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Abstract

Introduction Non-invasive ventilation (NIV) with a helmet device
is often associated with poor patient-ventilator synchrony and
impaired carbon dioxide (CO,) removal, which might lead to
failure. A possible solution is to use a high free flow system in
combination with a time-cycled pressure valve placed into the
expiratory circuit (HF-BiPAP). This system would be
independent from triggering while providing a high flow to
eliminate CO.,.

Methods Conventional pressure support ventilation (PSV) and
time-cycled biphasic pressure controlled ventilation (BiVent)
delivered by an Intensive Care Unit ventilator were compared to
HF-BiPAP in an in vitro lung model study. Variables included
delta pressures of 5 and 15 cmH2O, respiratory rates of 15 and
30 breaths/min, inspiratory efforts (respiratory drive) of 2.5 and
10 cmH20) and different lung characteristics. Additionally, CO,
removal and noise exposure were measured.

Results Pressurization during inspiration was more effective
with pressure controlled modes compared to PSV (P < 0.001)
at similar tidal volumes. During the expiratory phase, BiVent and
HF-BiPAP led to an increase in pressure burden compared to
PSV. This was especially true at higher upper pressures (P <
0.001). At high level of asynchrony both HF-BiPAP and BiVent
were less effective. Only HF-BiPAP ventilation effectively
removed CO2 (P < 0.001) during all settings. Noise exposure
was higher during HF-BiPAP (P < 0.001).

Conclusions This study demonstrates that in a lung model, the
efficiency of NIV by helmet can be improved by using HF-BiPAP.
However, it imposes a higher pressure during the expiratory
phase. CO2 was almost completely removed with HF-BiPAP
during all settings.

Introduction

Non-invasive ventilation (NIV) has been increasingly used in
intensive care patients [1-7]. Problems with the commonly
used interfaces of the NIV application include air leakage [8,9],
patient discomfort [10], and pressure-related ulcerations of
the nose [11]. All of these problems can limit the duration of
NIV and account for failures [12]. Navalesi and colleagues [9]
demonstrated that interface design in NIV is important with

regard to a patient's tolerance and the time that NIV can be
applied.

A new NIV interface, the helmet, has been tested in different
clinical situations [13-16]. The helmet is associated with a bet-
ter tolerance and a lower rate of interface-associated compli-
cations [14]. However, due to the large collapsible and
compliant chamber that encompasses the patient's head, the

ANOVA: analysis of variance; BiVent: time-cycled pressure controlled switching between two continuous positive airway pressure levels; CO,: car-
bon dioxide; CPAP: continuous positive airway pressure; HF-BiPAP: high flow biphasic positive airway pressure; NIV: non-invasive ventilation; PEEP:
positive end-expiratory pressure; PSV: pressure support ventilation; PTP: pressure time product.
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helmet impairs patient-ventilator synchrony with conventional
pneumatic systems [17,18]. Furthermore, it reduces the work
of breathing less effectively than conventional facial masks do
[17,19].

A further problem with the helmet is related to the insufficient
removal of carbon dioxide (CO,). This issue is especially prob-
lematic during positive pressure ventilation (PSV) [19,20]. The
helmet may impair gas exchange and increase the work of
breathing. In addition, increases in water vapour with low flows
[21] and temperature may increase discomfort. To overcome
these problems, we recently developed a specially designed
system with a high free flow source connected to the inspira-
tory limb of the helmet. The device has a time-cycled valve
positioned on the expiratory limb. The valve provides biphasic
positive airway pressure (HF-BiPAP). This device is easy to
handle and provides two different pressure levels. Overall, it
might improve patient comfort and maximize CO, washout.

This study compared HF-BiPAP with PSV and biphasic posi-
tive airway pressure (BiVent). These modalities were delivered
by a high performance conventional ventilator using the helmet
as an interface. The study was performed using a lung model
capable of spontaneous breathing. The model mimicked nor-
mal, restrictive, and obstructive respiratory patterns.

Materials and methods

Equipment and setup

NIV interface

Measurements were performed with a helmet (4Vent, Risch,
Medical GmbH, Kernen, Germany) placed on a mannequin
head (Airway Management Trainer, Laerdal Medical, Sta-
vanger, Norway) connected to a breathing simulator (ASL
5000™, Ingmar Medical Ltd., Pittsburgh, PA, USA; Figure 1).
Two underarm laces attached to a ring at the lower side of the
helmet prevented it from lifting when inflated. A plastic collar,
fitted around the neck, prevented leakage during ventilation.
Inspiratory and expiratory tube connectors were fitted to the
lower part of the helmet.

Modes of ventilation and ventilator tested

We compared PSV and BiVent delivered by a conventional
high-performance mechanical ventilator (Servo-i Maquet Criti-
cal Care AB, Solna, Sweden) with the new HF-BiPAP.

PSV was applied in NIV mode with the steepest rise time and
the cycle off at 25% of peak inspiratory flow. In the NIV-mode,
trigger sensitivity is adjusted automatically.

BiVent was performed with a time-cycled switch between the
two continuous positive airway pressure (CPAP) levels. This
setting is comparable with BiPAP/airway pressure release
ventilation. The steepest rise time was chosen and no supple-
mentary pressure support of the spontaneous breaths was
applied.
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Setup for the study of the HF-BiPAP system. The inspiratory tube was
directly connected to the hospital's gas supply via a flow meter, while
the expiratory tube was connected to the HF-BiPAP. During conven-
tional PSV and BiVent, the inspiratory and expiratory tubes were con-
nected to the ventilator. BiVent = time-cycled pressure controlled
switching between two continuous positive airway pressure levels; HF-
BiPAP = high flow biphasic positive airway pressure; PSV = pressure
support ventilation.

HF-BiPAP was performed using a free continuous flow (air
and/or oxygen) system delivered by a Venturi system (or other
gas delivery systems) connected to the inspiratory limb of the
helmet. There was a dedicated device (BiPulse Ventilator,
DIMAR, Mirandola, ltaly) with a pneumatic time-cycled expira-
tory valve that was able to transform classic free continuous
flow CPAP techniques into biphasic positive airway pressure
(Figure 1). The device is composed of a rotating pneumatic
valve, two pneumatic timers, and one pneumatic interrupter.
The rotating pneumatic time-cycled valve alternates flow
between the two outlets. Its geometrical spherical shape
makes it impossible for the valves to close completely, even in
the absence of an external pneumatic energy supply. Even if
the valve is blocked, the sum of the two areas for flow delivery
around the spherical valve is equal to the full area in each posi-
tion (1/2 + 1/2 =1, 1/3 + 2/3 =1 etc). The pneumatic inter-
rupter is activated by a time-cycled increase in pneumatic
pressure. This pressure is delivered by compressed air/oxygen
from the wall or external tank and does not require electrical
power. The pneumatic interrupter modulates the pressure on
a thin membrane by means of a 'pin valve', which is able to
modify the valve's position: the higher the diameter of the pin
valve, the less time needed to activate the valve (and vice
versa). The pneumatic valve's flow area is 2565 mm2. The auto-
positive end-expiratory pressure (PEEP) generated by the
valve is directly proportional to the flow passing throughout the
system. Therefore, small flow adjustments were necessary in
order to reach the target PEEP. The PEEP was generated by
a specific Automatic Pressure Limited valve (DIMAR, Miran-



dola, ltaly), which can be externally regulated by modification
of the internal lumen's flow resistance.

Lung model

We used a lung model capable of simulating spontaneous
breathing (ASL 5000™, Ingmar Medical Ltd., Pittsburgh, PA,
USA). This active servo lung consisted of an electrically driven
pneumatic lung simulator that allowed for adjustment of the
tidal volume, respiratory rate, compliance, resistance, inspira-
tory effort, inspiratory to expiratory ratio, and the pattern of the
inspiration (e.g. rise time and plateau). During the study, data
were gathered by sensors placed in the respiratory circuit (Fig-
ure 1, described below), not by the lung model.

Study protocol

Ventilatory settings

The respiratory rate during PSV followed the rate set by the
lung model. In the case of BiVent and HF-BiPAP, it was fixed
on the device at 15 and 30 breaths per minute. For both con-
trolled modes of ventilation an inspiratory:expiratory ratio of
1:1 was chosen.

An additional setting with BiVent and HF-BiPAP cycled at a
rate of 15 breaths per minute, while the lung model at a respi-
ratory rate of 30 breaths per minute was measured to simulate
extreme asynchrony during the time cycled ventilator modes.

The lower pressure level (P1) was kept constant at a target of
8 cmH,O. The A pressure above P1 was set to 5 and 15
cmH,0. There was no free adjustable flow in PSV/BiVent. For
HF-BiPAP the flow was set at about 60 I/minute.

Lung model setting

We tested the following conditions: normal lung (normal com-
pliance of 90 ml/cmH,O and resistance of 3 cmH,O/l);
restrictive lung (low compliance of 30 ml/cmH,O, normal
resistance of 3 cmH,O/l); obstructive lung (normal compli-
ance of 90 ml/cmH,0, high resistance of 15 cmH,O/I).

Measurements were performed at two different inspiratory
efforts (low: 2.5 and high: 10 mbar) at a respiratory rate of 15
and 30 breaths per minute. CO, was inflated at 200 ml/
minute.

Measurements

Respiratory mechanics

The ventilator was connected by standard disposable ventila-
tor tubes (B&P Beatmungsprodukte GmbH; Neunkirchen,
Germany). Gas flow was measured with a pneumotachometer
(Fleisch II; Fleisch; Lausanne, Switzerland) connected to the
inspiratory side of the helmet (Figure 1). The signals were inte-
grated to obtain volume during off-line evaluation. The pneu-
motachometer was calibrated by a mass flow meter (TSI 4040
D; TSl Inc.; Shoreview, MN, USA).
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Airway pressure was measured at the inspiratory side before
the helmet and at the level of the trachea with differential pres-
sure transducers (Sensortechnics; Puchheim, Germany). The
transducers were adjusted meticulously at zero flow before
each measurement. Additionally the start and end points of
inspiration were transferred from the lung model via a digital
output (5V TTL - signal) in order to synchronize the data. All
signals were sampled at a sampling rate of 100 Hz and digi-
tised via an analogue digital converter (NI-USB 6008, National
Instruments, Austin, TX, USA) with a full 12-bit resolution
when sampling multiple channels. The acquired signals were
displayed and stored online on a standard personal computer
using custom-made data acquisition software (BreathAssist
V.1.02) programmed LabVIEW™ (National Instruments, Aus-
tin, TX, USA).

Carbon dioxide measurements

Measurements of CO, removal were performed separately.
CO, was injected into the lung at 200 ml/minute via a side port
connected to the lung (Figure 1). The resulting CO, concen-
tration within the helmet was measured continuously (CS/3,
Datex-Engstrém, Helsinki, Finland) (Figure 1). The CO, con-
centrations for each setting were acquired during steady-state
conditions after a wash-in phase [20].

Noise exposure

Noise measurements were performed separately. Prior to test-
ing each setting (e.g. lung condition and respiratory rate) we
measured a baseline noise level with and without activation of
the lung simulator.

Noise exposure was evaluated by a sound level meter (SE
322, Volicraft, Conrad, Electronics, Hirschau, Germany)
placed within the helmet near the mannequin's ear. The sensor
acquired the noise level at a sampling rate of 10 Hz. Measure-
ments were transferred online to a personal computer via a
serial interface.

Data analysis

The actual lower, upper, and mean pressures and tidal vol-
umes within the helmet were calculated at all settings. Addi-
tionally, the airway pressures and tidal volumes delivered to
the lung were calculated, as well as the following pressure
time products (PTP) throughout the respiratory cycle based on
the inspiratory signal of the active lung (Figure 2): PTPpggp,
which is the PTP caused by a pressure drop below PEEP/P1
during inspiration; PTPinsp, which is the PTP above PEEP/P1
during the inspiratory phase; and PTPexp, which is the PTP
above PEEP/P1 during the expiratory phase.

Maximum and minimum CO, concentrations as well as peak,
minimum, and mean noise exposures were measured sepa-
rately during all conditions. All data was gathered and analyzed
using custom-made software programmed with LabVIEW™
(National Instruments, Austin, TX, USA). Commercially availa-
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Helmet flow (I/min), helmet pressure (Paw) and muscle pressure (Pmus) tracings during helmet non-invasive ventilation. Td (Trigger delay) indicates
the time between the onset of Pmus (T,) and the onset of ventilator assistance. Pressure time products (PTP) were calculated from the time
between the onset of inspiration and the pressure below PEEP (PTPpgep), the pressure above positive end-expiratory end pressure (PEEP) from
onset to the end of inspiration (PTPinsp) as well as for the expiratory phase (PTPexp). Note: As the lower pressure represents the target pressure,
PTPexp was calculated as the pressure time product beyond PEEP/P1 in order to calculate the extra pressure imposed due to poor synchronization.
Tracings were measured during pressure support ventilation (normal lung, respiratory rate 30 bpm, A pressure 15 cmH,0).

ble software was also used (Statistica 8.0, Statsoft, Inc., and
Microsoft Excel).

Statistical analysis

For all conditions, 15 measurements were obtained. The data
was presented as mean t standard deviation (with median
and 25th and 75th percentiles when necessary). A multivariate
analysis (Wilks' Lambda test of multivariate independence)
was performed to detect significant differences between the
different experimental conditions. For measurements with high
discrepancy between cycling rate (rate of 15 breaths per
minute) and respiratory rate (rate of 30 breaths per minute)
during HF-BiPAP and BiVent Friedman-analysis of variance
(ANOVA) and Wilcoxon tests were used as well as Kruskal-
Wallis-ANOVA for the analysis of medians were performed. A
P value less than or equal to 0.05 was considered to be sig-
nificant.

Results
Figure 3 shows an original tracing of flow and pressure during

HF-BIPAP, BIVENT, and PSV at the helmet and airway level.
Pressurization differed due to fixed inspiratory timing. During
HF-BiPAP, there was a constant free inspiratory flow between

Page 4 of 14

(page number not for citation purposes)

60 and 70 L/minute. Overall, the mean lower pressures
(PEEP/P1) were 8.3 + 0.4 cmH,O (PSV), 8.3 + 0.6 cmH,O
(BiVent), and 8.4 + 0.7 cmH,O (HF-BiPAP; P = 0.26). There
was no significant difference between the tested modes
regarding the mean A pressure at low (PSV: 5.3 = 0.4 cmH,0,
BiVent: 5.4 £ 0.6 cmH,0, HF-BiPAP: 5.3 £ 0.9 cmH,0; P=
0.119) and high upper pressure (PSV: 16.2 £ 0.7 cmH,0,
BiVent: 156 + 1 cmH,O, HF-BiPAP; 15.1 + 2.4 cmH,O; P =
0.308).

Airway pressures and pressure time products

Although helmet and airway pressure significantly differed (P
< 0.001), the difference was small. Therefore only airway pres-
sures were reported. The mean airway pressure was influ-
enced by the A pressure (P < 0.001) and the respiratory rate
(P < 0.001). Lung conditions had no effect on mean airway
pressure (P = 0.336). During HF-BiPAP (12.6 + 2.2 cmH,0)
and BiVent (12.6 + 2.7 cmH,0) mean airway pressure was
higher compared with the PSV setting (10.6 £ 1.8 cmH,O; P
< 0.001; Table 1).

The pressure drop below PEEP (PTPpggp) during unassisted
breathing or at the lower A pressure is depicted in Figure 4.
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inspiratory flow to the helmet was constantly high at about 60 I/minute. Expiratory flow did not become zero due to the high constant free flow. BiV-
ent = time-cycled pressure controlled switching between two continuous positive airway pressure levels; HF-BiPAP = high flow biphasic positive air-

way pressure; PSV = pressure support ventilation.

PTPpgep was influenced by the A pressure (P < 0.001), the
respiratory rate (P < 0.001), and the lung setting (P < 0.001).
Overall mean PTPpggp during HF-BiPAP was 0 = 0.1 cmH,O/
sec, compared with -0.13 £ 0.17 cmH,O/sec, and 0.23 +
0.16 cmH,O/sec during BiVent and PSV respectively (P <
0.001). Mean fraction of PTPpggp on PTPinsp accounted for
1.1 £ 3.3% (median 0%, 0/0.14%) during HF-BiPAP, while it
was 3.4 + 5.8% (median 0%, 0/4.8%) and 13.3 + 30.9%
(median 5.2%, 2.9/8.3%) during BiVent and PSV, respec-
tively. In particular, at low inspiratory efforts the high flow dur-
ing HF-BiPulse almost completely compensated the pressure
drop, except for the normal lung condition. Even at high asyn-
chrony setting (i.e. HF-BiPAP and BiVent at 15 breaths per
minute, lung model rate 30 breaths per minute) the percentage
of PTPpgep in PTPinsp was lower during HF-BiPAP (mean
12.2 + 46.8%, median 0%, 0/5.9%) when compared with
PSV at 30 breaths per minute (mean 21.3 £ 41.9%, median
5.4%, 3.4/19.8%), but increased during BiVent (mean 30.1 £
92%, median 0%, 0/10%).

Pressurization during inspiration is depicted in Figure 5 and
Table 2. The values are reflected by the inspiratory pressure
time products (PTPinsp). PTPinsp was influenced by the A
pressure (P<0.001), the respiratory rate (P<0.001), and the
lung setting (P < 0.001). Overall, PTPinsp differed signifi-

cantly between the three ventilatory modes (P < 0.001). It
tended towards higher PTPinsp during HF-BiPAP and BiVent
compared with PSV (Figure 5). The HF-BiPAP system was
more effective (HF-BiPAP 2.8 £ 1.2 cmH,O/sec, BiVent 2.1
+ 0.6 cmH,O/sec, PSV 1.6 £ 0.7 cmH,O/sec, P < 0.001),
especially at a low A pressure and high respiratory rate. At a
high respiratory rate of 30 breaths per minute with a HF-
BiPAP/BiVent fixed at a cycling frequency of 15 breaths/
minute minute, the time cycled modes were less effective
(Table 2) if compared with a more synchronized breathing fre-
quency (Table 1; HF-BiPAP P < 0.001, BiVent P < 0.001). If
compared with PSV at 30 breaths per minute (2.9 + 2.1),
highly unsynchronized respiratory rates during HF-BiPulse
(2.3 £ 2.1)/BiVent (2.4 = 2.2) significantly differed (P =
0.0026) with regard to inspiratory pressurization.

The results of the PTPexp are summarised in Tables 1 and 2.
Although PTPexp for the PEEP setting was subtracted, the
ideal PTP should be zero. Thus, all the different ventilatory
modalities led to an increase in pressurization beyond the
expected PTPexp (P < 0.001). However, HF-BiPAP and BiV-
ent PTPexp were higher than PSV (9.8 *+ 5.8 cmH,O/sec vs.
8.8 £ 5.5 cmH,O/sec vs. 3.7 £ 1.9 cmH,0O/sec; P < 0.001).
As shown in Table 1, the level of the A pressure (P < 0.001),
the lung condition (P = 0.001), respiratory rate (P < 0.001),
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Table 1

Mean inspiratory airway pressure (Paw mean), expiratory pressure time product (PTPexp), and maximum CO, concentration (CO,
max) within the helmet at a respiratory rate of 15 and 30 breaths per minute

Normal lung condition
Respiratory rate

15 breaths/minute

30 breaths/minute

A pressure 5 cmH,0 15 cmH,0 5 cmH,0 15 cmH,0
Effort low high low high low high low high
Paw mean (cmH,0) HF-BIiPAP 10.2+03 104+04 152+04 147%+03 107202 111%+05 151x05 150%0.2
BiVent 10.1 £ 0.1 9.8 + 0.1 148+03 145+01 106%+02 98+02 150+03 152%0.3
PSV 8.7+ 0.2 84+02 119+06 11.6+0.7 96x04 8.7+t 0.2 12+04 13.2+0.9
PTPexp. (cmH,0/sec) HF-BIiPAP  4.3% 1.1 106+£32 139+11 214%+17 31104 7.4t14 2.7+0.7 92+1.2
BiVent 46105 57+03 18.7%t0.7 21.7+08 28%0.2 29+0.8 9.8+ 0.6 9.4+0.8
PSV 1.9+05 3.2+10.7 6.7+ 04 7+0.6 1.9+0.9 25103 44149 2.2+0.7
€O, max (%) HF-BIPAP  0.1£0 01%0 01%0 01%0 01%0 01+0 02+0 02+0
BiVent 42+0 401 0.1 21+0 3.2+0 3.910.1 26+0 1.9+ 1.4+0.2
PSV 02+0 1.2+0 1+0 08+%0 090 0.7x0 1+0.2 05+0
Obstructive lung condition
Respiratory rate 15 breaths/minute 30 breaths/minute
A pressure 5 cmH,0 15 cmH,0 5 cmH,0 15 cmH,0
Effort low high low high low high low high
Paw mean (cmH,0) HF-BiPAP 10.4 £ 0.1 9.9 + 0.1 141 £ 0.1 14 £ 0.1 10.2 £ 0.1 10.7x0 146+0.1 156%0.2
BiVent 99+02 101%x0.1 155%0.1 14910 9.9 + 0.1 1030 15.3+0.2 15810.2
PSV 9.3+ 0.1 91%0 116+01 10.6%0.1 9.1 £ 0.1 9.3+ 0.1 112105 123%0.1
PTPexp. (cmH,0/sec) HF-BiPAP 9+05 34+06 159+11 194+09 7.7%x0.9 57+08 11.1t23 169135
BiVent 6+0.5 74+06 185*+0.7 195+03 59104 6.1 £ 0.1 9.4+0.3 8+04
PSV 3.710.7 24103 3.2+0.9 22+03 38104 55103 25+2 4+0.3
€O, max (%) HF-BIPAP  0.1£0 01%0 02%0 02%0 01%0 01+0 02+0 02+0
BiVent 2510 3+0.1 28+0 320 480 480 23*0 2210
PSV 02+%0 090 0.1£0 0.6*0 040 040 0.1%0 02+0
Restrictive lung condition
Respiratory rate 15 breaths/minute 30 breaths/minute
A pressure 5 cmH,0 15 cmH,0 5 cmH,0 15 cmH,0
Effort low high low high Low high low high
Paw mean (cmH,0) HF-BiPAP 99+03 10.7+03 146+02 143%+03 10102 115+03 144+01 149101
BiVent 9.9+0.2 9.9+ 0.1 149+01 149+02 100%x03 98%0.1 16.3+£0.2 16.3*+0.2
PSV 116+06 9.3+0.1 10.1 £ 0.1 9.8 £ 0.1 10.2+0.3 91+%0 159+04 11.3%x0.1
PTP exp. (cmH,0/sec) HF-BiPAP 6.4+ 29 10.1+3 138+15 150+9.6 33=*1 48+ 1.1 95+24 11713
BiVent 54+1.7 6.6 +1 90+06 121+06 3.0%03 25+0.3 6.6 05 8.9+0.7
PSV 52+ 05 45+ 0.7 31104 3.31+04 3.0+0.8 25103 56+0.8 49106
CO, max (%) HF-BIiPAP  0.1+0 01+0 02+0 02+0 01+0 01%0 01%0 03%0
BiVent 470 4.7+ 0.1 42+0 44101 410 3.0+ 0.1 38+0 2910
PSV 04t0 08tf0 03*0 040 040 0.7x0 1.0+ 0.1 06*0

Measurements were made in normal (compliance 90 ml/cmH,O, resistance 3 cmH,O/I/s), restrictive (compliance 30 ml/cmH,0, resistance 3
cmH,0/I/s) and obstructive (compliance 90 ml/cmH,0O, resistance 15 cmH,O/I/s) lung conditions, during varying delta pressure (5 and 15

cmH,0) and inspiratory efforts (low: 2.5 cmH,0, high: 10 cmH,O) at a set positive end-expiratory pressure of 8 cmH,O.
HF-BiPAP = high flow biphasic positive airway pressure ventilation; BiVent = biphasic positive airway pressure delivered by a ventilator; PSV =

pressure support ventilation delivered by a ventilator.
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Effect of different ventilator respiratory settings on the mean airway pressure time product below PEEP (PTPpggp) during HF-BiPAP, BiVent, and

PSV ventilation. Data were measured in normal (compliance 90 ml/cmH,O, resistance 3 cm H,O/I/s), restrictive (compliance 30 ml/cmH,O, resist-
ance 3 cmH,O/I/s), and obstructive lung conditions (compliance 90 ml/cmH,O, resistance 15 cmH,O/I/s) at low (2.5 cmH,0) and high inspiratory
efforts (10 cmH,0) at a respiratory rate of 15 and 30 breaths per minute. BiVent = time-cycled pressure controlled switching between two continu-
ous positive airway pressure levels; HF-BiPAP = high flow biphasic positive airway pressure; PEEP = positive end-expiratory pressure; PSV = pres-

sure support ventilation.
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Table 2

Mean inspiratory airway pressure (Paw mean), expiratory (PTPexp), inspiratory (PTPinsp) and PEEP (PTPpggp) pressure time
products at a respiratory rate of 30 breaths per minute and a ventilatory rate of 15 breaths per minute

A pressure 5 cmH,0 15 cmH,0
Effort low high low high
Normal lung condition Paw mean (cmH,0) HF-BiPAP 105+09 12.1+0.2 146 +2.9 156+ 2.4
nBBIPAPBiPulse
BiVent 10612 118*1.8 153+ 2.8 155+ 2.2
PTPpeep. (cmH,0/sec) HF-BiPAP -01£01 0202 -02%01  -0.1%0.1
BiVent 0x0 -0.2 £ 0.1 00 -0.3+£0.2
PTP insp. (cmH,0/sec) HF-BiPAP 1.2+0.8 1.1+0.7 33+26 4+1.7
BiVent 1.3£1.2 1.8+x15 2.7+1.7 35+24
PTP exp. (cmH,0/sec) HF-BiPAP e 7%6.1 38%1.8 10+ 6.4 42+18
BiVent 7.2+3.2 7.0£0.9 11.8£3.9 46+1.8
Obstructive lung condition =~ Paw mean (cmH,0) HF-BiPAP 10.4 £ 1 10.4+0.7 15+ 3.8 16.3+34
BiVent 10.3+£23 11+£35 154 +7.2 154+ 41
PTPpggp. (cmH,0/sec) HF-BiPAP 0+0  -013%0.15 -0.01+005 -0.05%0.16
BiVent 0x0 -0.2+0.01 -0.02+0.04 -0.2*0.24
PTP insp. (cmH,0/sec) HF-BiPAP 1.0£0.9 20414 3626 362
BiVent 1.3x1.1 25+24 2.8+ 2.1 3.1+£27
PTP exp. (cmH,0/sec) HF-BiPAP 3825 981438 29+1.7 10.1 £8.1
BiVent 7.2+3.2 109t 4.1 38%+1.9 10.3£38
Restrictive lung condition Paw mean (cmH,0) HF-BiPAP 105+ 1 11.7+£0.1 14.7+2.2 147+ 2.3
BiVent 99+1 11.1 £1 15+ 28 154 +4.7
PTPpgep. (cmH,0/sec) HF-BiPAP 01602 -01%02 009%01 -0.09+0.1
BiVent -0.35+£04 -024+02 -0.16%*0.2 -0.16%+0.2
PTP insp. (cmH,0/sec) HF-BiPAP 1+0.6 1.2+0.2 332 342
BiVent 2+15 1.4+0.9 33+29 1.9+24
PTP exp. (cmH,0/sec) HF-BiPAP 3.7+x1.7 7.8 3.7 42+24 94145
BiVent 5+ 1 7.2+49 7.5+3.2 10.1£56.5

Measurements were made in normal (compliance 90 ml/cmH,O, resistance 3 cmH,O/I/s), obstructive (compliance 90 ml/cmH,0, resistance 15
cmH,0/I/s) and restrictive (compliance 30 ml/cmH,O, resistance 3 cmH,O/I/s) lung conditions, during varying delta pressure (A 5 and A 15
cmH,0) and inspiratory efforts (low: 2.5 cmH,O, high: 10 cmH,O) at a set positive end-expiratory pressure of 8 cmH,O.

HF-BiPAP = high flow biphasic positive airway pressure ventilation; BiVent = biphasic positive airway pressure delivered by a ventilator; PSV =

pressure support ventilation by a ventilator.

and effort (P=0.0015) also had significant effects on PTPexp.
Asynchronous respiratory during biphasic pressure control did
not led to a change in mean PTPexp during BiVent (P =
0.0998), while it was lower during HF-BiPAP (P = 0.001;
Tables 1 and 2).

Helmet and lung simulator ventilation

Tidal volumes delivered to the helmet and the lung simulator
are depicted in Figure 6. Tidal volumes delivered to the helmet
differed markedly to those delivered to the lung (P < 0.001).
Only about 75% of the ventilatory tidal volume reached the
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lung. Tidal volumes to the helmet were higher during HF-
BiPAP (753 + 250 ml) than BiVent (604 *+ 264 ml) and PSV
(669 + 312 ml; P < 0.001). Overall, there was no significant
difference in the tidal volumes delivered to the lung model (HF-
BiPAP: 502 £ 196 ml, BiVent: 476 £ 176 m| PSV: 424 + 1783;
P = 0.932). However, the HF-BiPAP system was more effec-
tive (HF-BiPAP 318 + 48 ml, BiVent 294 + 51 ml, PSV 286 +
26 ml, P < 0.001) at a low A pressure and a high respiratory
rate.
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Effect of different ventilator respiratory settings on the mean inspiratory airway pressure time product (PTPinsp) during HF-BiPAP, BiVent, and PSV
ventilation. Data were measured during normal (compliance 90 ml/cmH,0O, resistance 3 cmH,0/I/s), restrictive (compliance 30 ml/cmH,O, resist-
ance 3 cmH,O/I/s), and obstructive lung conditions (compliance 90 ml/cmH,O, resistance 15 cmH,O/I/s) at low (2.5 cmH,0) and high inspiratory
efforts (10 cmH,0) at a respiratory rate of 15 and 30 breaths per minute. BiVent = time-cycled pressure controlled switching between two continu-
ous positive airway pressure levels; HF-BiPAP = high flow biphasic positive airway pressure; PSV = pressure support ventilation.

Carbon dioxide removal

The CO, elimination was significantly influenced by the venti-
lator mode (P < 0.001), the height of the A pressure (P <
0.001) and the lung condition (P = 0.018; Table 1). The HF-
BiPAP system had a mean maximum and minimum CO, con-
centration of 0.15 * 0.1% and 0.02 * 0.2% respectively. In
contrast, the PSV system had respective values of 0.54 =+
0.3% and 0.19 £ 0.1% and the BiVent system had respective
values of 3.3 + 1.1% and 0.37 £ 0.2%. Maximum CO, during
HF-BiPAP was only influenced by the height of the A pressure

(5 cmH,0O: 0.11 + 0.02%, 15 cmH,0: 0.19 * 0.1%; P <
0.001). During PSV it was significantly changed by the A pres-
sure, effort (P = 0.015) and the lung condition (P = 0.001).
Thus the HF-BiPAP assured low CO, concentrations at all set-
tings. During BiVent, the maximum CO, concentrations were
particularly high.

Noise exposure
Mean ambient noise level without activation of the ventilator
was 43.7 £ 0.1 dBA. It increased to 45.5 + 1.8 dBA when the
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Effect of different ventilator respiratory settings and respiratory rate on mean tidal volume delivered to the helmet (VTinsp Helmet) and to the Active
Simulator Lung (VTinsp Lung) with HF-BiPAP, BiVent, and PSV ventilation. Measurements were made in normal (compliance 90 ml/cmH,O, resist-

ance 3 cmH,O/I/s), restrictive (compliance 30 ml/cmH,0, resistance 3 cmH,O/I/s), and obstructive lung conditions (compliance 90 ml/cmH,0,

resistance 156 cmH,O/I/s) at low (2.5 cmH,0) and high inspiratory efforts (10 cmH,O) at a respiratory rate of 15 and 30 breaths per minute. Grey
columns = inspiratory VT to the Active Lung Simulator (VTinsp Lung); white columns = inspiratory VT to the Helmet (VTinsp helmet). BiVent = time-
cycled pressure controlled switching between two continuous positive airway pressure levels; HF-BiPAP = high flow biphasic positive airway pres-
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simulator was activated. Respiratory rate and lung settings
influenced the baseline noise level. The level ranged between
44.1 £ 0.4 dBA (15 bpm, low effort and normal lung condition)
and 49.4 + 1.7 dBA (30 bpm, high effort, normal lung condi-
tion) during the different settings. The mean noise level during
HF-BiPAP, PSV, and BiVent were 72.2 = 5.7 dBA (min: 60.4
dBA, max: 84 dBA), 60.2 £ 5 dBA (min: 49.6 dBA, max: 73.4
dBA), and 59.8 + 5.4 dBA (min: 49.3 dBA, max: 71.2 dBA),
respectively (P < 0.0001).

Discussion

The present in vitro study demonstrates that HF-BiPAP: pro-
vides adequate pressurization during inspiration especially at
lower levels of assistance in both restrictive and obstructive
lung conditions even when there is high inspiratory effort; com-
pensates a pressure drop below the lower pressure level dur-
ing inspiration more efficiently than time-cycled pressure
control or PSV; delivers tidal volumes that are overall compa-
rable with BiVent or PSV, but is more efficient at lower levels
of assistance and high respiratory rates; is highly efficient at
CO, washout regardless of the effort and clinical condition;
and during high asynchrony (ventilator rate at 15 breaths per
minute with a inspiratory:expiratory ratio of 1:1 at a respiratory
rate of 30 breaths per minute) both HF-BiPAP and BiVent are
less efficient.

Previous studies comparing the helmet to the facemask inter-
face have shown that the helmet is less effective at unloading
the respiratory muscles, due to inspiratory trigger delays and
impaired pressurization rate [17-19]. Possible solutions
include changing the mode of triggering [22,23] or using a
mode that does not rely on triggering at all. One such mode
would be a time-cycled biphasic positive pressure ventilation.

In our study, we compared the efficiency of BiVent and PSV.
Among the clinical conditions tested, we found an increase in
the mean airway pressure during BiVent. This can be explained
by the fact that the time-cycled mode of BiVent, results in a
fixed inspiratory time. Meanwhile, a flow-cycled mode, such as
PSV, results in variable inspiratory time [24]. The PTPpgep was
lower in BiVent compared with PSV during the general set-
tings. This may be explained by the fact that breaths can be ini-
tiated at the upper pressure level without any trigger delay or
pressure drop below PEEP. However, during very asynchro-
nous BiVent, PTPpcp was worse compared with the PSV set-
ting. Furthermore, the inspiratory pressurization (PTPinsp)
tended to be higher in BiVent than PSV, although this was not
the case during high asynchrony. On the other hand, the
PTPexp was increased. This increase was independent of the
effort and the clinical condition. This finding may be due to
impaired synchrony. Unlike conventional PSV, BiVent does not
adjust to the patient's inspiratory and expiratory cycles.
Although the increased PTPexp might add an additional bur-
den by increasing the expiratory work of breathing it might also
have some beneficial effects during BiVent, where a higher

Available online http://ccforum.com/content/13/3/R85

pressure during the expiratory pause may allow an increase of
lung volume and possibility of performing CPAP at the higher
pressure level during the next breath.

Efficient CO, removal from the respiratory circuit is a manda-
tory requirement for NIV optimisation. Removal might be a
problem when using the helmet with a mechanical ventilator
[20]. The maximum and minimum CO, concentrations were
higher with BiVent than PSV. Increasing the level of assistance
resulted in a minimal reduction in CO, in both ventilatory
modes. The less efficient CO, washout during BiVent could be
attributed to the unsynchronized cycling, mainly in the expira-
tory phase in the presence of a relatively low bias flow from the
ventilator. The level of clinically relevant inspiratory CO,, during
NIV has not been defined. However, depending on the inner
volume and location of the exhalation port on the mask, CO,
rebreathing can also be seen with other interfaces such as
conventional face masks [16,25,26]. During BiVent the maxi-
mum helmet CO, concentrations ranged between 1.1 and
4.9%. These findings might demonstrate a risk in hypercapnic
patients requiring NIV.

Compared with BiVent, HF-BiPAP is characterized by a high
free flow and the fact that pressurization within the interface is
caused by a time-cycled expiratory resistor.

The helmet has failed to replace the mask as a commonly used
interface during non-invasive positive pressure ventilation
because of poor patient-ventilator interaction. Poor interaction
leads to inefficient muscle loading, increased work of breath-
ing [17], and reduced CO, washout. It has been suggested
that high flows are indicated when CPAP is applied via the hel-
met [16,20,27]. However, CPAP does not provide efficient
respiratory assistance [28]. The main advantages of HF-
BiPAP are that it combines the positive effects of high free
flow, minimizes CO, rebreathing, and has adjustable inspira-
tory assistance.

Our data shows that the HF-BiPAP system is capable of effi-
ciently pressurizing the helmet while keeping the set lower
pressure level. HF-BiPAP worked well in the presence of all
lung conditions and respiratory rates. The direct effect of a
high flow on pressurization is shown by the compensated neg-
ative pressure drop during inspiration at the lower pressure
level in almost all settings. Even with high asynchrony, PTPpggp
was less affected compared with BiVent or conventional PSV.
Many studies regarding the helmet interface focused on inspir-
atory delay and its effect on pressurization, so this finding is of
major interest because poor synchrony can be partially com-
pensated by a high flow allowing stable pressurization.

A major critique of our approach is that asynchrony in this set-
ting can be worse than in PSV. This assumption is reflected by
the finding that PTPinsp was less effective during asynchro-
nous HF-BiPAP/BiVent at a ventilator rate of 15 breaths per
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minute and a respiratory rate of 30 breaths per minute. Based
on these findings an adjustment of the ventilator cycling close
to the patient's respiratory rate would be advisable, although
this might not completely resolve the problem. In fact desyn-
chronization may occur solely on the lower pressure level with
no adjustment to the patient's inspiratory and expiratory
cycling. However, the patient can spontaneously breathe in
the helmet, while receiving adequate flow during inspiration.
During this mode of helmet NIV, synchronization might be less
important compared with conventional interfaces of non-inva-
sive ventilation.

The efficiency of the inspiratory pressurization was altered by
the clinical condition and inspiratory effort. In normal and
obstructive conditions, HF-BiPAP was as efficient as PSV and
BiVent. In restrictive conditions, the device became less effi-
cient at higher inspiratory effort and level of assistance. On the
other hand, we observed an increase in expiratory load in all
clinical conditions. This was likely to be because of asynchrony
in the expiratory phase and the continuous high flow in the cir-
cuit probably resulting in an increase of the expiratory resist-
ance. Overall, this resulted in an increase in mean airway
pressure. On the other hand, the tidal volumes delivered to the
lungs were comparable with BiVent and PSV. The volumes
delivered were even more efficient at lower levels of assist-
ance and higher respiratory rates.

In our in vitro study the use of a HF-BiPAP system led to effi-
cient CO, removal. This removal occurred regardless of the
underlying lung pathology. These effects were not caused by
the ventilatory mode as shown by the negative effect of con-
ventional times cycled biphasic pressure ventilation (BiVent)
but by the high continuous flow [20]. Thus, an adjustable bias
flow would eliminate the potential problem of CO, rebreathing
in any conventional ventilatory mode of NIV via the helmet
interface.

The mean noise exposure imposed by the HF-BiPAP was
higher than that of PSV and BiVent. The higher mean noise
was caused by both the higher average but also the higher
peak noise level. Cavaliere and colleagues described a noise
level of 94 + 2 dBA when using the helmet with a CPAP sys-
tem compared with 57 + 11 dBA for a mechanical ventilator
plus mask [29]. We measured the ambient noise level in our
intensive care unit next to a patient who was not mechanical
ventilated. The mean noise level over two hours ranged
between 40 and 75 dBA depending on the time of the day,
alarms, and activities at the bedside. Thus the additional noise
exposure caused by the ventilator is rather overestimated in
the laboratory conditions. A proper noise damping of the pro-
totype might improve noise exposure.

Our study had several limitations that need to be addressed in
order to properly interpret the results.
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First, we used a lung model with a fixed inspiratory time. This
time was unaffected by the level of respiratory assistance.
Fixed combinations of compliance and resistance were used
to determine the different clinical conditions. Moreover, the
model passively reacted to the different levels and modalities
of assistance. The results of the study are sensitive to the
experimental setting, and choosing respiratory rates different
to those tested in the study could have given different results.
Therefore, our data must be considered a preliminary attempt
to evaluate the interaction between different ventilatory modal-
ities and the helmet, and need to be verified in a clinical study.

Second, in actual patients, the source of asynchrony in the hel-
met might be a variable respiratory pattern. In the lung model
tested, respiratory patterns were fixed, even though different
mechanical settings of the lung model were used. This
approach increased the risk for asynchrony. The increased risk
might outweigh the benefits of using fixed settings to repre-
sent the respiratory pattern.

Third, we did not evaluate the effects of the different systems
on the work of breathing. This lack of evaluation was due to the
limitations of our model. Instead, we used the changes in pres-
surization at different inspiratory efforts to evaluate the effi-
ciency of the different devices.

Fourth, different ventilatory modalities were tested during ideal
conditions (no leakage). Inspiratory triggering and end inspira-
tory cycling off are particularly sensitive to air leaks. Thus the
comparable efficiency of PSV was rather overestimated. In
practice, more leaks are to be expected. PSV would result in
higher inspiratory and expiratory delays. These delays would
result in a lower inspiratory PTP than the time-cycled modali-
ties.

Fifth, the CO, model has some limitations. The artificial lung
model is not actively involved in gas exchange. Therefore a
change in tidal volume, minute ventilation, or underlying lung
condition did not directly affect the CO, load to the helmet.
Interpretations of the impact of the lung pathology on the CO,
concentration within the helmet should be drawn with caution.

Finally, we only examined the helmet. For this reason, we can-
not directly extrapolate our results to other interfaces including
nasal mask, facial masks, or endotracheal tubes.

Conclusions

This study demonstrates a new concept of time-cycled bipha-
sic airway pressure with a high flow system in a lung model.
This approach might resolve some of the problems seen with
the helmet interface and broaden the indications for its use.
With HF-BiPAP, CO, removal from the helmet was highly effi-
cient regardless of the underlying lung pathology. Pressuriza-
tion of the helmet seems particularly efficient at the lower
levels of assistance. If the patient requires a high level of



assistance one has to be aware of the increased pressuriza-
tion during expiration, which might be beneficial but also
increases the load during expiration.

Key messages

* HF-BiPAP provides adequate pressurization at low lev-
els of assistance. It is effective in both restrictive and
obstructive lung conditions, even when there is high
inspiratory effort.

* HF-BiPAP compensates a pressure drop below the
lower pressure level during inspiration more efficiently
than time-cycled pressure control or PSV.

* HF-BiPAP delivers tidal volumes that are comparable
with BiVent or PSV. These volumes are even more effi-
cient at low levels of assistance and higher respiratory
rates.

» HF-BiPAP ensures an efficient CO, washout, regard-
less on the effort and clinical condition.
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