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Neuregulin-1 (NRG-1) and its receptor ErbB4 are geneti-
cally associated with schizophrenia, a complex developmental 
disorder of high heritability but unknown etiology that has 
been proposed to result from deficits in functional connectivity 
and synaptic plasticity. Based on pharmacological evidence, 
imbalances in dopaminergic and glutamatergic transmission 
systems are believed to contribute to its pathophysiology, but 
genetic data supporting a causative role for either are sparse. 
Stimulation of NRG-1/ErbB4 signaling inhibits or reverts 
hippocampal long-term potentiation (LTP) at glutamatergic 
synapses between Schaeffer collateral afferents and CA1 pyra-
midal neurons (SC→CA1). We have recently demonstrated that 
NRG-1 regulates glutamatergic plasticity by rapidly increasing 
extracellular hippocampal dopamine levels and activation of  
D4 dopamine receptors.7 These new findings position the 
NRG-1/ErbB4 signaling pathway at the crossroads between 
dopaminergic and glutamatergic neurotransmission and offer 
novel ways to consolidate genetic, functional and pharmacological 
data toward a better understanding of the etiological processes 
underlying schizophrenia, and the role of NRG-1 for normal 
synaptic function and plasticity. The currently available data 
suggest that hippocampal interneurons might play a crucial role 
in mediating NRG-1 induced depotentiation. This interpretation 
is in line with other evidence pointing towards an involvement of 
GABAergic cells in the etiology of schizophrenia.

Activation of NRG-1/ErbB4 Signaling Recruits a Dopaminergic 
Pathway to Regulate Early LTP at Glutamatergic CA1 Synapses

At SC→CA1 synapses, LTP is rapidly depotentiated by acute 
administration of NRG-1 during a labile period of ~30 min imme-
diately following its induction.1 In addition, NRG-1 can prevent 
the manifestation of LTP if applied prior to induction.2,3 LTP can 
also be reversed by a brief train of electrical pulses at theta frequency 

(theta-pulse stimuli, TPS), and this TPS-mediated depotentiation is 
blocked by inhibitors of ErbB signaling, suggesting an involvement 
of the NRG/ErbB signaling pathway.1

Mechanistically, LTP depotentiation by NRG-1 represents the 
reversal of synaptic strength back to pre-LTP levels, and is medi-
ated via the internalization of synaptic AMPA receptors containing 
the GluR1 subunit. Although previous work firmly established the 
inhibitory effects of NRG-1/ErbB signaling on LTP, the pathway 
leading from ErbB receptor activation to the removal of AMPA 
receptors selectively from potentiated synapses was unclear. On the 
other hand, mice heterozygous for NRG-1 display abnormal pre-
pulse inhibition of the startle response, a behavioral abnormality that 
is also found in schizophrenic patients and that can be alleviated by 
treatment with the antipsychotic clozapine,4 that primarily targets 
D2-type dopamine receptors.5,6 This prompted us to investigate a 
possible involvement of the dopamine system in mediating NRG-1-
induced depotentiation.

We found that perfusion of the dorsal hippocampus of behaving 
animals with NRG-1 causes a rapid (<2 min) and dramatic 
(~3-fold) increase in extracellular dopamine levels that lasted for 
about 15 minutes.7 Conversely, pharmacological blockade of ErbB 
receptors produces a small but significant decrease of dopamine 
levels, consistent with a role for endogenous NRG-1 signaling 
in the regulation of dopamine (Fig. 1). We then investigated the 
involvement of dopamine receptors in LTP reversal and identified 
through the use of selective agonists and antagonists, as well as KO 
mice, the D4 dopamine receptor (D4R) as necessary and sufficient 
to trigger LTP depotentiation in response to NRG-1.7 Moreover, 
TPS are not effective in attenuating LTP in D4R-knockout mice, 
further corroborating the notion that TPS and NRG-1 share a 
common pathway. Consistent with the idea that D4R could be an 
intermediate downstream target of NRG-1/ErbB4 signaling, we also 
showed that in cultured hippocampal neurons expressing D4R and 
treated to undergo a chemical form of LTP, D4R activation causes 
the internalization of surface GluR1-containing AMPA receptors, 
thus recapitulating the response in acute hippocampal slices.7 Our 
slice recordings indicate that the depotentiating effects of NRG-1 
and D4R agonists are local to CA1, since results were not different 
when CA3 was separated from CA1. This result is consistent with 
the distribution of dopamine fibers in hippocampus that innervate 
the subiculum and adjacent CA1 but not CA3 (reviewed in ref. 8), 
and with the presence of D4R mRNA in CA1/CA2.7
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Complementary Roles of D1-Type and D4 Dopamine 
Receptors during LTP

Numerous studies have shown that D1/D5 receptors facilitate 
early-phase LTP9 and have an important role in the consolidation 
of late-phase LTP in vitro10,11 and in vivo.12,13 In contrast, the role 
of D2-type receptors in LTP has been much less well defined. All 
dopamine receptors are G-protein coupled and modulate the produc-
tion of cyclic AMP. Since D1-type receptors and D2-type receptors 
stimulate or inhibit adenylate cyclase activity, respectively, they may 
be expected to exert opposing effects on LTP. Interestingly, the D2/
D3R antagonist domperidone has been shown to prevent late-phase 
LTP,14,15 however, this effect required several hours to occur and 
thus likely reflects a different mechanism, since the specific activation 
of D4R in our study resulted in almost immediate depotentia-
tion.7 Our results show that local application of NRG-1 increases 
dopamine release in the hippocampus in vivo. Frey et al. showed that 
LTP-inducing 100 Hz tetanization of the SC→CA1 pathway tempo-
rarily increases the release of [14C] from sections that were preloaded 
with [14C]-dopamine.14 However, while tetanus-elicited dopamine 
release could explain the stabilizing effects of dopamine signaling on 
late-phase LTP, it is unlikely to account for the rapid depotentiating 
effects of NRG-1 based on differences in timing and sign of action 
(pro-LTP vs. anti-LTP).

Location, Location, Location

Although conceptually the recruitment of the dopamine system 
by NRG-1 elegantly links ErbB4 signaling and glutamatergic plas-
ticity, it is currently not clear where within the circuitry of the 
hippocampus the critical ‘players’ are located. It appears reasonable 
to assume that the D4R is expressed on CA1 principal neurons at or 
near SC→CA1 synapses in the stratum radiatum to locally trigger 
the reversal of LTP at potentiated sites (depotentiation by NRG-1 
is homosynaptic; see ref. 1), based on our in vitro data showing that 
direct activation of D4R can trigger AMPA receptor internaliza-
tion in transfected hippocampal neurons. On the other hand, D4R 
immunoreactivity in the primate hippocampus was shown to be high 
in some GABAergic interneurons,16 suggesting that D4R activation 
could somehow reverse LTP by modulating GABAergic function. It 
is important to note, however, that D4R mRNA and protein levels 
are exceedingly low in the hippocampus, and its expression in pyra-
midal cells and/or interneurons is far from established.16-18

The known spatial distribution of some crucial elements might 
be helpful, however, in assembling a network model: First, ErbB4 
is expressed in numerous GABAergic interneurons across all layers 
(see below). Second, glutamatergic SC→CA1 synapses are located 
in the stratum radiatum. Third, the dopaminergic innervation of the 
hippocampus is low and spatially restricted to the subiculum and 
adjacent CA1, especially in the dorsal part where electrophysiolog-
ical recordings of LTP are typically performed; mesohippocampal 
dopaminergic fibers in CA1 terminate in stratum oriens close to the 
alveus or in stratum lacunosum moleculare, essentially excluding 
strata pyramidale and radiatum.8,19 It is unclear if dopamine recep-
tors located close to SC→CA1 synapses on pyramidal neurons could 
be directly activated by dopamine release from these terminals, even 
if considering the possibility of extrasynaptic volume transmission 
of dopamine as suggested in other brain areas such as the nucleus 

accumbens.20 If dopamine receptors are present in the vicinity of 
dopaminergic fibers they could be located on distal portions of basal 
and apical pyramidal cell dendrites, on interneurons, or both. Finally, 
it is as of yet unclear whether hippocampal dopamine receptors are 
primarily postsynaptic or presynaptic, or whether cells co-express 
different types of dopamine receptors.

As for the location of ErbB4, direct receptor activation on 
dopamine terminals presents one conceivable way to promote release 
from afferents in the hippocampus. However, we did not find 
evidence for ErbB4 expression in dopamine neurons in the VTA 
or their afferent projections in the hippocampus. In contrast, the 
highest levels of ErbB4 mRNA and protein have consistently been 
observed in GABAergic interneurons, and these cells are good candi-
dates to represent the proximate target for the effects of NRG-1 on 
glutamatergic plasticity in pyramidal cells. In agreement with this, 
NRG-1 has been shown to stimulate GABA release.21

Interestingly, hypofunction of GABAergic interneurons, in partic-
ular of cells that express parvalbumin (PV), has been suggested to 
contribute to the etiology of schizophrenia.22-25 Basket and chan-
delier cells that provide powerful perisomatic inhibition control and 
time the population firing of principal glutamatergic neurons, thereby 
coordinating network activity. Acute activation of NRG-1/ErbB4 
signaling strongly increases the power of kainate-induced gamma-
oscillations in CA3 of the hippocampus, suggesting that it augments 
or synchronizes basket cell output.26 However, it is not obvious 
how perisomatic inhibition of pyramidal cells could be linked to 
LTP reversal at their apical dendrites where SC→CA1 axons termi-
nate. Of note, studies on the hippocampal distribution of ErbB4 

Figure 1. Blockade of endogenous NRG/ErbB signaling reduces dopamine 
release in the dorsal hippocampus of live behaving rats. Catechol-O-methyl 
transferase (COMT) activity was blocked with 100 nM Ro-41-0960 to 
prevent dopamine degradation and to analyze the effects of ErbB receptor 
inhibition (10 μM PD158780) on dopamine release. Dopamine levels rise 
steadily over 25 min following the onset of Ro-41-0960 infusion, consistent 
with the predominant role of enzymatic degradation in the clearance of 
extracellular dopamine in the hippocampus.7 However, after additional infu-
sion of the ErbB receptor inhibitor (solid squares), dopamine levels decrease 
significantly compared to controls that did not receive the blocker (open 
squares). Therefore, ErbB receptor activation is involved in the regulation of 
endogenous dopamine release. *p < 0.05 (2-way ANOVA). Data represent 
the mean ± SEM (n = 5 for both groups).
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exogenous NRG-1 peptide is enhanced in synaptic membrane 
preparations from postmortem brains of affected individuals.46 Taken 
together, these findings appear to favor a model in which hyperfunc-
tion of NRG-1/ErbB4 signaling contributes to schizophrenia. On 
the other hand, behavioral abnormalities that are consistent with 
some of the positive symptoms associated with schizophrenia have 
been observed in mice heterozygous for NRG-1 or ErbB4, suggesting 
that reduced NRG-1/ErbB4 signaling could trigger schizophrenia-
like behavior.4 Therefore, while there is ample data to suggest a 
link between NRG-1/ErbB4 signaling and the manifestation of 
schizophrenia-associated behavior, it is evident that we are still a long 
way from understanding how, and on what time scale, alterations 
in NRG-1/ErbB4 signaling contribute to the impairment of cogni-
tive processes observed in schizophrenia. In particular, it is unclear 
whether the changes in NRG-1/ErbB4 function and expression 
observed in patients and postmortem brain samples represent direct 
effects or compensatory responses to some other primary perturba-
tion. For the same reasons, caution needs to be exercised in trying to 
equate findings derived from the analysis of genetic animal models 
with those obtained from acute manipulations of the neuregulin/
ErbB signaling network. We are confident, however, that our recent 
findings will encourage new studies in humans and mouse models 
to further explore the causative role NRG plays in the regulation of 
dopaminergic and glutaminergic transmission in the normal brain 
and under pathological conditions. It should also be mentioned that 
several recent studies have pointed towards a functional connection 
between NRG and the nicotinic α7 acetylcholine receptor (α7R),47-49 
the prospect of which is exciting since several lines of genetic and func-
tional evidence point to an involvement of α7R with schizophrenia 
(reviewed in refs. 50 and 51).

Lastly, most studies have focused on the role of NRG-1 on 
synaptic function and plasticity. In this regard, it is important 
to emphasize, though, that the closely related NRG-2 is highly 
expressed in the adult brain and therefore conceivably serves as an 
important endogenous ligand for ErbB4, while NRG-1 expression is 
highest during neural development.52 In contrast to NRG-1 mutant 
mice that die during early embryogenesis, NRG-2 deficient mice 
are viable and could therefore serve as a useful model to analyze the 
effects of impaired NRG/ErbB4 signaling on hippocampal function 
in the adult animal.53
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