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Cell-to-cell communication coordinates the development of 
multicellular systems, and is mediated by soluble factors, gap 
junctions and the recently described tunneling nanotubes (TNT). 
Both TNT and gap junctions facilitate the transfer of intracellular 
mediators between the cytoplasm of connected cells. We recently 
described that HIV induced the formation of TNT in human 
primary macrophages in correlation with viral replication. Based 
on these results we hypothesized that during HIV infection, TNTs 
are hijacked by HIV to spread infection. TNT like structures may 
be a novel mechanism of amplification of HIV infection. Our find-
ings and those of others require further investigation to identify the 
specific mechanisms by which pathogens use TNT.

Tunneling nanotubes (TNT) and gap junctions are the only 
two described communication systems that allow exchange of cyto-
plasmatic factors through direct contact between the cytoplasm of 
connected cells. These communication systems coordinate biological 
processes, including development, metabolism, homeostasis and the 
immune response.1-6 The major differences between TNT and gap 
junctions are the distances reached and the sizes of the molecules 
transferred. TNT mediate long-range communication through 
extended processes, while gap junctions facilitate close cell-to-
cell communication. Gap junctions allow the trafficking of small 
molecules, up to 1.2 kDa,6 while TNT allow the exchange of small 
molecules, organelles and vesicles.2

Our recent report, using primary human macrophages and HIV, 
suggested that TNT could be “hijacked” for the virus to spread 
between connected cells during the periods of high viral replication. 
HIV infection of macrophages enhanced the numbers of TNT and 
more infected cells expressed TNT, suggesting that HIV induced 
the expression or stability of these processes to allow viral spread 

through this mechanism.1 In the past year it has been shown that 
the virus utilized TNT-like structures to spread infection between 
connected T cells7 and we demonstrated HIV-p24 in TNT of HIV 
infected macrophages.1 We and others proposed that HIV, by using 
this pathway of spread, will infect cells more efficiently without 
entering the extracellular compartment, reducing viral exposure to 
natural anti-viral activities as well as to potential antiviral drugs. In 
agreement with this, it has been demonstrated that viral infections, 
including HIV, are increased by several orders of magnitude when cell 
to cell contact is involved, suggesting that direct actin cytoskeleton 
interactions between connected cells allow efficient viral spread.8,9

Although there is a basal level of TNT expression by cells under 
normal tissue culture conditions, the signals that guide the forma-
tion of TNT are unknown. However, re-examination of reports in 
the existing literature show that there are published descriptions of 
increased formation of TNT like structures in inflammatory condi-
tions. In in vitro pathological conditions the formation of TNT-like 
structures has been observed after infection with Listeria monocyto-
genes and mycobacterium bovis,10-12 in astrocytes treated with H2O2,13 
microglia activated with PMA and calcium ionophore,14 monocyte/
macrophages treated with LPS plus IFNγ,15 mouse neuronal cells 
infected with exogenous prion protein (PrP)16 and more recently 
in lymphocytes infected with HIV7 and in human macrophages 
infected with HIV.1 In vivo, TNT like structures have been observed 
in Drosophila,17,18 between immune cells in lymph nodes (reviewed 
in refs. 2 and 3), in the dendritic cells (DC) of the gut19,20 and in 
the MHC class II+ cells in the mouse cornea.21 Interestingly, viruses, 
such as African swine fever, Ebola, Herpes Simplex, Marburg filovi-
ruses and Poxvirus Vaccinia encode viral factors or alter cell activation 
to induce formation of filopodia structures to allow viral trafficking 
between the extracellular matrix or environment into cells,22-28 
suggesting that viruses are able to use filopodia and TNT like struc-
tures to improve viral spread.

We still have a limited understanding of TNT function and turn-
over. It is unclear whether all TNTs are similar in length, internal 
size, permeability, transport capability (internal and external trans-
port), and signaling properties. Our studies in human macrophages 
identified two distinct TNT morphologies that are altered by HIV 
infection, referred to as short- and long-range TNT. Both types of 
TNT, as well as filopodia, can coexist independently in different 
regions of the same cell, suggesting a cellular compartmentalization 
for the formation and transport through these processes in each cell.1 
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However, the specific function of each type of process, and whether 
these processes have differential permeability or transport properties 
remains unclear. In our system, filopodia did not connect cells. A 
recent report supports the idea of different types of TNT on different 
cells, showing that TNT in lymphocytes are almost impermeable to 
calcium,7 in contrast to the high permeability to calcium of TNT 
observed in dendritic and THP-1 cells.29 TNT in other systems 
allows transport of mitochondria and vesicles, suggesting that the 
internal pore size is large enough for the trafficking of these organ-
elles (reviewed in refs. 2 and 30). The point that mitochondria can 
be exchanged between TNT connected cells is extremely important 
because this could be one of the first demonstrations of transfer of 
genetic material between non-dividing cells, suggesting that at least 
mitochondrial DNA is not cell type exclusive and can be shared 
between several cell types connected by TNT. Although it is still 
unclear whether multiple types of TNT exist or represent different 
maturation stages of the same processes, the potential for the transfer 
of organelles and changes in signaling opens a new era in under-
standing the cell as a unique entity.

Several groups have proposed at least two models to explain the 
varied types of TNT, based on cell type, permeability, signaling 
capabilities, length and function. The first model proposes a tube 
generated from one or both cells involved, resulting in fusion of 
membranes, leaving a continuous tube between the connected cells, 
allowing the transfer of molecules between the connected cells. The 
second model proposes that the processes do not form a tube, but 
rather are composed of adhesion molecules and other molecules 
involved in signaling that aggregate in the tip of the TNT, like a 
synapse, to coordinate intercellular communication. Based on the 
multiple lengths, cell types and potential function of these TNT in 
normal and in pathologic conditions, we believe that both proposed 
TNT systems may exist and require extensive investigation to deter-
mine the function of these TNT structures.

In conclusion, we propose that TNT processes may help HIV 
infection and other pathogens to spread more efficiently while 
avoiding extracellular anti-viral responses, increasing the chance that 
small populations of infected macrophages or T-cells will spread 
infection to a large number of other cells. An understanding of the 
role of this new communication system in normal and pathological 
conditions may open new potential therapeutic opportunities to 
target HIV infection and replication.
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