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Spatiotemporal patterning of neuronal activity is considered to be an important feature of cognitive processing in the brain as well as
pathological brain states, such as seizures. Here, we investigate complex interactions between intrinsic properties of neurons and
network structure in the generation of network spatiotemporal patterning in the context of seizure-like synchrony. We show that
membrane excitability properties have differential effects on network activity patterning for different network topologies. We consider
excitatory networks consisting of neurons with excitability properties varying between type I and type II that exhibit significantly
different spike frequency responses to external current stimulation, especially at firing threshold. We find that networks with type II-like
neurons show higher synchronization and bursting capacity across a range of network topologies than corresponding networks with type
I-like neurons. These differences in activity patterning are persistent across different network sizes, connectivity strengths, magnitudes
of random external input, and the addition of inhibitory interneurons to the network, making them highly likely to be relevant to brain
function. Furthermore, we show that heterogeneous networks of mixed cell types show emergent dynamical patterns even for very low
mixing ratios. Specifically, the addition of a small percentage of type II-like cells into a network of type I-like cells can markedly change the
patterning of network activity. These findings suggest that cellular as well as network mechanisms can go hand in hand, leading to the
generation of seizure-like discharges, suggesting that a single ictogenic mechanism alone may not be responsible for seizure generation.
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Introduction
Spatiotemporal patterning of neuronal activity is considered to
be an underlying feature of many cognitive as well as pathological
phenomena. For example, epilepsy is characterized by spontane-
ous recurrent seizures generated by synchronized bursting of
neuronal populations. A wide range of molecular and cellular
mechanisms, as well as synaptic pathologies are implicated in
seizure generation. Synaptic abnormalities are centered around
reduced inhibition or increased excitatory transmission, causing
an imbalance between cortical excitation and inhibition (Dudek
et al., 1999). Examples of cellular mechanisms include specific
ion channel abnormalities or resultant changes in the relation-
ship between the adapted spike frequency and applied current ( f–I
curve) as observed in cortical neurons from an epileptic animal
model (Prince and Tseng, 1993). This latter type of cellular change
can make individual cells more responsive to an imbalance in net-
work excitation and thus promote seizure-like activity.

At the same time, much less is known about network under-
pinnings of different forms of this disease. The potential network

mechanisms proposed to underlie excessive excitatory neuro-
transmission during epileptogenesis in acquired focal epilepsies
span from loss of inhibitory interneurons to aberrant axonal re-
organization. In mesial temporal lobe epilepsy, for example, ex-
citatory dentate granule cells sprout axons (mossy fibers) onto
neighboring granule neurons (for review, see Parent and Lowen-
stein, 1997). Evidence suggests that mossy fiber sprouting leads to
abnormal recurrent excitation that may be critical for seizure
initiation or propagation in the network (Lysetskiy et al., 2005).
In addition, studies of epilepsy models provide evidence for in-
creased recurrent excitation in other brain areas, including in the
CA1 region of the hippocampus (Derchansky et al., 2008) and
among cortical pyramidal cells (Jin et al., 2006).

During recent years, many studies have focused on under-
standing the role of network topology and/or its community
structure on network dynamics (Boccaletti et al., 2006). It has
been shown that network reorganization, often modeled using
the small-world network (SWN) paradigm (Watts and Strogatz,
1998) (see supplemental material, available at www.jneurosci.org),
can lead to dramatic changes in dynamical activity patterns gener-
ated by its elements (Netoff et al., 2004; Percha et al., 2005). Rela-
tively little work has focused on understanding the interactions be-
tween cellular and network properties and their combined effect on
spatiotemporal patterning in the network, with the notable excep-
tion of the studies by Santhakumar et al. (2005), Dyhrfjeld-Johnsen
et al. (2007), and Morgan and Soltesz (2008).

In this study, we investigate underpinnings of the combina-
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tion of intrinsic cell and network mechanisms in spatiotemporal
pattern formation in excitatory neuronal networks. Using multi-
compartmental neurons modeled in the Hodgkin–Huxley for-
malism (Hodgkin and Huxley, 1952), we construct networks
consisting of four different cell types with various membrane
excitability properties as described by their frequency– current
( f–I) relationships. At the same time, we modify network topol-
ogy and connectivity to mimic aberrant network reorganization.
We first explore response properties of homogeneous networks
that consist of model neurons of the same excitability type. We
show that the network response is strongly affected by cellular
properties for different topologies. We then investigate spatio-
temporal pattern formation in heterogeneous networks consist-
ing of cells of different excitability types. We find that the intro-
duction of very few cells with different excitability properties can
profoundly influence spatiotemporal activity. We believe that
our results highlight the combined interaction of intrinsic neu-
ronal properties and overall network structure in the generation
of complex patterns of network activity.

Materials and Methods
Neuronal properties
The model neurons were based on a hippocampal CA1 pyramidal neu-
ron with simplified dendritic morphology and a minimum number of
active currents. CA1 pyramidal cells were chosen as this region is com-
monly implicated in generating seizures and is often used for in vitro
studies of interictal to ictal transition (Dzhala and Staley, 2003; Derchan-
sky et al., 2008). Each model cell was composed of a five-compartment,
1200-�m-long dendritic cable electrotonically coupled to a soma com-
partment (equivalent to a 35 �m sphere) (Shao et al., 1999). The cable
dendrite contained only passive kinetics and the current balance equa-
tion in each compartment was given by the following:

Cm

dVj

dt
� � gLD(Vj � EL)�

Vj�1 � 2Vj � Vj�1

rj
,

where Vj is the membrane potential in dendritic compartment j � {1, 2,
3, 4, 5}. The compartmental coupling term for the first compartment
contained Vs instead of Vj � 1 and for the last compartment reflected a
sealed-end boundary condition. The soma compartment contained the
following active currents modeled in Hodgkin–Huxley formalism: a
transient, inward Na � current; an outward, K �-delayed rectifier cur-
rent; a transient outward K � A-type and an inward, hyperpolarization-
activated, mixed Na � and K � h current (Migliore et al., 1999; Poolos et
al., 2002). The current balance equation for the soma compartment was
given by the following:

Cm

dVs

dt
� � gNam

3h�Vs � ENa)�gKdrn
4�Vs � EK)�ghp�Vs � Eh�

� gKAqr(Vs � EK)�gLS(Vs � EL)�
V1 � Vs

r1
,

where Vs is membrane voltage in the soma compartment. The model cells
and network were implemented in the NEURON, version 5.9, simulation
environment (Hines and Carnevale, 2001). Equations for the gating ki-
netics of the ionic currents and parameter values are listed in the supple-
mental material (available at www.jneurosci.org).

Cells were connected through synaptic currents that targeted the most
distal dendritic compartment of the postsynaptic neuron. As such, the
current balance equation for the fifth dendritic compartment contained
the additional term � � Isyn, reflecting the sum of synaptic currents from
all impinging synapses. On activation of synaptic current by a presynap-
tic cell crossing threshold (set at �20 mV), it decayed following a single
exponential with time constant � � 0.5 ms:

Isyn�w exp� �
�t � ti�

� ��Vs � Esyn),

where Isyn (nA/cm 2) is the synaptic current, defined for t � ti, resulting
from a presynaptic spike at time ti, and w is the synaptic weight (mS/
cm 2). The reversal potential Esyn was 0 mV for excitatory synapses and
�75 mV for inhibitory synapses. Synaptic weight values were homoge-
neous across all synapses in a network. In Figures 3, 5, and 7–9, all
synaptic weights w were set to the default value of 0.7 mS/cm 2, whereas
the value of w was varied in Figures 4 and 6.

Additionally, to simulate synaptic noise, every cell in the network was
randomly stimulated by a synaptic current, identical in synapse location,
amplitude, and decay dynamics to the synaptic current caused by spike
firing of a presynaptic cell, but randomly occurring with an average
frequency of 1 Hz.

Network connectivity
The network was constructed using the SWN paradigm (see supplemen-
tal material, available at www.jneurosci.org). The small-world phenom-
enon provides a convenient framework to systematically modify network
topology. Moreover, emerging evidence suggests that networks of similar
topology exist in the brain (Sporns and Zwi, 2004). In the SWN para-
digm, the rewiring parameter p allows for exploration of network topol-
ogies that lie between local and random. The parameter p ranges from 0
to 1, and is the probability of replacing a local, nearest neighbor connec-
tion with a connection randomly assigned elsewhere in the network.
Thus, the network has only nearest neighbor connections for p � 0 and
has completely random topology for p � 1 (Watts and Strogatz, 1998). It
is well understood that for low, nonzero values of p, small-world net-
works exhibit strong clustering, but with a relatively small mean path
length.

Our networks consisted of 250 or more cells with a uniform number of
outbound synaptic connections emanating from each cell and periodic
boundary conditions. We varied the radius of connectivity, r, to consider
connectivity fractions (i.e., the ratio of the total number of actual out-
bound connections to the number of all possible connections in the
network) between 0 and 15%. Specifically, the connectivity fraction for a
one-dimensional network is calculated as 2r/(N � 1) � 100%, where N is
the number of cells in the network. Physiological connectivity is consid-
ered to be between 1 and 5%, with the higher percentages meant to
represent abnormally dense connectivity perhaps observed near a seizure
focus. Spatiotemporal activity patterns obtained for connectivity levels
outside this range did not vary significantly from those presented here.
The topology of network connectivity varied by considering all values of
the rewiring parameter p € [0,1]. All simulations were run for at least
3000 ms, whereas many runs were much longer to explore the stability of
behavior.

Figure 1. Frequency– current ( f–I ) curves of the four model neurons computed by injecting
sustained currents of varying amplitudes (x-axis) into the soma compartment. Neuronal excit-
abilities transition from type I-like (cells A and B), to type II-like (C and D). Both cells A and B
were characteristically type I with a continuous f–I curve at firing threshold corresponding to
arbitrarily low firing frequencies. Cell A frequency increased steadily at high input currents,
whereas cell B frequencies were more uniform (typical of type II dynamics). Cells C and D were
type II-like with a high, “critical” frequency at firing threshold. Cell C had a lower critical fre-
quency and a steeper f–I slope at high input currents than cell D.
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Measures
To quantify observed spatiotemporal patterning of network activity and
distinguish between various network behaviors, we applied three mea-
sures: average frequency ( F), mean phase coherence ( R), and a measure
of synchronous bursting ( B). The combination of these three measures
allowed us to compare network dynamics quantitatively, and also detect
behavior switching within a single simulation run.

Frequency. The average frequency of cell n, Fn, was defined as the
inverse of the average interspike interval over the duration of the simu-
lation run:

Fn �
1

�n
, �n � �

k�1

S�1
tk�1 � tk

S � 1
,

where S is the total number of spikes fired at times tk of cell n. The
network average frequency, F, was the average of Fn over the number of
cells in the network.

Mean phase coherence. To quantify phase locking between cells, we
adapted the mean phase coherence, R, of an angular distribution (Mor-
mann et al., 2000). The value of R ranged between 0 and 1, and increased
as phase locking increased between cells. We measured the time depen-
dence of R with a sliding window of 750 ms. R is defined as follows:

R � �1

S�
j�0

S�1

ei�nm� ,

where S denotes the number of samples in the array of cell n spike times,
and �n,m is the phase between cells n and m for interspike interval j. This
was determined as follows: the period for interspike interval j,
�nj

� tnj�1
� tnj

, for cell n was taken to be 2�. The cell m spike associated
with interval j, tmj

, was selected such that tnj
� tmj�1

� tnj�1
so the phase

between spikes at time tnj
and tmj

(interval �nj,mj
� tmj

� tnj
) could be

calculated at time tnj
by �n,m � ��nj,mj

/�nj
�2�.

Synchronous bursting. We used an interspike distance synchrony mea-
sure (Tiesinga and Sejnowski, 2004) to monitor the degree of spiking
synchrony in the network. The metric, B, is based on the time-ordered,
complete set of network spikes and relies on the fact that the variance
between firing times of all cells in the network during a synchronous
event is smaller than during asynchronous events. B is defined as follows:

B � � �	�	
2
 � 	�	


2

	�	

� 1� 1

�N
,

where N is the number of cells in the network. The combined, time-
ordered set of network spike times t	 was labeled by the index 
, whereas
the set of network interspike intervals was labeled �	 with �	 � t	 � 1 � t	.
Note that these interspike intervals are between different cells in the
network. Thus, assuming that every neuron fires independently with a
constant rate, the combined spike train for a large asynchronous network
will have a Poisson spike distribution with the term
�	�v

2
 � 	�v

2/	�v
3 1. However, in the limit of large N and if the net-

work is fully synchronized with neurons firing with a period T, the term
�	�v

2
 � 	�v

2/	�v
3 �N. Thus, the relatively atypical form of B pro-

vides a normalized measure of degree of synchronized bursting in the
network, where low values of B are indicative of asynchronous activity,
whereas B � 1 indicates strong, highly synchronous bursting.

Parametric distance. To determine overall dissimilarity between net-

work states, we formulated a parametric distance, D, between simulation
runs 1 and 2 as determined from all three measures:

D2,1 � ��B2 � B1

B2 � B1
� 2

� �R2 � R1

R2 � R1
� 2

� �F2 � F1

F2 � F1
� 2

.

D was small if the behavior of runs 1 and 2 was similar and was large
between dissimilar runs.

Results
Model cell excitability properties
By modulating the activation characteristics of the delayed recti-
fier K� current and the maximal conductances of the ionic cur-
rents, we created four model cells having various membrane ex-
citability properties as described by their f–I curves (Fig. 1). Both
cells A and B had characteristic type I membrane excitability
properties (Rinzel and Ermentrout, 1998; Izhikevich, 2001).
They displayed a continuous f–I curve indicating the appearance
of arbitrarily low firing frequencies at firing threshold. Cells C
and D exhibited type II excitability with a nonzero, “critical”
firing frequency at threshold (Rinzel and Ermentrout, 1998). An-
other distinguishing characteristic of type I and II excitability is
the slope of the f–I curve at high applied current: uniformity of
firing frequency at high input currents is typical of type II cells.
Thus, cell B, whose f–I curve at high current tended toward a
shallower slope, was less type I-like than cell A, which had a
steeper f–I slope typical of type I excitability. However, cell C had
a lower critical firing frequency at threshold than cell D and dis-
played a steeper f–I slope, reminiscent of type I excitability. Thus,
with these four cells types, we were able to explore network effects
resulting from a transition in neuronal excitability from type I to
type II behavior. Model parameter values that were varied to
create the four cell types are listed in Table 1.

Phase response curve analysis
For periodically firing neurons, phase response curves (PRCs)
describe how small, brief inputs given at different phases of the
periodic cycle affect the timing of subsequent spikes (see supple-
mental material, available at www.jneurosci.org). It has been sug-
gested that PRCs may help to elucidate the mechanisms by which
some cells tend to synchronize when coupled, whereas others
tend toward antisynchrony (Hansel et al., 1995; Ermentrout,
1996; Izhikevich, 1999; Ermentrout et al., 2001). To obtain the
phase response curves for our model cells, we elicited a fixed
background firing frequency by injecting an appropriate applied
current (as determined by the f–I curve of the cell). We then
injected small, EPSP-like inputs at different times between peri-
odically occurring spikes. Figure 2 shows the PRCs for all cell
models with background firing at 40 Hz. The EPSP-like stimulus
was a current pulse with amplitude of 0.21 nA/cm 2 and duration
of 2 ms.

There was an obvious shift in the shape of the PRC as cells
transitioned from type I-like to type II-like. Type I-like cells A and
B had positive PRCs and displayed an advance in spike firing

Table 1. Model cell parameters altered to construct four cell types

Vhalf K�
dr (mV) gKdr (S/cm2) gNa (S/cm2) gKa (S/cm2) gh (mS/cm2) EK (mV) ENa (mV) Eh (mV)

Cell A 13 0.2 0.3 0.048 0.5 �90 55 �30
Cell B 13 0.5 0.5 0.048 0.1 �77 50 0
Cell C 0 0.08 0.3 0.048 0.75 �90 55 �30
Cell D 0 0.7 1.5 0.03 0.5 �77 50 0

Changes in the steady-state, half-activation of the Kdr current (Vhalf K�
dr) eliminated low-frequency firing at threshold for type II-like cells. Changes in maximal conductances of Na� (gNa) and K�-dr (gKdr) currents promoted spiking.

Changes in maximal conductances of K� A-type (gKa), and h (gh) currents modulated resting membrane potential and rheobase current.
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earlier in the period than both type II-like cells C and D. Both cells
C and D showed a negative, spike-delaying region early in the
period, with a positive spike-advancing peak highly skewed to the
right. These distinctions are in fact consistent with the responses
of classic type I and type II dynamics: cells with a firing threshold
described by a saddle-node on a circle bifurcation (type I) (see
supplemental material, available at www.jneurosci.org) have
strictly non-negative phase response curves (Reyes and Fetz,
1993), whereas those described by a subcritical Hopf bifurcation
(type II) (see supplemental material, available at www.jneurosci.org)
have a negative region in their phase response curves (Brown et al.,
2004).

Analysis of coupled pairs of oscillating type I and type II neu-
rons has determined the properties of their PRCs that contribute
to the firing patterns in such two-cell networks. In particular,
when coupled with excitatory synapses, the spike-delaying, neg-
ative region early in the cycle together with the spike-advancing,
positive peak late in the cycle of the type II PRCs promote syn-
chronization of these cells (Hansel et al., 1995). However, the
strictly spike-advancing, positive PRCs of type I cells do not pro-
mote synchronization in pairs of neurons coupled with excitatory
synapses (Ermentrout, 1996; Izhikevich, 1999). For our results,
these theories are not directly applicable because we consider
much larger networks in which cells are not in an intrinsically
oscillatory state. Nevertheless, the propensities for desynchroni-
zation or synchronization of type I and type II neurons, respec-
tively, suggest how intrinsic neuronal properties contribute to
network spatiotemporal patterning.

Homogeneous networks
First, we explored the effects of neuron excitability and network
topology on activity patterns in homogenous networks com-
posed of only one cell type. In homogeneous networks, cellular
membrane excitability was found to have a significant impact on
the spatiotemporal patterning observed for a given network con-
nectivity radius and wiring topology (Fig. 3). Figure 3A–C shows
the phase plot of our three measures [frequency (A), degree of
synchronous bursting (B), and mean phase coherence (C)] com-
puted for networks with topologies characterized by rewiring pa-

rameter p values between 0 and 100% (horizontal axis) and ra-
dius of connectivity r values between 0 and 16 (vertical axis) in
which the color denotes the values of the different measures.
Based on these measures, we created summary plots describing
network activity patterns in different regions of p–r parameter
space (Fig. 3D). For very low connectivity radius r levels, net-
works of each cell type exhibited propagating chains of activity
(network raster plots for each network type shown in first row
below summary plots). The low number of connections sup-
ported propagation of these activity chains because termination
occurred when two chains propagating from opposite directions
met. However, as connectivity radius r levels were increased, net-
work responses varied dramatically for the four cell types. Net-
works of type II-like cells (cells C and D) displayed synchronous
bursting for most values of connectivity radius and rewiring sug-
gesting that subtleties of network topology are not reflected in
activity patterns. Networks of type I-like cells (cells A and B),
however, display different high-frequency activity patterns be-
fore the constraints of high connectivity r and rewiring p force
synchronous bursting behaviors. For cell A and B networks, these
high-frequency activity patterns took two forms: high-frequency,
temporally locked, wave-like propagation that we called repeti-
tive chain activity, or random asynchronous firing. The propa-
gating activity chains seen for low r values transitioned to the
higher frequency repetitive chains with the increase in the num-
ber of connections in the network. In this topology, one chain was
able to initiate multiple chains of activity farther out in the net-
work and back connections allowed a higher frequency of initia-
tion. But as the rewiring parameter p was increased, disrupting
the local coupling between cells, such chain activity could no
longer be supported and activity dissolved into high-frequency,
asynchronous patterning. For the highest values of r and p, the
effective path length in the network was sufficiently decreased to
force synchronous bursting activity.

The conditions that lead to synchronous bursting in these
homogeneous networks highlight the interaction of intrinsic cell
properties and network topology. Generally, our excitatory net-
work with high connectivity radius levels and a random wiring
pattern will promote synchronization. However, depending on
the intrinsic propensity of the cell for synchronization, a variety
of different network activity patterns are possible. In cell A net-
works, the intrinsic cell properties resisting synchronization are
dominant for a wide range of network topologies. Network struc-
ture forces synchronization only when the connectivity radius is
very high, random rewiring is abundant, and the effective path
length in the network is short. In the cell D networks, however,
intrinsic cell properties as well as network structure tend toward
synchronization. It is only when the network topology is re-
stricted to low radius of connectivity or low rewiring and the
effective pathlength in the network is too long to support syn-
chronization that the network does not fall into this activity pat-
tern. The introduction of only a few random connections is suf-
ficient to permit synchronous bursting. In this case, network
topology plays only a minimal role in the spatiotemporal
patterning.

Effect of synaptic weight and network size
Spatiotemporal activity in our excitatory network will clearly de-
pend on the overall synaptic input individual cells receive, which,
in turn, is a function of the magnitude of the synaptic weight as
well as the number of cells in the network for a given connectivity
percentage. We found, however, that the activity patterns (i.e.,
formation of propagating chains, asynchronous reverberatory

Figure 2. Phase response curves of model cells. Positive (negative) displacement indicates
an advance (delay) of the subsequent spike. Note increasingly greater shift in spike advance to
later in period from cell A to cell D. Also, note the expected negative region (spike delay) early in
the period for both type II cells C and D.
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activity, or synchronous bursts) obtained in the different homo-
geneous networks were overall robust to changes in synaptic
weight and network size. In particular, we investigated the effect
of network connectivity and synaptic weight on spatiotemporal
pattern formation in the four homogeneous networks of 250 cells
for a fixed network rewiring ( p � 0.2) (Fig. 4). We have chosen
this particular value of p as the network exhibited the most dra-
matic differences in its dynamics for different cell types. The
x-axis on the color plot represents changing values of synaptic
strength, whereas the y-axis represents the value of connectivity
radius (i.e., connectivity fraction) (see Materials and Methods).
In the three top rows, the color denotes the values of the measures
used (frequency, bursting, mean phase coherence). Activity pat-
terning was consistent across the range of synaptic weights com-
pared with network behaviors shown in Figure 3A–C, across net-
works having different cell types (Fig. 4A–C, columns). The black
arrow indicates the value of the synaptic strength used in the
previous set of the simulations. This consistency, evidenced by
uniform values for each of our measures horizontally across each
panel in Figure 4A–C, was true across most values of the synaptic
weights and connectivities. The discrepancies observed at the
lowest synaptic weights and low connectivity radius values are
attributable to the fact that the network dynamics could not be
supported (i.e., network was inactive) for these values and are
driven only by the external noise. To further emphasize parame-
ter regions in which differences in activity patterns were ob-
tained, we plot the parametric distance D based on our three
measures of network behavior compared with the behavior when
the synaptic weight was at the default level (Fig. 4D). As we men-
tioned above for all four cell types, largest differences in network
behaviors occurred for low synaptic weight and low connectivity
radius values (top left corner of each panel) because of much
lower network activity in these parameter regions compared with
default synaptic weight. In each panel, there is also a band of
relatively higher distance values that occurs at progressively lower
values of connectivity radius r with the transition from cell type A
to D. This band reflects the variability of network patterning in

these parameter regions in which network behavior transitioned
to bursting, as summarized in Figure 3D. For example, with re-
wiring p � 0.2 (20%), cell A networks transitioned to bursting
only near the highest connectivity radius r values, cell B networks
transitioned near r � 10, whereas cell C networks transitioned
near r � 5 and cell D networks transitioned at the lowest values of
r. We note that the difference occurs even at the default synaptic
weight value (indicated by the arrow in each panel), reflecting the
variability in network patterning with each random instantiation
of the network in these parameter regions.

We also found that network size did not affect the basic dif-
ferences in activity patterns in homogeneous networks composed
of the four different cell types (Fig. 5). We simulated networks
consisting of 500, 1000, and 2500 cells, and compared network
activity using our measures of frequency, bursting, and phase
coherence when the connectivity fraction in each network was
4%, the synaptic weight was at the default value of 0.7 mS/cm 2,
and the rewiring parameter p was set to conserve mean path-
length (which depends on p and the number of connections per
element) in each network (Newman, 2003). Increasing network
size did not qualitatively alter the differences in network pattern-
ing with cell type. In the 250 cell networks, type I networks (cell
types A and B) displayed high-frequency asynchronous firing
characterized by low values of B and R at these parameter values,
whereas type II networks (cell types C and D) were synchronously
bursting at lower frequencies but with higher values for B and R.
As network size increased, frequency and phase coherence of the
asynchronous activity in the type I networks increased, but burst-
ing remained low, indicating a consistency of activity patterning.

Because in a larger network, synaptic weights can vary over a
larger range for a fixed connectivity, and still maintain network
activity, we investigated spatiotemporal patterning for the net-
work with 2500 cells for synaptic weights down to an order of
magnitude smaller than the values used in other simulations. We
found that the differences in activity patterns in networks of dif-
ferent cell types were maintained across the range of synaptic
weights (Fig. 6). In this set of simulations, the connectivity frac-

Figure 3. Spatiotemporal pattern formation in 250 cell excitatory networks with homogeneous cell type as described by our three measures; average frequency F (A), bursting B (B), and mean
phase coherence R (C) for network topologies with rewiring parameter p between 0 and 100% (horizontal axis) and radius of connectivity r between 0 and 16 (vertical axis) for all four cell types
(columns cell A to cell D). Warm colors denote high values and cool colors denote low values. D, E, Summary plots showing network activity patterns obtained in different regions of rewiring p and
connectivity r parameter space as derived from our three measures for networks consisting of each cell type (top row, columns cell A to cell D). Raster plots showing 300 ms of network activity in each
parameter region of summary plots (bottom rows, columns cell A to cell D). In the raster plots, we have removed the initial 100 ms of network activity to ignore initialization transients.
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tion was fixed at 4% and rewiring p � 0.2.
As synaptic weight was decreased, type I
networks (cell types A and B) maintained
high-frequency asynchronous patterning
characterized by high average frequency
and low B, whereas type II networks (cell
types C and D) continued to burst syn-
chronously as indicated by the low values
of average frequency and high B. At the
lowest synaptic weight values, scaling of
frequency of type I networks and of burst-
ing B of type II networks can be observed.
This represents completely different re-
sponses of networks having different cell
types to the increased input. The type I cell
network modulated its frequency response
maintaining nonbursting type of the dy-
namics, whereas in type II cell network one
can observe increased burst synchrony
without an apparent change in frequency.
For simplicity, we did not include the val-
ues of phase coherence (R) for these re-
sults because the frequency and bursting
measures better reflected spatiotemporal
dynamics in these cases.

Effect of synaptic noise
Synaptic noise was included in our net-
works to maintain a low level of random
background activity. Our results on the
differences in network activity patterns
with cell type were not affected by different
frequencies of this background synaptic
noise (Fig. 7). We simulated 250 cell ho-
mogeneous networks of each cell type with
rewiring parameter p � 0.2, synaptic
weight set to 0.7 mS/cm 2, and varied the
frequency of the random synaptic input
(x-axis) each cell received from our default
value of 1 Hz (indicated by the arrow in
each panel) up to 4 Hz. For each network
type, activity patterns were consistent
across noise frequencies for values of con-
nectivity radius r between 0 and 16 ( y-
axis) as evidenced by the horizontal uni-
formity in the values of our measures in
each panel of Figure 7A–C as shown by the
color. Differences in activity patterns arising from different noise
frequencies are highlighted in Figure 7D, in which the parametric
distance between networks with the default noise frequency are
plotted. For cell type A networks, a high distance value occurs for
the lowest connectivity radius r and noise frequency values (top
left-hand corner) because of the overall low activity level in these
networks. As in Figure 4, horizontal bands of higher distance
values occur for networks of each cell type at the connectivity
radius r values, in which the networks transition to bursting,
reflecting the variability of network patterning in this transition
region.

Heterogeneous networks
To further understand the interaction between intrinsic neuronal
properties and network topology, we investigated activity pat-
terning in heterogeneous networks, composed of varying ratios

of type I and type II cells. Beginning with a homogeneous type I
(cell A) network, we randomly switched a fraction of the neurons
to type II (cell D). The results of these simulations are presented
in Figure 8. Figure 8, A and B, show the parametric distance
Di,cellA (A) and Di,cellD (B) of the behavior of a simulated hetero-
geneous network i to the behavior of a homogenous network
composed solely of cell types A and D, respectively. For example,
a low value of Di,cellA reflects high similarity between the activity
pattern in the heterogeneous network and that in a homogeneous
network composed of only cell type A (type I), whereas a low
value of Di,cellD reflects high similarity with a homogeneous net-
work composed of only cell type D (type II). The vertical axis
denotes the radius of connectivity r of the network, whereas the
horizontal axis denotes the percentage of type I cells in the mix-
ture ratio, varying from 0% type I cells (100% type II cells) to
100% type I cells (0% type II cells). Thus, the rightmost columns

Figure 4. Spatiotemporal pattern formation as a function of synaptic weight (horizontal axes) (in mS/cm 2) and radius of
connectivity r (vertical axes) for excitatory networks of 250 cells of type A, B, C, and D (columns from left to right). The rewiring
parameter was fixed at p � 0.2 (20%). A–D, Measures of network frequency (A), bursting (B), and mean phase coherence (C) in
which color reflects measure value (D). E, Parametric distance D (see Materials and Methods) of the three measures between
networks with synaptic weight fixed at the default value (0.7 mS/cm 2). The arrows in all panels denote this default synaptic
strength.
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of all panels in Figure 8A have low distance values, whereas the
leftmost columns of all panels in Figure 8B have low distance
values. The networks are simulated for four values of the rewiring
parameter p � 0.2, 0.4, 0.6, 0.8. Each data point represents the
average over 10 simulation runs, each run with a different instan-
tiation of network wiring topology. Figure 8C, however, displays
the minimum of the two distances plotted in Figure 8, A and B, to
focus on the parameter regions in which qualitatively new behav-
ior of the heterogeneous network emerges (i.e., behaviors not
similar to either of the homogenous networks for given network
topology).

We found that small changes in cell type composition could
have an immense effect on spatiotemporal patterning observed in

the network. We observed two basic pat-
terns of emergent behavior: (1) one of the
cell types dominated the behavior of the
network even for mixture ratios of a few
percentage, or (2) activity patterns
switched between different behaviors
characteristic of the homogeneous net-
works. Figure 8, D and E, depicts examples
of those two behaviors, respectively. Re-
placing as few as 10% of type I cells with
type II cells invoked synchronous bursting
even in regions of r–p parameter space in
which the homogenous network of type I
cells did not burst. Such an example is
shown in Figure 8D (Fig. 8C, arrow; same
point in Fig. 8A,B) in which the left panels
show asynchronous activity in the homo-
geneous type I network and synchronous
bursting in the homogeneous type II net-
work for network topology of the same r
and p values. But in the heterogeneous net-
work of 90:10 type I–type II mixture ratio,
those 10% of type II cells lead firing and
dictate synchronous bursting (see inset).
This dominance of type II activity in het-
erogeneous networks is apparent in the
low values of Di,cellD in a large region of r–p
parameter space (Fig. 8B). As suggested by
the homogeneous network results, all net-
works converge to synchronous bursting
activity at high radius of connectivity r and
high rewiring p, as evident by a drop in
Di,cellA at high p values.

Only when the percentage of type I cells
is close to 100 and connectivity radius r
values are low does activity vary from type
II-dominated behavior. In this parameter
region, networks displayed unreliable, al-
ternating switching between activity pat-
terns characteristic of homogeneous type I
networks and homogeneous type II net-
works. This switching is reflected in the
larger values of the minimum distance in
Figure 8C. An example of pattern switch-
ing is shown in Figure 8E (Fig. 8C, arrow;
same point in Fig. 8A,B) in which repeti-
tive chain activity, characteristic of type I
networks, transitions to synchronous
bursting, which is a more predominant be-
havior in type II networks. It is interesting

to note that type I cells lead firing during the repetitive chains, but
type II cells lead firing that results in a synchronous burst (see
insets). Generally, switching between behaviors occurred on a
variety of timescales, but faster timescale switching (on the order
of hundreds of milliseconds) tended to be more periodic.

Excitatory and inhibitory networks
In this study, we concentrate on exclusively excitatory networks
as a first step in understanding the interaction of intrinsic cell
properties and network topology in generating spatiotemporal
network patterning. However, in hippocampal-type networks
that we aim to simulate, inhibitory interneurons are integrated
throughout the network and contribute to network activity, both

Figure 5. Spatiotemporal pattern formation in excitatory networks as a function of number of cells N (N � 250, 500, 1000,
2500). Values of network frequency (left panel) (in hertz), bursting (B; middle panel) and phase coherence (R; right panel) for
networks composed of cell types A (dark blue), B (light blue), C (yellow), and D (red). In all networks, connectivity fraction was 4%
and synaptic strength was 0.7 mS/cm 2. Rewiring parameter p was adjusted (for N � 250, p � 0.4; for N � 500, p � 0.2; for N �
1000, p � 0.1; and for N � 2500, p � 0.04), so that the mean pathlength (which depends on p and number of connections per
element) is constant.

Figure 6. Network frequency (in hertz) (left) and bursting ( B) (right) for varied synaptic weight values (in mS/cm 2) in excita-
tory networks consisting of 2500 neurons of cell types A (dark blue), B (light blue), C (yellow), and D (red). Connectivity fraction in
the networks was 4% and rewiring p � 0.2.
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under normal and pathological condi-
tions. Here, we investigate whether the ad-
dition of inhibitory interneurons alters
our basic observation that membrane ex-
citability differentially affects spatiotem-
poral patterning in networks with differ-
ent structural properties. We coupled 250
cell excitatory networks to separate 250
cell inhibitory networks with a fixed topol-
ogy and homogeneous cell population
(composed of cell type A; intranetwork re-
wiring parameter, p � 0.2; intranetwork
inhibitory synaptic weight, 0.5 mS/cm 2).
For simplicity of computation, every in-
hibitory cell was paired with an excitatory
cell such that the distance between these
two cells was considered to be zero. This
pairing allowed us to easily compute the
distances between inhibitory and excita-
tory cells to achieve appropriate connec-
tivity. The intranetwork radius of connec-
tivity for the inhibitory network was set to
be always the same as that of the excitatory
one. The inhibitory network made inhibi-
tory synaptic connections onto cells in the
excitatory network with the same parame-
ters as its intranetwork topology (i.e., the
same number of connections and their
distribution). At the same time, the excita-
tory network made excitatory synaptic
connections to cells in the inhibitory net-
work with the equivalent topology of its
intranetwork excitatory connections.

Figure 9 shows our three measures of
frequency, bursting, and phase coherence
of the excitatory network activity patterns
in a homogeneous type I network (left col-
umn; cell type A) and type II network
(right column; cell type D) as connectivity
radius r and rewiring parameter p are var-
ied in the excitatory network. These results
indicate that, although the actual pattern
observed in the excitatory–inhibitory net-
work differed from that of an exclusively
excitatory network, the underlying obser-
vation was the same. Namely, the excitatory–inhibitory networks
with type D excitatory cells showed significantly higher capacity
to synchronize and burst than the corresponding networks with
type A excitatory cells.

Major differences in the patterning compared with solely ex-
citatory networks include lower spiking frequencies and a shift of
the parameter regions for which synchronous bursting occurs to
higher r and p values. Also, note that overall levels of the measures
for bursting and phase synchrony were decreased compared with
levels measured in exclusively excitatory networks (Fig. 3).

Discussion
We explored how neuronal membrane properties interact with
network topology to affect spatiotemporal pattern formation in a
network. Until now, most of the work exploring the dynamical
properties of networks has studied these effects separately. These
studies centered around molecular or cellular mechanisms un-
derlying single-cell responses (Steinlein and Noebels, 2000) or

topological network properties in which network elements have
extremely reduced dynamics (Netoff et al., 2004; Percha et al.,
2005; Boccaletti et al., 2006). A notable exception is the recent
work focusing on studying epileptogenic cellular and topological
changes in a large-scale network model of the dentate gyrus con-
taining biologically realistic cell types and network structure
(Santhakumar et al., 2005; Dyhrfjeld-Johnsen et al., 2007; Mor-
gan and Soltesz, 2008).

We have shown how the intrinsic properties of membrane
excitability contribute to the behavior of the network for different
network topologies. Our results are persistent across different
network sizes, connectivity strengths, and magnitudes of random
external input, making them highly likely to be relevant to brain
function. At the same time, our results are predominantly appli-
cable to local networks that do not have significant axonal trans-
mission delays, because our simulations do not incorporate exis-
tence and variability of such delays over large distances.

Although our studies focused mainly on excitatory networks,

Figure 7. Spatiotemporal pattern formation as a function of the noise frequency (horizontal axes) (in hertz) and radius of
connectivity r (vertical axes) for excitatory networks of 250 neurons of cell types A, B, C, and D (columns from left to right). A–D,
Measures of network frequency (A), bursting (B), and mean phase coherence (C) in which color reflects measure value (D). E,
Parametric distance D (see Materials and Methods) of the three measures between the case when synaptic noise was at its default
value of 1 Hz and the other values as indicated on x-axis. The arrows in all panels denote the default noise frequency (1 Hz).
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the spatiotemporal patterns we found under different network
conditions will be indicative of behaviors in more general net-
works, especially when excitatory interactions are prominent.
This is further supported by the fact that, when we added inhib-
itory neurons into our model, we still saw higher synchronization
and bursting capacity for the networks with type D excitatory
cells in the corresponding networks with type A excitatory neu-
rons. However, inhibitory interneuron networks can also exhibit
complex spatiotemporal patterning by themselves and, for exam-
ple, can lead to network synchronization (Kopell and Ermen-
trout, 2004; Bathellier et al., 2006; Klaassen et al., 2006). Thus,
more sophisticated models will be necessary to elucidate the rel-
ative contributions of cellular and network properties to recur-
rent excitation and inhibitory drive.

In our results, we observed that, with a change in membrane
excitability toward type II behavior, network dynamics transition
from a three-phase behavior to a two-phase behavior, effectively
abolishing the high-frequency, asynchronous state. This high ac-
tivation, asynchronous state can be linked to the occurrence of
“on” states of persistent cortical activity (Tahvildari et al., 2007,
2008; Galloway et al., 2008). It is generally assumed that such
enhanced spiking activity in the form of persistent reverberation
for several seconds is the neural correlate of working memory
(Funahashi et al., 1989; Fuster, 1990; Goldman-Rakic, 1995;
Mongillo et al., 2008). Our results indicate that local network
mechanisms in the form of the introduction of a minimal num-
ber of random connections or of cells with type II-like membrane
properties can abolish this state in favor of synchronous bursting.

Additionally, in our heterogeneous networks, activity spontane-
ously switched from more asynchronous patterns to synchro-
nous bursting depending on the specific cells that initiated the
firing episode.

Our simulation results also show that the extent of the effects
of network topology varies with the properties of the network
elements, suggesting that a single ictogenic mechanism alone
may not be responsible for seizure generation. Conversely, we
show that a combination of network and cellular mechanisms
leads more robustly to synchronous discharges in our model.
This could indicate that changes in a single (cellular or network)
parameter would have to be pretty large in the context of known
anatomical and physiological data to induce seizure-like activity.
However, a combination of smaller changes in both network and
cellular properties may lead to dramatic dynamical changes in
network activity patterns. This idea is further underscored by our
finding that adding even a small percentage of cells with certain
characteristics to create a heterogeneous network markedly
changes the patterning of network activity.

Specifically, our heterogeneous networks show emergent be-
havior, even for very small mixture ratios of type I and type II
cells, suggesting the possible importance of the identity and/or
location of pathologically modified cells in epileptogenesis. As in
the brain, the combination of small world and, possibly, scale free
network topologies (see supplemental material, available at www.
jneurosci.org) supports the formation of local cellular hubs (cells
or local cell communities with large numbers of incoming and
outgoing connections). Recent modeling results in large-scale

Figure 8. Effects of cell type heterogeneity on network spatiotemporal patterning in 250 cell excitatory networks. A, B, Parametric distance Di,cellA from homogeneous type I (cell A) networks (A)
and Di,cellD from homogeneous type II (cell D) networks (B) for heterogeneous network i with mixture ratio of type I and type II cells on horizontal axis and connectivity radius r on vertical axis. C,
Minimum of Di,cellA and Di,cellD. The warm colors denote high values, whereas the cool colors denote low values. D, Activity in a mixed network of 10% type II neurons, which dominate activity and
promote stable global synchrony (right panel) for r–p parameter values (parameter values at arrow in C, 2nd panel) that display asynchronous activity in a homogeneous type I network (left panel,
left plot) and synchronous bursting in a homogeneous type II network (left panel, right plot). E, Activity of mixed network (parameter values at arrow in C, 1st panel) exhibiting unreliable switching
behavior that continues throughout run. Note in D and E the network synchronizes when type II cells lead bursts (see insets D and right E), and that leading type I cells do not promote network
synchrony (see E, top inset). In all raster plots, we have removed the initial 100 ms of network activity to ignore initialization transients.
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realistic models of the dentate gyrus sug-
gest that pathological changes in those
hubs alone may lead to seizure-like net-
work dynamics (Morgan and Soltesz,
2008). Moreover, our results indicate that
the mixture ratio can be effectively smaller
for more global network topologies to ob-
tain the observed transitions. This further
underscores the potential importance of
combined network and cellular mecha-
nisms underlying formation of synchro-
nous discharges.

Together, these results point to ex-
tremely complex interactions between cel-
lular and molecular properties, as well as
network properties underlying spatiotem-
poral patterning observed, for example,
during the transition from bursting to
seizure-like discharges. This further indi-
cates that insight into the synergy of these
very different scales may be crucial in un-
derstanding function in the healthy and
pathological brain.
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