs is listed in Table 1. The concentration of NCPs in the

simulation box was 260 mM, which corresponds to 76 mM in DNA phos-

phate groups. This NCP concentration corresponds to the high limit of nucle-

osome concentration inside the eukaryotic cell nucleus recently estimated by

fluorescent correlation spectroscopy and confocal imaging (68). The concen-

tration of KCl salt in all systems with different NCP models was 65.4 mM

KCl; for systems with Mg2þ, the concentration of MgCl2 was 4.15 mM.

Three kinds of models are coupled with two kinds of salts, resulting in

six systems, referred to as nontitration systems.

In addition, a number of simulations have been carried out for systems with

recombinant and acetylated NCPs with varying mixtures of Kþ and Mg2þ

ions. In this case, the system had a sum of cation charges of þ1480 e for

the rNCP systems and þ1690 e for the aNCP systems, and it contained

50 Cl� ions. These systems are abbreviated using the indication of the

NCP model and the percent of Mg2þ relative to the total positive charge of

Kþ þMg2þ. For example, the notation ‘‘aNCP-50Mg’’ is used for a simula-

tion run with 422 Mg2þ and 846 Kþ (plus 10 aNCPs and 50 Cl�). In this way,

the variation of Mg2þ content from 0 to 100% may be considered to qualita-

tively mimic a titration experiment wherein an NCP solution starting with

a low KCl salt (buffer) is titrated with magnesium salt until aggregation is

detected. These are referred to as titration systems.

To investigate the relationship between participation of the histone tails in

NCP-NCP interaction and the possible salt-dependent dissociation of the tails

from the core of the NCP, we also performed simulations for a single NCP in

a cubic simulation cell of 23-nm size in the presence of varying amounts of

KCl or MgCl2. The concentration of salt in the simulations with one NCP

in the cell was varied from 5 mM to 200 mM of KCl or MgCl2.

The systems were simulated for 1.6 � 107–3.2 � 107 MD time steps for

nontitration system, and for 4.8 � 107 time steps or longer for titration

systems. For single-NCP systems, convergence is achieved in a shorter

trajectory, for 0.8 � 107 to 1.6 � 107 time steps. Configurations for analysis

were collected after each 200 steps. Averages were calculated for the final

1.6 � 107 time steps or longer, after achieving convergence in the NCP-

NCP radial distribution functions (RDFs) and external tail-core RDF.

RESULTS AND DISCUSSION

Modification of the histone tails (acetylation and
phosphorylation) strongly weakens NCP-NCP
interaction caused by addition of Kþ and Mg2þ ions

Fig. 2, a and b, displays RDFs that are highly indicative of the

NCP-NCP interaction. The core-core (Fig. 2 a) and external

TABLE 1 Number of ions in nontitration systems

System abbreviation K Mg Cl

rNCP-KCl 1480 þ 2520 0 2520

rNCP-MgCl2 0 740 þ 160 320

aNCP-KCl 1640 þ 2520 0 2520

aNCP-MgCl2 160 740 þ 160 320

paNCP-KCl 1800 þ 2520 0 2520

paNCP-MgCl2 320 740 þ 160 320

The simulation box size is 40 nm.
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tail-core (Fig. 2 b) distributions were calculated from the final

1.6� 107 MD steps. The insert in Fig. 2 b shows the evolution

of RDF maxima, demonstrating that convergence in all simu-

lation systems is reached after ~1.6 � 107 MD steps. Data

obtained in the rNCP-KCl and rNCP-MgCl2 systems are prac-

tically identical to the results reported in our previous work

(44), which employed a different MD program, another ther-

mostat (Nosé-Hoover, i.e., standard MD, not Langevin

dynamics), and another variant of the Ewald summation.

This indicates that results are independent of the sampling

algorithm and correspond to equilibrium properties of the

systems within the model used. In Fig. 2, c and d, the values

of the RDF maxima of the curves displayed in Fig. 2,

a and b, are shown as histograms.

Pronounced maxima are observed in the core-core and

external tail-core RDFs for the rNCP-KCl and rNCP-

MgCl2 systems at a distance of close core-core and histone

tail-core contact. Aggregation of the rNCPs proceeds to

a different extent in the presence of Kþ than in the presence

of Mg2þ ions. The intensity of the first maximum in the core-

core RDF of the rNCP-MgCl2 system exceeds the same peak

of the rNCP-KCl system (Fig. 2, a and c). In the rNCP-

MgCl2 system, a single conglomerate of 10 NCPs was

formed with occasional dissociation of one to two NCPs,

whereas in the rNCP-KCl system, several aggregates of

two to five NCPs formed with continuous dissociation and

exchange of the NCPs during the simulation. The histone

tails play a decisive role in formation of the NCP-NCP

contacts. The intermolecular RDFs and snapshots from the

simulations demonstrate that the NCP aggregates are main-

tained by both cross-linking (Fig. 2 b) and screening of the

negative charge of the core surface by the positive particles

of the tails and Kþ or Mg2þ cations. Fig. 2 e gives a close-

up view of cross-linking in a cluster of three NCPs obtained

from a snapshot similar to that seen in the upper part of Fig. 6

(rNCP-Mg100; note that the extended tail of the left-hand

side NCP is not free but contacts the other NCP from the

mirror periodic cell not shown in the snapshot).

On the other hand, no stable NCP-NCP contacts were

observed for the NCP model with both acetylation and phos-

phorylation of the histone tails (paNCP model) under the same

salt conditions, i.e., in the paNCP-KCl and paNCP-MgCl2
systems (Fig. 2, a and c). The paNCP system rarely forms

short-lived associates consisting of two to three particles.

For aNCP, only a small degree of NCP-NCP aggregation is

observed in the presence of KCl. In the aNCP-MgCl2 system,

the intensities of both core-core and external tail-core RDFs

are lower than in the rNCP-MgCl2 system.

It may be noted that the intensity of the first maximum of

the core-core RDF in the Mg2þ systems was always higher

than in the corresponding Kþ systems, despite the fact that

the ionic strength of the Mg2þ systems (50–59 mM,

including neutralizing counterions) was always below that

of the Kþ systems (84–89 mM). This observation once again

demonstrates that the Debye-Hückel approximation, having
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FIGURE 2 Results of the MD simulations for rNCP,

aNCP, and paNCP models for the systems with KCl and

MgCl2 salts (Table 1). (a and b) RDFs of the core-core

(a) and external tail-core (b) distributions collected for

the converged region of the trajectories (the last 1.6 �
107 MD steps). The inset in b shows the change in the

maximum intensity of the external tail-core RDF during

the course of the MD simulation run. The numerical value

of the RDF corresponds to the concentration of particles

relative to the value expected for a uniform distribution.

(c and d) Histograms of the averaged values of the maxima

of the core-core (c) and external tail-core (d) RDFs under

two salt conditions, 4.15 mM MgCl2 (hatched bars) and

65.4 mM KCl (gray bars). (e) Close-up view of a snapshot

of three NCPs in aggregation, with each nucleosome and its

core and tails in a different color, demonstrating the partic-

ipation of tails in intercore interactions.
ionic strength as the only parameter describing the effect of

the ions, cannot provide an adequate description of interac-

tions in strongly charged polyelectrolyte systems.

Intramolecular tail-core RDFs and observation of snapshots

demonstrate that NCP-NCP interaction is accompanied by

extension of the histone tails outside the host core, for both

the rNCP and aNCP models. Still, most of the positively

charged particles of the tails remain localized in the vicinity

of their host core, with only a fraction taking part in cross-link-

ing, even in the most condensed rNCP-MgCl2 system (Fig. 2 e).

For all NCP models (rNCP, aNCP, and paNCP), the mobile

cations (Kþ and Mg2þ) accumulate near the negative surface

of the core at concentrations of up to ~1.4 M Kþ and ~1.2 M

Mg2þ, with no significant difference between the models;

a 10–20% difference is observed between the three NCP

models (data not shown). When stable NCP aggregates are

formed, most of the cations are gathered inside the condensed

phase and there is a drop in concentration of the cations

between bulk and NCP aggregates. Interaction of oligoca-

tionic tails with chlorine anions is reduced due to the confine-

ment of the tails in the area of the negative electrostatic field

from the central particle. Although some accumulation of

Cl� ions is seen in the vicinity of the tails, the intensities of

the maxima in the corresponding RDFs are lower than those

of the Kþ-Cl� and Mg2þ-Cl� RDFs (data not shown).
Comparison of tail-core interaction for systems
with isolated and with interacting NCPs

In Fig. 3 a, the internal tail-to-core RDFs of the systems with

10 NCPs in the simulation cell are shown. In Fig. 3 b, the

intensity of the main maximum of the internal tail-core

RDF for a system with a single NCP in the simulation cell

is displayed as a function of salt concentration (KCl or

MgCl2). In Fig. 3 b, the values of the maxima of the RDFs

presented in Fig. 3 a are shown as symbols. The tail detach-

ment is modest (albeit definitely present) for a system of

a single rNCP or aNCP, even at very high Mg2þ salt. The

detachment of the tails from the core is therefore not induced

by increased salt concentration per se. It is the presence of

other NCPs, screening of NCP-NCP repulsion, and induced

fluctuation in ion distribution (mediating attraction in the

presence of Mg2þ) that favors bridging and thus induces

the extension of tails outside their cores. Extension of tails

is entropically favorable, but the electrostatic energy loss

would prevent this from occurring, unless the presence of

other NCPs and conditions diminishing NCP-NCP repulsion

are at hand. Fig. 3 b thus clearly demonstrates that in the

systems with 10 NCPs, detachment of the tails from their

host cores is caused by NCP-NCP interaction and formation

of tail bridges, and by an electrostatic effect due to screening

Biophysical Journal 96(6) 2082–2094
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of the simple salt. The two additional points at 1.8 mM KCl

(vertical dashed line), the red square with a cross (rNCP) and

blue triangle with a cross (aNCP), represent data from

10-NCP systems where the salt conditions favor NCP-NCP

repulsion, i.e., a low concentration of Kþ and an absence

of Mg2þ (data are taken from simulations described below

(see Fig. 5) and correspond to zero percent of Mg2þ). Note

that there is still a reduction in the maximum of the RDF

for these 10-NCP systems, compared to the single-NCP

system, even when NCPs do not aggregate in the simulation

cell. This is probably because in this rather dense system,

frequent random contacts between different NCPs, as well

as higher ionic strength due to the neutralizing counterions,

cause some extension of the tail.

The data presented in Fig. 3 furthermore illustrate an impor-

tant point about the mechanism of NCP-NCP interactions.

Stable NCP aggregation is only possible when tail interaction

with the negative core is strong. Acetylation and phosphory-

lation of the tails (leading to a reduction of positive charge), as

FIGURE 3 (a) Internal tail-core RDFs of the rNCP, aNCP, and paNCP in

the presence of Kþ and Mg2þ salts for the systems with 10 NCPs in the

simulation cell. (b) Dependence of the intensity of the first maximum of

the internal tail-core RDF on salt concentration (KCl or MgCl2) for a system

with a single NCP particle in the simulation cell. The maxima in the 10-NCP

system (a) are labeled in b with solid symbols of the same shape as the cor-

responding systems in the single-particle systems (b). The single red square

with a cross and blue triangle with a cross represent data at zero percent

Mg2þ in the systems represented in Fig. 5.
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well as addition of salt, allow greater extension of the tails

from their cores and seem to facilitate contact of the tails

with the other NCPs. However, the strength of the tail-core

contact becomes weak, and the tails lose the ability to hold

NCPs close to each other in acetylated and phosphorylated

systems. Analysis of tail dynamics during the simulation

reveals that the tails relocate from their ‘‘host’’ core and

become associated with the neighboring nucleosome only

after NCPs approach each other. It can be seen at the initial

stages of the simulations with 10 NCPs in the rNCP-MgCl2
and aNCP-MgCl2 systems (when NCPs are located away

from each other) that the internal RDFs of the tails are similar

(data not shown) to those of the single rNCP or aNCP in

the simulation cell at low salt (Fig. 3 b). Therefore, we

conclude that the effect of the screening on the attractive

interaction between tails and their host core is not, as pre-

viously suggested (14–16), important for the interaction

between NCPs.

Importance of position of the tail modification

To understand how the position of the acetylation sites in the

tails influences the NCP-NCP interaction, six additional MD

simulation runs were carried out with different distributions

of the uncharged beads in the histone tail (‘‘head’’, ‘‘root’’,

and ‘‘even’’) for the aNCP model in KCl and MgCl2 salts.

Values of the maximum of the core-core, external tail-core,

and internal tail-core RDFs are shown in Fig. 4. Vertical

bars represent the three new aNCP models; horizontal lines

represent the original, ‘‘native’’ aNCP models. Core-core

RDF indicates aggregation of the NCPs, whereas the external

tail-core RDF indicates participation of the tails in the forma-

tion of bridges between close NCP pairs. In both KCl and

MgCl2 solutions, a decrease in NCP-NCP interaction is

observed for all four models of aNCP with two acetylation

sites, compared to the rNCP model. It can be seen that

neutralization of the two particles at the roots of the tails

has the weakest influence on NCP aggregation. Core-core

RDFs of the aNCP with ‘‘even’’ distribution of the

uncharged beads in the tails is the most efficient in reducing

NCP-NCP interaction. As observed in Fig. 4, a and b, the

four models display small differences in KCl solution. In

addition, in the presence of MgCl2, the ‘‘even’’ aNCP signif-

icantly weakens NCP aggregation and tail bridging. It is

remarkable to observe, in Fig. 4 c, that despite the rather

complicated behavior in NCP-NCP interactions and forma-

tion of bridges displayed by the different models for

aNCP, the ‘‘native’’ distribution of the acetylation sites

within the histone tails demonstrates the greatest decrease

in interaction of the tails with their host core. Although the

coarse-grained NCP model is approximate, it is clear from

the data that the relative position of the charge reduction

has a pronounced and complex influence on the behavior

of the NCP systems. This demonstrates that the inherent

electrostatics of the NCP system leaves considerable room
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for external regulation (by acetylation and phosphorylation)

of the electrostatically induced condensation properties of

the system.

Modeling titration of NCP solutions with Mg2þ ions

In experimental studies of NCP and chromatin array systems,

the standard experiment to monitor the condensation behavior

is titration by multivalent salt, in particular MgCl2 ((4), and

references therein, as well as recent work (18,33,34,39,43)).

To model such an experiment correctly in simulations,

a very large system (large simulation cell) must be employed,

or, preferably, simulations should be carried out within

a grand canonical ensemble in equilibrium with a defined

bulk salt solution (53). To qualitatively mimic the titration

performed in experiments, we started with a system

comprising Kþ counterions and a small amount of added

KCl (Fig. 5, 0% Mg) and made simulations of this system

by replacing Kþ counterions with Mg2þ (Figs. 5 and 6

show the results from such a series of MD simulations

modeling the ‘‘titration’’ of a potassium salt solution of

NCPs (NCP with Kþ counterions þ KCl). Since the

paNCP-MgCl2 system does not show aggregation, we carried

out titration by Mg2þ using only the rNCP and ‘‘native’’

aNCP models.

Fig. 5, a and b, shows the core-core and external tail-core

RDFs, whereas Fig. 5 c presents averaged statistics of NCP-

NCP contacts. The average number of NCP-NCP contacts is

defined as follows: two NCPs were considered to be in contact

if the core-core distance between them was<12 nm, a distance

based on the position of the right border of the first maximum

of the core-core RDF (see Fig. 2 a). The average number of

contacts per core is defined as n¼Npair/(Ncore – Nframe), where

the number of pairs, Npair, was counted from one trajectory

FIGURE 4 Simulation results for the aNCP model with

two acetylation sites in each tail but different positions of

acetylation. Values of the first maximum in the core-core

RDF (a), external tail-core RDF (b), and internal tail-core

RDF (c) are shown for the four aNCP models, native

(aNCP), root, head, and even, under two salt conditions,

4.15 mM MgCl2 (hatched bars) and 65.4 mM KCl (gray
bars).

FIGURE 5 Dependence of the inten-

sities of the RDF maxima and number

of the NCP-NCP contacts determined

for the rNCP (circles with solid line)

and the aNCP (squares with dotted line)

models on Mg2þ content in the simula-

tion cell: (a) core-core RDF; (b) external

tail-core RDF; (c) number of core-core

contacts. Data were averaged for the

converged region of the trajectories (the

last 1.0� 107 steps of the MD trajectory).

Biophysical Journal 96(6) 2082–2094



2090 Yang et al.
segment of Nframe frames, and Ncore ¼ 10. The whole trajec-

tory was divided into segments. Each segment consists of

4000 frames collected at every 10th time step. Fig. 6 shows

the dynamics of the NCP-NCP contacts for the rNCP and

aNCP systems with different Mg2þcontents. Some illustrative

snapshots showing degrees of aggregation from the MD

trajectories are also presented in Fig. 6.

The extent of NCP aggregation depends on the ‘‘acetyla-

tion’’ state of the histone tails and on the relative amount of

Mg2þ. Below 50% Mg2þ, no aggregation is observed for

rNCP or aNCP. Aggregation of the rNCPs occurs between

60 and 80% of Mg2þ and above 80% Mg2þ, a single aggregate

containing all 10 rNCPs is formed. In the system with aNCP,

the existence of stable NCP-NCP aggregates consisting of

two to five aNCPs is seen only above 80% Mg2þ (Fig. 6, snap-
shots). It is of interest that there is some decrease in NCP-NCP

interaction from 90 to 100% Mg2þ for the rNCP. This effect

might reflect a real event of ‘‘loosening’’ of the NCP aggre-

gates in excess of Mg2þ (N. Korolev and L. Nordenskiöld,

unpublished experimental results) which leads to redissolu-

tion of the NCP and chromatin at high concentrations of

MgCl2 (13,42).

Fig. 6 shows the ‘‘dynamics’’ of the NCP-NCP contacts in

the rNCP and aNCP systems with different Mg2þ content.

The system of a fully charged ‘‘recombinant’’ NCP reaches

equilibrium after ~2 � 107 MD time steps. The rNCP

systems show a rather static behavior, with little fluctuation

in the number of NCP-NCP contacts (Fig. 6 a). A contrasting

behavior is observed in the aNCP system, where large fluc-

tuations in the number of NCP-NCP contacts are seen during

the simulations (Fig. 6 b).

Relevance of the simulation results
to experimental data

To assess the validity of the predictions obtained based on the

results presented here, it is desirable to make a direct compar-

ison with biochemical data. Ideally, NCPs containing specif-

ically neutralized lysine tails should be investigated with

respect to the effects on the Mg2þ-induced interparticle aggre-

gation (precipitation). One approach to this is the preparation

of histones with selective lysine-to-glutamine (K/Q) muta-

tions, which mimics acetylation. However, no data on NCPs

with well defined tail charge neutralizations (either by acety-

lation or by K/Q mutation) are available in the literature. On

the other hand, Wang and Hayes (39,43) recently published

a comprehensive study of the interarray aggregation for all

combinations of the four histones, where selective K/Q

mutations were introduced in each histone tail. Arrays of

12 nucleosomes with repeat lengths of 177, 207, and 208 bp

were investigated. The numbers of K/Q mutations were

2, 6, 6, and 4 for H2A, H2B, H3, and H4 histones, respec-

tively. Sixteen different histone mutant/wild-type octamer

combinations were assembled to nucleosomal arrays with

4–36 quenched lysine charges in each NCP. The effect of
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these mutations on the EC50 values in Mg2þ-induced aggrega-

tion, as detected by a precipitation assay, was established

(EC50 is the concentration of Mg2þ needed to precipitate

50% of the arrays). An increase in EC50, i.e., a higher concen-

tration of Mg2þ needed to induce aggregation, would be

expected for an electrostatic mechanism and is implied for

NCPs based on the above simulation results that mimic the

Mg2þ ‘‘titration’’ experiment. Although no simple relation

was found between the number of charges neutralized and

EC50, the results of this study showed that, in general, the

more positive charges that were neutralized, the higher was

the amount of Mg2þ needed to induce aggregation. For arrays

with combinations of all histones mutated (36 charges neutral-

ized), the EC50 value increased to 16.42 mM, compared to

2.38 mM for the wild-type. The system with only H3 and

H4 histones mutated (20 charges neutralized), displayed an

increase of EC50 to 4.63 mM (data refer to a 12-mer

FIGURE 6 Dynamics of core-core contacts in the systems with rNCPs (a)

and aNCPs (b) with varied Mg2þ content. Note the different degree of aggre-

gation in the rNCP systems (upper snapshot) compared to the aNCP systems

(lower snapshot).
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nucleosomal array with a repeat length of 177 bp). Even

though direct quantitative comparison with our simulation

data cannot be made, the general trend observed in these

experiments is in agreement with the simulation results,

which indicate a higher concentration of Mg2þ needed to

induce aggregation of NCPs with 16 tail charges neutralized

(Figs. 5 and 6). However, the effects observed in these array

experiments (including a small unexpected decrease in EC50

for the H2A single-mutant histone case) likely depend on

additional factors. The relative tail exit position on the nucle-

osome core, as well as a possible cooperativity in the

combined contributions of individual tails (39,43), may affect

the aggregation process. These issues should be addressed in

future simulations utilizing more detailed modeling of NCP

and chromatin fiber. Nevertheless, this study illustrates the

crucial importance of explicit presentation of the charged

particles in the histone tails and the mobile ions in solution.

This principal advantage of our model should be preserved

in future studies.

It may be questioned whether the results of our simula-

tions are relevant to and can be compared with data for array

aggregation. The process of aggregation during an Mg2þ

titration experiment is known to be preceded by compaction

of individual arrays to a folded state (at ~1 mM Mg2þ) (41),

whereas interarray aggregation then follows at higher

concentrations. In the compact state, the linker DNA is

folded with limited flexibility. The 12-mer arrays with linker

length of 30 bp DNA can then be considered as a preaggre-

gated cluster of 12 NCPs. The major factor that then deter-

mines the interarray aggregation of such clusters is expected

to be the interactions between the nucleosomes of different

arrays as they approach each other. This process is very

similar to the NCP aggregation we model in the simulations.

Based on this consideration, it is clear that modeling of NCP

aggregation is highly relevant to the question of chromatin

fiber formation (i.e., interarray aggregation).

Importance of the detailed coarse-graining
in modeling salt-induced NCP aggregation

The NCP charged-sphere model used in this work encom-

passes a highly coarse description of the shape and charge

distribution of the core (excluding the tails) of the NCP,

i.e., the globular part of the histone octamer with ~147 bp

DNA wrapped around it. In reality, the shape of this core

is more like a flat cylinder with the majority of the negative

charges on the periphery of the cylinder jacket. The rationale

for our approach is the tremendous net charge of this particle,

which correspond to ~�236 e of the DNA þ globular part of

the histones with an additionalþ88 e in the flexible tails. The

electrostatic forces involved in the interaction between NCPs

are of long range. It is therefore expected that the general

qualitative properties of aggregation their dependence on

histone tail charge, as well as on the amount of small ions

present, should not be highly affected by the details of the
shape and charge distribution of the core particle. On the

other hand, to model the detailed structure of the ordered

NCP precipitate (an issue not addressed in this work),

a more refined NCP structure and distribution of charges

will be of importance. For example, in phase separation

from concentrated NCP solutions, liquid crystalline ordering

into various columnar packing has been observed (18,29,30).

Furthermore, in the folding of the individual chromatin

array, the details of the core model are also expected to be

highly relevant. Recent experimental studies have suggested

the importance of the wedgelike NCP shape inside the

so-called 30-nm chromatin fiber (38), as well as specific

functions of the so-called ‘‘acidic islets’’ in the globular

domain of the H2A histones, located on the top and bottom

of the NCP cylinder (69–71).

Given the approximate nature of our NCP model, we have

performed some control simulations to demonstrate the

importance of the charged-sphere approximation with respect

to the aggregation properties of the NCP system. Here, we

give an account of the most important aspects of our results

(see the Supporting Material for more details). A model of

the NCP core was developed that consisted of an inner neutral

sphere of diameter 7.0 nm modeling the histone octamer.

Around this central sphere, ~1.7 turns of DNA is wrapped.

DNA was described as connected negatively-charged beads

of 1.0 nm diameter. We also tested a model with a positively

charged histone core sphere and full DNA charges, and the

conclusions described below remained the same. The model

is further described and illustrated in the Supporting Material

(see Fig. S2). In this so-called sphere-bead NCP model, the

core takes the approximate shape of a cylinder, with the nega-

tive charges on the jacket and distributed in a manner similar

to that in the real system, albeit with the top and bottom of the

cylinder having hemispherical caps rather than flat surfaces.

We have assessed the most important aspects of the results

of the sphere NCP model, namely, that in the presence of diva-

lent ions (Mg2þ), the solution of NCPs aggregate, and that in

a similar system that has a reduction in tail charge, a reduced

aggregation propensity is observed. Indeed, the results from

simulations of this refined model display the same qualitative

features as in the sphere NCP model. Although the core-core

RDF for this new model is considerably broader and displays

two maxima, an effect that is a result of the shape and lower

symmetry compared to the spherical model, the qualitative

behavior is the same as in the sphere NCP model (see

Fig. 3S and Fig. 4S). The aggregates in the sphere-bead model

are less compact and more extended than in the sphere model,

and consequently, values of the integrated RDF are smaller.

However, as illustrated by representative snapshots, there is

a qualitative equivalence in the behavior of the two different

models (Fig. 3S and Fig. 4S). In summary, within our

approach, the following general observations are independent

of the details of shape and charge distribution of the NCP

core: 1), tail-mediated aggregation of NCPs is induced by

Mg2þ; 2), reduction of the tail charge (‘‘acetylation’’) reduces

Biophysical Journal 96(6) 2082–2094
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this aggregation propensity under similar conditions of Mg2þ

concentration; and 3), more Mg2þ is needed to induce aggre-

gation for ‘‘acetylated’’ NCP. All these observations are in

agreement with available experimental observations for

NCP and model nucleosomal array aggregation.

CONCLUSIONS

The approach described here captures two important features

of the NCP-NCP interaction necessary to describe the mech-

anism of salt-induced aggregation: 1), attractive ion-ion

correlation effects due to fluctuations in the ion cloud; and

2), attractive entropic and energetic tail bridging. These two

physical mechanisms are necessary to describe NCP interac-

tion. In the case of DNA, it is now well established that fluc-

tuation-induced dynamic ion correlation gives rise to an

attractive contribution to the force between DNA rods that

explains experimental aggregation (52,54,72). Consequently,

modeling of the multivalent ion-induced aggregation of NCPs

must include this mechanism. It is also very important to

incorporate flexible and charged histone tails, since their

bridging contributes decisively to NCP-NCP interaction

during attraction between adjacent DNA strands (44,73).

Experiments with nucleosomal arrays demonstrate that tails

relocate from mainly intranucleosome interaction with their

own core particle in the extended array at low salt to primarily

bridgelike internucleosomal interactions upon formation of

condensed secondary and tertiary chromatin aggregates

(41,74). Within the approximations of the coarse-grained

dielectric continuum model, the simulations allow generation

of the correct (within the model) equilibrium properties. There

is no need to reduce the charges on the NCP and on the tails in

this model. This sort of collective treatment of the polyelectro-

lyte and its counterions has been used in other and, from

a statistical mechanical point of view, less rigorous, polyelec-

trolyte models. The Manning counterion condensation theory

is based on this concept. Recent coarse-grained NCP/chro-

matin models (e.g. (47–49)) have used such ‘‘charge renorm-

alization,’’ assigning some effective values to the nucleosome

and tail charges. However, such a parameterized procedure

becomes redundant in a model like ours, which incorporates

explicit mobile counterions.

It is arguable that the model used in our approach suffers

from considerable simplification, in particular with regard to

the description of the shape of the nucleosome core, as well

as its primitive charge distribution. However, our prelimi-

nary results with a more refined model in this respect (details

of which are presented in the Supporting Material) show that

the general features and conclusions from the sphere model

are not affected by these approximations. In fact, the use

of this model, which can be considered the simplest possible

representation of the NCP that still incorporates the major

aspects of the electrostatics of the system, highlights the

strength in our current approach. By focusing on the simplest

aspect of the system, namely the phenomenal electrostatic
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charges in the system, the underlying physical mechanism

responsible for the nucleosome aggregation will be more

clearly spelled out. A stepwise refinement of the model,

the first step of which is the introduction of the sphere-

bead model, to be followed by the introduction of linker

DNA, can then enable a stepwise deepening of the under-

standing of the experimental behavior of the unique biopo-

lyelectrolyte system that is chromatin. The results of control

simulations of the more detailed sphere-bead model lend

support to this approach.

As shown in our previous work (44), the results for the

recombinant NCP model are in agreement with experimental

data reporting a sharp change of the second virial coefficient

in solutions of NCPs at salt concentration >50 mM NaCl

(15,16), which is caused by NCP-NCP interactions via

histone-tail cross-linking. In a similar way, in the presence

of a millimolar concentration of Mg2þ and low concentration

of monovalent salt, aggregation of NCPs has been observed

(13). Tailless nucleosomes do not show similar aggregation

properties (15), indicating the importance of an electrostatic

tail bridging mechanism in NCP aggregation.

From the simulation results, comparing the dependence

of tail behavior on tail modification, salt concentration,

and presence of Mg2þ between the systems with 10 NCPs

and those with a single NCP in the simulation cell, it

becomes possible to draw conclusions about the mechanism

of tail bridging and NCP-NCP attraction. In recent work

performed on solutions of linker-free recombinant NCPs

(16,17), it is argued that NCP-NCP interaction becomes

possible when (or after) the histone tails extend from the

NCP core. It is suggested that the tail extension occurs

due to salt screening, which leads to the dissociation of tails

from the NCPs (14–16). NMR data from an earlier work

(75) reported increased dissociation of the histone tails

from the chromatin array only when the salt concentration

is raised well above 200 mM NaCl. It is worthy of note

that aggregation and precipitation of chromatin was

observed under conditions where no dissociation of the tails

was registered (between 100 and 200 mM NaCl). This is in

agreement with experimental data obtained in the NCP

solutions (16,17) and with the results of our simulations.

We propose that tails can promote NCP-NCP interaction

through tail bridging only if the tail binding to the NCP

(either the host or the foreign NCP) is strong. The function

of salt (addition of KCl, presence of Mg2þ, or other multi-

valent cation) is to screen the mutual repulsion of the NCPs

and promote fluctuation-induced attraction. When repulsion

between the NCPs is screened by salt, but the tail-core inter-

action is still attractive, the gain in entropy due to the possi-

bility of tails sampling the volume outside the core makes

close contacts favorable. When the tail extension from the

core can occur more freely, in the case of reduction in the

positive charge of the tails, formation of NCP aggregates

becomes unfavorable, mainly due to the entropy decrease

upon aggregation.
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A positive correlation between the degree of acetylation and

transcriptional activity was established in early studies of chro-

matin (76,77). The fraction of chromatin with a high degree of

acetylation also showed higher solubility in moderate salt

(100–200 mM NaCl) and in millimolar concentrations of

MgCl2 (26,56,57), and differences in sedimentation coeffi-

cients (31,78). The acetylation of the histone tails does not

result in noticeable alteration of conformation, stability, or

dynamics of the nucleosome core particle itself (56,57). There-

fore, it was suggested that modification of the histone tails

either modulates interaction of the tails with linker DNA and

other nucleosomes or serves as a signal for the specialized

proteins. However, no detailed studies addressing the influ-

ence of histone modifications on the NCP-NCP interactions

have been carried out for systems of isolated NCPs. On the

other hand, the effects of histone tail-charge modifications

on interarray aggregation of 12-mer chromatin arrays, has

recently been studied (39,43). The general electrostatic effects

of tail-charge reductions on the Mg2þ-induced aggregation is

supported by our results for NCP aggregation. In our previous

work (44) using the same model of the NCP, we demonstrated

that salt-induced aggregation of NCPs is mediated by histone

tail bridging. Our results for the ‘‘acetylated’’ model show that

this tail bridging is attenuated upon reduction in histone tail

charge. To our knowledge, this work is the first theoretical

demonstration of the decisive contribution of histone tail-

charge modifications in the condensation of nucleosomes.
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modeling demonstrates that electrostatic attraction of nucleosomal
DNA is mediated by histone tails. Biophys. J. 90:4305–4316.

45. Muhlbacher, F., C. Holm, and H. Schiessel. 2006. Controlled DNA
compaction within chromatin: the tail-bridging effect. Europhys. Lett.
73:135–141.

46. Muhlbacher, F., H. Schiessel, and C. Holm. 2006. Tail-induced attrac-
tion between nucleosome core particles. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 74:031919.

47. Arya, G., Q. Zhang, and T. Schlick. 2006. Flexible histone tails in a new
mesoscopic oligonucleosome model. Biophys. J. 91:133–150.

48. Arya, G., and T. Schlick. 2006. Role of histone tails in chromatin
folding revealed by a mesoscopic oligonucleosome model. Proc. Natl.
Acad. Sci. USA. 103:16236–16241.

49. Sun, J., Q. Zhang, and T. Schlick. 2005. Electrostatic mechanism of
nucleosomal array folding revealed by computer simulation. Proc.
Natl. Acad. Sci. USA. 102:8180–8185.

50. Voltz, K., J. Trylska, V. Tozzini, V. Kurkal-Siebert, J. Langowski, et al.
2008. Coarse-grained force field for the nucleosome from self-consis-
tent multiscaling. J. Comput. Chem. 29:1429–1439.

51. Arya, G., and T. Schlick. 2007. Efficient global biopolymer sampling
with end-transfer configurational bias Monte Carlo. J. Chem. Phys.
126:044107.

52. Oosawa, F. 1968. Interaction between parallel rodlike macroions.
Biopolymers. 6:1633–1647.

53. Lyubartsev, A. P., and L. Nordenskiöld. 1995. Monte Carlo simulation
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