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Abstract

Introduction Respiratory syncytial virus (RSV) lower respiratory
tract disease is characterised by narrowing of the airways
resulting in increased airway resistance, air-trapping and
respiratory acidosis. These problems might be overcome using
helium-oxygen gas mixture. However, the effect of mechanical
ventilation with heliox in these patients is unclear. The objective
of this prospective cross-over study was to determine the
effects of mechanical ventilation with heliox 60/40 versus
conventional gas on respiratory system resistance, air-trapping
and CO2 removal.

Methods Mechanically ventilated, sedated and paralyzed
infants with proven RSV were enrolled within 24 hours after
paediatric intensive care unit (PICU)admission. At T = 0,
respiratory system mechanics including respiratory system
compliance and resistance, and peak expiratory flow rate were
measured with the AVEA ventilator. The measurements were
repeated at each interval (after 30 minutes of ventilation with
heliox, after 30 minutes of ventilation with nitrox and again after
30 minutes of ventilation with heliox). Indices of gas exchange

(ventilation and oxygenation index) were calculated at each
interval. Air-trapping (defined by relative change in end-
expiratory lung volume) was determined by electrical impedance
tomography (EIT) at each interval.

Results Thirteen infants were enrolled. In nine, EIT
measurements were performed. Mechanical ventilation with
heliox significantly decreased respiratory system resistance.
This was not accompanied by an improved CO2 elimination,
decreased peak expiratory flow rate or decreased end-
expiratory lung volume. Importantly, oxygenation remained
unaltered throughout the experimental protocol.

Conclusions Respiratory system resistance is significantly
decreased by mechanical ventilation with heliox
(ISCRTN98152468).

Introduction
Respiratory syncytial virus (RSV) is the most important causa-
tive agent of lower respiratory tract disease (LRTD) in infancy
[1]. Approximately 100,000 infants are annually admitted with
RSV-induced bronchiolitis in the USA, and the number of hos-
pitalizations is increasing [2]. Because of this, RSV-associated
disease imposes a major burden on health care resources [3].

There is no effective therapy against RSV available, prevention
can only be achieved through passive immunisation using
monoclonal antibodies [4]. RSV LRTD is pathophysiologically
characterized by sloughed necrotic epithelium, excessive
mucus secretion, bronchial mucosal oedema and peribron-
chial inflammation that contributes to airway obstruction
resulting in increased airway resistance with subsequent air-
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trapping and respiratory acidosis [5,6]. Although the majority
of infections run a mild disease course, mechanical ventilation
(MV) for up to 10 days is necessitated in approximately 2% to
16% of previously healthy hospitalised infants due to severe
lower respiratory tract infection including bronchiolitis or pneu-
monia [1,7,8].

Helium is an inert gas with a density that is one-seventh that of
air. In addition, carbon dioxide (CO2) diffuses more easily
through helium than through air [9]. With helium, a more lami-
nar flow is preserved in narrowed airways, resulting in lower
resistance to gas flow allowing for increased bulk flow [10].
Based on these properties, MV with heliox could be consid-
ered in mechanically ventilated infants with RSV LRTD. Its use
in these patients has been studied once but with inconclusive
results [11].

We hypothesized that the use of heliox in mechanically venti-
lated infants with RSV LRTD would result in decreased respi-
ratory system resistance (Rrs). In addition, MV with heliox
would result in less air-trapping defined by the relative change
in end-expiratory lung volume (EELV), and improved CO2
clearance. The objective of our study was to test this hypothe-
sis in a prospective, double cross-over intervention trial com-
paring heliox 60/40 with conventional gas (nitrox) using lung
function testing and electrical impedance tomography (EIT)
measurements.

Materials and methods
Patients
The study protocol (ISCRTN98152468) was approved by the
hospital's Institutional Review Board and written informed con-
sent was obtained from patients before enrollment.

Eligible for inclusion were infants younger than 12 months of
age with a virologically confirmed clinical diagnosis of RSV
LRTD (either a positive direct immunofluorescent assay or
ELISA) who were admitted to the nine-bed paediatric intensive
care unit (PICU) facility of the VU university medical center for
MV during the RSV seasons (autumn and winter) between
2005 and 2007. Infants were excluded if no informed consent
was obtained, fraction of inspired oxygen (FiO2) was more
than 0.4, corticosteroids were used prior to admission, they
were on high-frequency oscillatory ventilation or a haemody-
namically significant congenital heart defect (i.e. significant
left-to-right shunting with or without pulmonary hypertension)
was present.

Patients were in supine position, intubated with an uncuffed
endotracheal tube size 3.5 or 4.0 mm, and put on a time-
cycled, pressure-limited ventilation mode (Pressure Control,
AVEA ventilator, Cardinal Health, Yorba Linda, CA, USA).
Aims of ventilation were transcutaneously measured oxygen
saturation (SpO2) 88 to 92%, and partial pressure of arterial
carbon dioxide (PaCO2) 45 to 65 mmHg (if pH >7.25). Inspir-

atory times were fixed at 0.5 seconds, positive end-expiratory
pressure (PEEP) was set 1 to 2 cmH2O below total PEEP (i.e.
extrinsic PEEP + intrinsic PEEP). The flow-time curve was
observed thoroughly throughout the study period in each
patient to examine if expiration was complete in order to pre-
vent dynamic hyperinflation. Patients were sedated with mida-
zolam and morphine, paralysis was achieved using intravenous
rocuronium. Endotracheal suctioning was performed 30 min-
utes prior to the start of, but not during, the experimental pro-
tocol. Bronchodilators (either nebulized or intravenous) or
ketamine were not used before or during the study period.

Arterial blood samples were drawn from an arterial line to
determine PaCO2 and partial pressure of arterial oxygen
(PaO2). End-tidal carbon dioxide (ET-CO2) concentration, and
expiratory tidal volume (VTe) were measured at the airway
opening. ET-CO2 was measured using a side-stream Micros-
tream (Philips Medical Systems, Best, The Netherlands) and
VTe was measured with a proximal flow sensor connected to
the AVEA ventilator (Cardinal Health, Yorba Linda, CA, USA).
The ventilator is designed to detect which gas is used and
adjusts its pneumotachograph automatically in order to meas-
ure the correct VTe.

A chest radiograph was obtained and evaluated by one pedi-
atric radiologist in each patient prior to the start of the experi-
mental protocol to evaluate the presence of hyperinflation
(defined by a depression of the diaphragm below the sixth
anterior rib) or an infiltrate (described as opacities with irregu-
lar markings without loss of volume) [12].

Experimental protocol
The experimental protocol started within 24 hours of PICU
admission and lasted for 90 minutes. At four intervals (T = 0
(baseline), T = 30, T = 60, and T = 90 minutes) data were col-
lected and respiratory variables measured. At T = 0 and T =
60, patients were ventilated with nitrox. At T = 30 and T = 90,
patients were ventilated with heliox (helium 60%, oxygen
40%). Ventilator settings were kept constant throughout the
experimental protocol.

Positive inspiratory pressure (PIP), intratracheal pressure
(Ptrach), mean airway pressure (MAP), PEEP, SpO2, ET-CO2,
respiratory rate and VTe were measured. Ptrach was measured
with a pressure transducer placed at the distal end of the
endotracheal tube. Blood samples were drawn for the deter-
mination of the PaO2, PaCO2 and pH. Static compliance
(Cstat), Rrs and peak expiratory flow rate (PEFR) were meas-
ured using the AVEA ventilator (Cardinal Health, Yorba Linda,
CA, USA) according to the manufacturer's manual. In sum-
mary, Rrs was defined by the ratio of the airway pressure differ-
ential to the inspiratory flow 12 ms prior to the end of
inspiration. Lung resistance (Rlung) was defined by the ratio of
the tracheal pressure differential to the inspiratory flow 12 ms
prior to the end of inspiration.
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EIT measurements
At each interval, EIT measurements were made using the Göt-
tingen Goe-MF II EIT system (Cardinal Health, Yorba Linda,
CA, USA). Sixteen electrodes (Blue Sensor BR-50-K, Ambu,
Denmark) were applied circumferentially around the infant's
chest at the mammary line. A 30 second reference measure-
ment at 13 Hz scan rate was recorded. All further measure-
ments were referenced to this measurement. All other
measurements were made at a scan rate of 44 Hz for 180 sec-
onds. A 5 mA peak-to-peak, 50 kHz electrical current was
injected at each adjacent electrode pair, and the resultant
potential differences were measured at the remaining adjacent
electrode pairs. Subsequently, all adjacent electrode pairs
were used for current injection, thus completing one data
cycle. The impedance map was built using the back-projection
image reconstruction algorithm [13]. It calculates the relative
impedance ΔZ, defined by (Zinst - Zref)/Zref (where Zinst is the
instantaneous local impedance and Zref the reference imped-
ance, determined from each cycle of current injections and
voltage measurements in each pixel).

EIT data analysis
Both the respiratory and cardiac components of the EIT signal
were identified in the frequency spectra generated from all EIT
measurements (Fourier transformation). The EIT data was low-
pass filtered with a cut-off frequency of 2 Hz to eliminate small
impedance changes synchronous with the heart beat [14].

The calculations performed on the sums of values from all pix-
els of the 32 × 32 pixel matrix EIT image were described as
'global'. In addition, sums of values from the left and right lung
regions were described separately, and the entire EIT image
was divided into 64 regions-of-interest (32 left and 32 right
lung) from anterior to posterior as previously described by Fre-
richs and colleagues [15]. Ventilation-induced tidal volume
(ΔZVT) was quantified by measuring the relative ΔZ from the
highest point at end inspiration to the lowest point at end expi-
ration, and an average ΔZ was calculated from multiple
breaths. Changes in ΔZVT were calibrated to volume using the
known VT. The relative change in end-expiratory lung volume
(relative ΔZEELV) was determined by measuring the median
impedance from the lowest point at expiration during the sam-
pling time (ZEELV) [16]. The relative ΔZEELV was normalized to
volume (relative ΔEELV in ml) by multiplying the median imped-
ance with the ratio VT/ΔZVT.

Calculation of respiratory indices and dead space
The oxygenation index (OI) was calculated as follows: (FiO2 ×
100 × MAP in cmH2O)/PaO2 in mmHg. The ventilation index
(VI) was calculated as follows: (PaCO2 in mmHg × respiratory
rate × (PIP - PEEP in cmH2O))/1000. VI is used as determi-
nant for CO2 elimination because the respiratory rate, PIP, and
PEEP were kept constant throughout the study period [17].
Dead space (VD) was calculated according to the Bohr-Eng-
hoff equation: VD = VTe × (1 - (PET-CO2/PaCO2)) [18].

Power analysis
As no data on relative ΔEELV in mechanically ventilated infants
with RSV LRTD were available, we performed a power analy-
sis after inclusion of all patients using the paired t-test.

Statistical analysis
The data were analyzed with one-way repeated measures
analysis-of-variance (ANOVA) with Tukey post-hoc testing
between T = 0 versus T = 30, T = 30 versus T = 60, and T =
60 versus T = 90. P < 0.05 was accepted as being statistically
significant. Data are expressed as mean ± standard deviation
unless stated otherwise. Statistical analysis was performed
using SPSS version 15.0 (Chicago, IL, USA).

Results
Thirteen patients were included in 11 EIT studies; good-quality
EIT signals were obtained from nine patients. Descriptive data,
ventilator settings and baseline data of respiratory system
mechanics and gas exchange are summarized in Table 1.
Although three patients were born prematurely (one at 32
weeks and two at 36 weeks' gestation), none of the patients
had chronic lung disease. Hyperinflation was present in 10
patients, four of these patients also had infiltrates. Ten patients
had hypercapnia (PaCO2 >45 mmHg) and seven infants had
PaO2/FiO2 less than 200 at baseline (T = 0). Tidal volume
remained constant throughout the experiment (Figure 1). Leak-
age around the uncuffed endotracheal tube was less than 5%
in all patients.

Mechanical ventilation with heliox had an overall significant
effect on Rrs (P < 0.001; Figure 2). Rrs decreased from 69.1 ±
6.9 cmH2O/L/sec at T = 0 to 50.2 ± 6.0 cmH2O/L/sec (P =
0.020) after 30 minutes of ventilation with heliox. After reintro-
duction of nitrox, Rrs increased significantly to 70.7 ± 7.2
cmH2O/L/sec (P = 0.016) but decreased again to 42.9 ± 3.3
cmH2O/L/sec (P = 0.001) when heliox was reintroduced.

Figure 1

Course of tidal volumeCourse of tidal volume.
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Rlung was not significantly influenced by MV with heliox (Figure
3).

PEFR was not significantly improved by MV with heliox com-
pared with nitrox (P = 0.520; Figure 4). Cstat was 1.9 ± 0.4 L/
cmH2O at T = 0 and not significantly different throughout the
study (P = 0.214; Figure 5).

The mean relative ΔEELV ± standard deviation at T = 0 was 76.6
± 15.1 ml. With an estimated reduction of 25% with heliox,
nine patients were needed to recruit in order to detect a sta-
tistically significant difference with α 0.05 and β 0.90. The
degree of airtrapping as defined by the relative ΔEELV in ml was
overall not significantly reduced by heliox (P = 0.493; Figure
6). This was due to differences in response to MV with heliox.
Five patients showed a reduction in relative ΔEELV when heliox
was introduced, and when conventional gas was reintroduced
relative ΔEELV increased in only three patients (Table 2). There
were also patients who had an increase of relative ΔEELV with

heliox that was either reversed or increased when conven-
tional gas was reintroduced.

To investigate if a time-dependent effect of heliox could be
found, the change in relative ΔEELV was correlated with the
change in Rrs for T = 30 to T = 0 (R2 0.068, P = NS), T = 60
to T = 30 (R2 0.110, P = NS) and T = 90 to T = 60 (R2 0.498,
P = 0.01).

Fractional ventilation (i.e. the distribution between left and right
lung), as well as the center of ventilation of the left and right
lung, also remained constant throughout the study period
(Table 3).

Table 4 summarizes the effect of mechanical ventilation with
heliox on indices of gas exchange and VD/VT. Elimination of
CO2 defined by the VI (P = 0.661), as well as a reduction in
VD/VT (P = 0.929) was not positively influenced by MV with
heliox. Importantly, oxygenation as defined by the OI (P =

Table 1

Descriptive data of the study population, ventilator settings and baseline characteristics of gas exchange and respiratory system 
mechanics

Pt Age 
(weeks)

Gestational 
age

(weeks)

Weight 
(kg)

Chest 
radiograph 

appearances

Baseline 
PaCO2 
(mmHg)

Baseline 
PaO2/FiO2 

1
PIP

(cmH2O)
PEEP

(cmH2O)
Baseline Cstat

(mL/cmH2O/kg)
Baseline Rrs

(cmH2O/L/sec)
Baseline 

PEFR
(L/min)

Patients without (full) EIT studies

1 11 Term 6.0 Hyperinflation + 
infiltrate

56 168 27 6 0.67 102.2 5.0

2 5 36 3.4 Infiltrate 46 346 26 10 0.29 92.9 13.0

3 3 Term 4.8 Hyperinflation 59 195 28 6 0.21 80.0 5.0

4 3 Term 3.7 Hyperinflation + 
infiltrate

59 188 26 6 0.27 58.1 4.0

Patients with full EIT studies

5 4 Term 3.8 Hyperinflation + 
infiltrate

57 57 34 8 0.26 38.4 10.0

6 4 Term 4.3 Hyperinflation + 
infiltrate

75 265 32 5 0.47 28.6 5.0

7 23 Term 10.0 Hyperinflation 43 343 31 6 0.40 93.7 6.0

8 5 36 3.2 Infiltrate 35 140 32 7 0.31 53.6 5.0

9 15 Term 6 Hyperinflation 55 213 31 7 0.50 66.4 6.0

1
0

6 Term 5.4 Hyperinflation 49 418 29 7 0.19 94.8 7.0

1
1

11 32 3.5 Hyperinflation 68 295 33 5 0.29 51.0 4.0

1
2

6 Term 4.1 Hyperinflation 58 165 30 5 0.24 N/A N/A

1
3

23 Term 7.5 Hyperinflation 44 170 24 11 0.40 69.8 6.0

1Fraction of inspired oxygen (FiO2) 0.4 in all patients.
Cstat = static compliance; EIT = electrical impedance tomography; N/A = not available; PaCO2 = partial pressure of arterial carbon dioxide; PaO2 
= partial pressure of arterial oxygen; PEEP = positive end-expiratory pressure; PEFR = peak expiratory flow rate; PIP = positive inspiratory 
pressure; Pt = patient; Rrs = respiratory system resistance.
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0.477) and alveolo-arterial oxygen gradient (Aa-DO2)
remained unaltered throughout the study period.

Discussion
The major finding of our study is that MV of infants with RSV
LRTD with heliox 60/40 resulted in a significant reduction of
the respiratory system resistance.

Increased Rrs resulting from airway narrowing due to sludging,
excessive mucus secretion, edema, and possible bronchocon-
striction has been described in mechanically ventilated infants
with RSV LRTD [19-23]. Measures to alleviate increased Rrs
such as nebulisation of bronchodilators or nitric oxide have

yielded inconclusive results [20,22,24,25]. However, these
studies are methodologically different compared with ours. For
instance, we excluded patients with chronic lung disease or
congenital heart disease.

The decrease in Rrs led not to an improved CO2 clearance as
defined by the VI or a reduction in PEFR. Some explanations
for this may be proposed. First, it is uncertain how much of the
observed reduction in Rrs could be partitioned to the ventilator
circuit or the endotracheal tube because no endotracheal suc-
tioning was performed during the study. Increased mucus pro-
duction during RSV LRTD is common, and may further
obstruct the airways [26]. As the AVEA ventilator is able to cal-
culate the Rlung, we also studied if MV with heliox resulted in a
reduction in Rlung, but were unable to demonstrate this. This
could mean that MV with heliox does not affect the resistance
of the small airways of the infants; it cannot be ruled out, how-

Figure 2

Effect of mechanical ventilation with heliox on respiratory system resist-anceEffect of mechanical ventilation with heliox on respiratory system resist-
ance. Data are expressed as mean ± standard deviation. * P < 0.05 T = 
30 vs T = 0; ** P < 0.05 T = 60 vs T = 30; *** P < 0.05 T = 90 vs T = 
60.

Figure 3

Effect of mechanical ventilation with heliox on lung resistanceEffect of mechanical ventilation with heliox on lung resistance. Data are 
expressed as mean ± standard deviation.

Figure 4

Effect of mechanical ventilation with heliox on peak expiratory flow rateEffect of mechanical ventilation with heliox on peak expiratory flow rate. 
Data are expressed as mean ± standard deviation.

Figure 5

Effect of mechanical ventilation with heliox on static complianceEffect of mechanical ventilation with heliox on static compliance. Data 
are expressed as mean ± standard deviation.
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ever, that the resolution of the AVEA's signal of Rlung (1 deci-
mal) might not be sufficient enough to detect true differences
in Rlung in small children with little tidal volume. Second, the
measured Rrs in our patients is lower than previously reported
in mechanically ventilated infants with RSV LRTD designated
to have an obstructive disease phenotype [20,22,27]. This
could indicate that our patients had mild-to-moderate airway
obstruction, although hyperinflation suggesting airway
obstruction on chest radiograph was present in all but one
patient. Unfortunately, there is no gold standard for the radio-
logical definition of hyperinflation especially in mechanically

ventilated infants. Furthermore, the degree of air-trapping
might vary between patients, indicating that severe RSV LRTD
necessitating MV is a heterogeneous disease in which
patients express to a varying degree both restrictive and
obstructive disease characteristics explaining why some
patients had a PaO2/FiO2 ratio of less than 200 or a Cstat less
than 0.3 ml/cmH2O/kg in our study. This assumption opposes
the previously proposed dichotomization of RSV LRTD by
Hammer and colleagues, who have observed that mechani-
cally ventilated infants with RSV LRTD showed either a dis-
ease pattern compatible with acute respiratory distress
syndrome (ARDS) or a disease pattern characterized by
increased airway resistance [27]. Although our study was not
designed to investigate differences in clinical phenotype, we
would dare to challenge this dichotomy in clinical phenotype
for several reasons. Hammer and colleagues included prema-
turely born infants with chronic lung disease and infants with
congenital heart disease [27]. Crs is significantly lower in these
patients compared with healthy infants [28-30]. In addition,
the term 'bronchiolitis' to describe RSV LRTD is strictly speak-
ing a histopathologic diagnosis and hampered by universal dif-
ferences in its clinical interpretation [31]. Controversy exists
about whether differences in parameters for gas exchange
correlate with clinical phenotype [32,33].

The lack of improved CO2 clearance in our study is compatible
with the observations by Gross and colleagues [11]. They
were unable to demonstrate a beneficial effect on PaCO2 of
various heliox mixtures (ranging from 50%/50% to 70%/30%)
compared with T = 0 (PaCO2 45 ± 10 mmHg) in 10 mechan-
ically ventilated infants with moderate severe RSV LRTD. It
should be mentioned, however, that our study population was
probably more ill than theirs based on a higher T = 0 PaCO2
and lower PaO2/FiO2 ratio. Previously, we did observe a ben-
eficial effect of heliox in a small infant with obstructive airway

Figure 6

Effect of mechanical ventilation with heliox on relative change in end-expiratory lung volumeEffect of mechanical ventilation with heliox on relative change in end-
expiratory lung volume. Data are expressed as mean ± standard devia-
tion.

Table 2

Response (%) of nine patients to mechanical ventilation with heliox or conventional gas as determined by EIT studies

Patient Difference T = 30 to T = 0
(after heliox)

Difference T = 60 to T = 30
(after nitrox)

Difference T = 90 t0 T = 60
(after heliox)

5 0.5 12.9 -6.4

6 5.0 13.8 -7.7

7 5.1 4.5 -3.8

8 -39.0 12.4 -62.2

9 -19.6 20.3 2.3

10 -4.6 7.7 -21.9

11 0.0 -13.7 -7.5

12 0.3 4.9 0.0

13 42.1 -6.9 -3.8

Negative values indicate a decrease in relative change in end-expiratory lung volume (relative ΔEELV).
EIT = electrical impedance tomography.
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disease [34]. This disparity in results cannot easily be
explained except for the fact that this particular patient had
severe respiratory acidosis.

EIT is a non-invasive bedside technique to assess global and
regional lung volumes that has primarily been used in acute
lung injury or ARDS [35]. Hinz and colleagues have shown
that compared with the validated nitrogen-washout method it
is an appropriate tool to study EELV in critically ill patients
[16]. To our knowledge, the use of EIT in the determination of
the dynamic process of air-trapping in patients with small air-
way disease has not been used before, although its use in this
disease condition can be rationalised. In our study, MV with
heliox did not result in a universal reduction of air-trapping as
defined by the relative ΔEELV. However, there were some
patients who seemed to benefit from MV with heliox as they
did show a reduction in relative ΔEELV that was reversed by MV
with conventional gas. Several explanations for the non-univer-
sal reduction in relative ΔEELV may be proposed. First, not all
alveoli have the same degree of hyperinflation due to the dif-
ference in time constants throughout the lung, indicating that
hyperinflation is a regional phenomenon rather than a global
problem [36]. This would implicate that the technique of EIT
may be insufficient to detect regional differences in viral-
induced small airway disease due to heterogeneity of the dis-
ease, a problem that can be overcome by increasing the reso-

lution of the EIT signal. In favor of EIT, however, is the study by
Adler and colleagues showing that with EIT dynamic hyperin-
flation could be adequately monitored [37]. Second, during
the study no endotracheal suctioning was performed.
Increased mucus production could obstruct the airways,
resulting in the collapse of alveoli that is reflected by a
decrease in EELV. As tidal volume remained constant through-
out the experiment, we think that not performing endotracheal
suctioning did not influence our results (Figure 5). Third, if
there is a difference in expression of clinical phenotype of RSV
LRTD a universal response in relative ΔEELV would not be
expected. Some patients responded with a decrease in rela-
tive ΔEELV whereas others did not in our study. Also, redistribu-
tion of ventilation within each lung or between the left and right
lung was not significantly influenced by MV with heliox. This is
in line with a heterogeneous clinical phenotype of RSV LRTD.

There are some limitations to our study that should be men-
tioned. First, the small sample size of our study. This sample
size does not allow discrimination between responders and
non-responders nor a categorization of clinical phenotype
based on chest radiographs, but this should be the subject of
further research. Second, patients were paralyzed throughout
the study, thus prohibiting spontaneous breathing and mucus
clearance by the patient itself. We choose to do so to elimi-
nate any confounding effect of spontaneous breathing on the

Table 3

Effect of mechanical ventilation with heliox on fractional ventilation, and center of ventilation as determined by electrical 
impedance tomography measurements

Nitrox
(T = 0)

Heliox
(T = 30)

Nitrox
(T = 60)

Heliox
(T = 90)

Overall
P value

Fractional ventilation

Left lung (%) 50.8 ± 11.0 49.0 ± 10.9 50.1 ± 10.2 49.6 ± 11.2 0.65

Right lung (%) 49.2 ± 11.0 51.0 ± 10.9 49.9 ± 10.2 50.4 ± 11.2 0.65

Center of ventilation

Left lung (%) 44.1 ± 8.0 42.8 ± 7.5 44.1 ± 7.7 43.6 ± 6.9 0.54

Right lung (%) 42.7 ± 6.4 41.6 ± 6.3 42.9 ± 7.0 43.0 ± 7.3 0.76

Data are expressed as percentages.

Table 4

Effect of mechanical ventilation with heliox on parameters for gas exchange and dead-space

Nitrox
(T = 0)

Heliox
(T = 30)

Nitrox
(T = 60)

Heliox
(T = 90)

Overall
p – value

OI 7.3 ± 6.0 6.8 ± 2.6 6.1 ± 2.1 6.6 ± 1.0 0.477

Aa-DO2 155 ± 135 131 ± 33 133 ± 68 134 ± 28 0.507

VI 44.8 ± 22.2 46.1 ± 22.6 48.3 ± 22.6 45.2 ± 18.9 0.601

VD/VT 0.20 ± 0.09 0.21 ± 0.11 0.20 ± 0.08 0.20 ± 0.11 0.929

Data are expressed as mean ± standard deviations.
Aa-DO2 = alveolo-arterial oxygen gradient; OI = oxygenation index; VI = ventilation index; VD/VT = dead-space/tidal volume ratio.
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degree of dynamic hyperinflation in order to truly assess the
effect of MV with heliox. However, our findings require re-eval-
uation in spontaneously breathing mechanically ventilated
infants. Supportive therapy maintaining spontaneous breath-
ing could very well be a key element while awaiting therapeutic
modalities for mechanically ventilated infants with RSV LRTD
[38]. Third, the measurements of our study were not blinded
because connection of the heliox and the measurements were
conducted by one investigator (MK). However, this might have
introduced measurement bias. Fourth, ventilation with heliox
may have influenced the tidal volume measurements of the
AVEA ventilator. The AVEA is equipped with the Bicore
CP100™ pulmonary mechanics monitor that has been vali-
dated previously [36,39]. Finally, the AVEA performs in a sim-
ilar way with respect to tidal volume measurement when heliox
is used [40,41].

Conclusions
MV with heliox significantly reduced Rrs in mechanically venti-
lated infants with RSV LRTD with a heterogenous effect on the
degree of hyperinflation and CO2 elimination. These findings
warrant further study in order to identify a subgroup of
mechanically ventilated infants with RSV LRTD who might
benefit from MV with heliox.
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Key messages

• MV with heliox decreases respiratory system resistance 
in RSV LRTD.

• MV with heliox does not reduce air-trapping in RSV 
LRTD.

• MV with heliox does not improve gas exchange in RSV 
LRTD.

• RSV LRTD may actually be a heterogeneous disease.
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