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Introduction
The centromere is essential for faithful chromosome segrega-
tion during mitosis. The kinetochore is assembled on centro-
meres to form a dynamic interface with microtubules from 
the mitotic spindle (Cheeseman and Desai, 2008). To under-
stand kinetochore structure and the mechanisms related to 
chromosome segregation, it is critical to define the identity, 
organization, and functional roles of the numerous kineto-
chore proteins.

In recent years, multiple kinetochore proteins have been iden-
tified in vertebrate cells using a combination of approaches (Foltz  
et al., 2006; Izuta et al., 2006; Okada et al., 2006; Cheeseman and 
Desai, 2008; Hori et al., 2008a). These studies have revealed 
that a constitutive centromere-associated network (CCAN) of 
proteins associates with centromeres throughout the cell cycle 
and provides a platform for the formation of a functional kineto-
chore during mitosis. Other kinetochore proteins, including the 
KNL1–Mis12 complex–Ndc80 complex (KMN) network, are 
targeted to kinetochores by CCAN-containing prekinetochores 

during G2 and mitosis (Cheeseman et al., 2008) to establish a 
fully assembled kinetochore capable of interacting with spindle 
microtubules and facilitating faithful chromosome segregation 
(Cheeseman et al., 2006; DeLuca et al., 2006).

In vertebrates, 15 proteins (centromere protein C [CENP-C], 
H, I, K to U, and W) have been identified as CCAN compo
nents (Hori et al., 2008a). Based on a combination of functional 
and biochemical analyses, we and others have previously dem-
onstrated that the CCAN is divided into several subclasses 
(Izuta et al., 2006; Liu et al., 2006; Okada et al., 2006; Kwon  
et al., 2007; McClelland et al., 2007; Hori et al., 2008a, b).

CENP-S was originally identified as copurifying with 
CENP-M or -U and was verified as a CCAN component (Foltz 
et al., 2006). However, CENP-S was not detected as a stoichio-
metric interacting partner in the CENP-H–containing complex 
in our biochemical purifications from DT40 or HeLa cells 
(Okada et al., 2006). Thus, we sought to define the relationship 
between CENP-S and the other CCAN subcomplexes. In this 
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(CCAN) proteins are central to kinetochore assem-
bly. To define the molecular architecture of this criti-

cal kinetochore network, we sought to determine the full 
complement of CCAN components and to define their 
relationships. This work identified a centromere protein S 
(CENP-S)–containing subcomplex that includes the new 
constitutive kinetochore protein CENP-X. Both CENP-S– 
and CENP-X–deficient chicken DT40 cells are viable but 
show abnormal mitotic behavior based on live cell analy-
sis. Human HeLa cells depleted for CENP-X also showed 

mitotic errors. The kinetochore localization of CENP-S 
and -X is abolished in CENP-T– or CENP-K–deficient cells, 
but reciprocal experiments using CENP-S–deficient cells 
did not reveal defects in the localization of CCAN compo-
nents. However, CENP-S– and CENP-X–deficient cells 
show a significant reduction in the size of the kineto
chore outer plate. In addition, we found that intrakineto
chore distance was increased in CENP-S– and 
CENP-X–deficient cells. These results suggest that the 
CENP-S complex is essential for the stable assembly of the 
outer kinetochore.
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replaced with CENP-X–Flag and used these to conduct IPs with 
anti-Flag antibodies. Western blot analysis with anti–CENP-S or 
anti-Flag antibodies indicated clear coprecipitation of CENP-S 
and -X (Fig. 1 D). To determine whether the interaction between 
CENP-S and -X is conserved in humans, we conducted similar 
IPs from HeLa cell lines stably expressing GFPLAP–CENP-S or 
GFPLAP–CENP-T. Mass spectrometric analysis revealed the pres-
ence of CENP-X (Stra13; NCBI Protein database accession no. 
NP_659435) in CENP-S IPs but not in CENP-T IPs (Fig. 1 C).

To investigate the localization of CENP-X, we generated a 
DT40 cell line in which endogenous CENP-X was completely 
replaced with CENP-X–GFP. Colocalization with anti–CENP-C 
antibodies demonstrated that CENP-X–GFP localizes to centro-
meres throughout the cell cycle (Fig. 1 E). We also confirmed the 
colocalization with anti-Flag antibodies in cells in which endog-
enous CENP-X was completely replaced by CENP-X–Flag  
(Fig. S1). Based on the copurification with CENP-S and its con-
stitutive localization to centromeres, we conclude that CENP-X 
is a new component of the CCAN.

Both CENP-S– and CENP-X–deficient  
DT40 cells are viable but show defects  
in mitotic progression
To understand the function of the CENP-S–CENP-X complex 
and its relationship to other kinetochore components, we gener-
ated loss-of-function DT40 mutants for CENP-S and -X (Fig. S2). 
We were able to isolate homozygous CENP-S/ and CENP-X/ 
deletions, indicating that CENP-S– and CENP-X–deficient cells 
are viable. To determine the consequences of loss of CENP-S 
and -X, we first examined the growth curves for CENP-S– and 
CENP-X–deficient cells. Under standard growth conditions, these 
knockout (KO) cells grew with similar growth rates to wild-type 
cells (Fig. S3). We also observed a slight accumulation of G2/M 
cells in both CENP-S– and CENP-X–deficient cell lines com-
pared with wild-type cells by FACS analysis (Fig. S3). In addi-
tion, we observed a three- to fourfold increase in the number 
of apoptotic cells in these mutants compared with control cells 
based on DAPI staining with microscopic analysis, which may 
reflect an accumulation of mitotic defects.

To examine the presence of any errors in mitosis, we visu-
alized the behavior of individual CENP-S–deficient cells ex-
pressing histone H2B-RFP. Time-lapse imaging of wild-type and 
CENP-S–deficient cells (Fig. 2 A) indicated the presence of some 
mitotic defects in the absence of CENP-S. Although most  
CENP-S–deficient cells progressed through mitosis, these cells 
took a mean of 25.1 ± 6.4 min (±SD; n = 42) to progress from 
prophase to anaphase, which is significantly longer than the time 
observed in wild-type cells (19.3 ± 4.3 min; n = 36; P = 0.000012). 
In addition, we observed that >30% of CENP-S–deficient cells 
displayed anaphase bridging of chromosomes (Fig. 2 A, CENP-S 
KO 1–3). These results indicate that CENP-S is important for 
proper mitotic progression and chromosome segregation in DT40 
cells even though it is dispensable for viability in a population.

The phenotype of CENP-S– and CENP-X–deficient cells 
is similar to that of cells with KOs of CENP-O class proteins, 
which are viable but show slight mitotic defects (Hori et al., 
2008b). Cells with KOs of CENP-O class proteins do not exit 

study, we identify a new CENP-S–interacting protein and define 
a function for the CENP-S–containing complex in stable outer 
kinetochore assembly.

Results and discussion
CENP-X is a component of the CCAN
Our previous purifications using epitope-tagged CENP-H, -I, or -O 
did not isolate CENP-S (Okada et al., 2006), suggesting that 
CENP-S represents a distinct component of the CCAN from the 
CENP-H– and CENP-O–containing complexes. To assess this 
more closely, we fractionated protein extract from DT40 cells 
by gel filtration chromatography and analyzed each fraction by 
Western blot analysis with antibodies against CENP-O or -S. 
The profile of CENP-S was clearly distinct from that of CENP-O 
(Fig. 1 A), suggesting that the CENP-O–containing complex 
does not contain CENP-S. To confirm the results of the gel fil-
tration analysis, we performed immunoprecipitation (IP) exper-
iments with cell lines in which endogenous CENP-P (a CENP-O 
complex protein) or CENP-S was completely replaced with 
CENP-P–Flag or CENP-S–Flag, respectively (Fig. 1 B). Mass 
spectrometry indicated that the CENP-P–Flag IPs primarily 
contained CENP-O, -P, -Q, -R, and -50 (U) but not CENP-S, 
which is consistent with our previous analysis (Hori et al., 
2008b). Similarly, in CENP-S–Flag IPs, we did not observe 
clear bands at the expected sizes for the CENP-H or -O complex 
proteins on silver-stained gels (Fig. 1 B). We also confirmed the 
coprecipitation using high sensitivity mass spectrometry analy-
ses. Finally, we performed IPs with cell lines in which endoge-
nous CENP-H or -N was completely replaced with CENP-H–Flag 
or CENP-N–Flag, and we similarly did not detect CENP-S in 
either IP (Fig. 1 C). These results suggest that CENP-S can be 
separated from the rest of the CCAN and is distinct from the 
CENP-H– or the CENP-O–containing complex. However, we 
note that CENP-T was detected in CENP-S IPs using high sen-
sitivity mass spectrometry analyses (Fig. 1 C). Consistent with 
this, gel filtration chromatography of DT40 extracts revealed 
two peaks of CENP-S migration, one of which co-migrates with 
a CENP-T peak, although the proportion of the CENP-S that 
co-migrates with CENP-T is minor (Fig. S1). CENP-T was also 
detected by Western blot analysis in CENP-S IPs, but the copre-
cipitation efficiency of CENP-T with CENP-S is not high (Fig. S1). 
Considering these data, we conclude that the CENP-S complex 
is distinct from the CENP-T complex, although CENP-S may 
associate weakly with the CENP-T complex.

Although we did not observe clear bands of known CCAN 
proteins in CENP-S–Flag IPs, we detected a strong band with a 
molecular mass of 10.5 kD (Fig. 1 B). We determined the 
amino acid sequences of the peptides from this band and found 
that this corresponds to the D9 (Stra13) protein (amino acid se-
quence from ChEST533l10 clone). We will refer to D9 (Stra13) 
as CENP-X based on the results of the localization experiments 
described in the next paragraph. The human homologue of 
Stra13 (CENP-X) was reported as a protein whose expression is 
increased upon retinoic acid induction (Scott et al., 1996). To 
confirm the interaction between CENP-S and -X, we generated 
DT40 cell lines in which endogenous CENP-X was completely 

http://www.jcb.org/cgi/content/full/jcb.200903100/DC1
http://www.jcb.org/cgi/content/full/jcb.200903100/DC1
http://www.jcb.org/cgi/content/full/jcb.200903100/DC1
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Figure 1.  Identification of the CENP-S–associated protein CENP-X. (A) Immunoblots of DT40 cell extracts fractionated on a Superose 6 gel filtration column 
using antibodies against anti–CENP-O or –CENP-S. Signal intensities are plotted in the graph, and peak fractions are indicated by arrowheads. (B) SDS-
PAGE of proteins isolated by IP with anti-Flag antibodies using cells in which expression of CENP-P or -S was replaced with CENP-P–Flag or CENP-S–Flag, 
respectively. Wild-type (WT) DT40 cells were also used for IP with anti-Flag antibodies as a control. (C) High sensitivity mass spectrometric analysis of 
the purifications of chicken and human centromere proteins indicating the percentage sequence coverage for each polypeptide. (D) Co-IP of CENP-S with 
CENP-X. Immunoprecipitates of CENP-X–expressing and wild-type cells with anti-Flag antibodies were separated by SDS-PAGE and analyzed by Western 
blotting with anti-Flag or –CENP-S antibodies. (E) Localization of GFP-tagged CENP-X throughout the cell cycle in DT40 cells. Centromeres were costained 
with anti–CENP-C antibodies. M, molecular mass marker. Bar, 10 µm.
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cells that had apparently entered anaphase based on the pres-
ence of separated sister kinetochores.

To determine whether CENP-X has overlapping functions 
with other CCAN proteins, we also conducted double deple-
tions between CENP-X and CENP-Q, -K, or -W by RNAi. This 
strategy previously demonstrated a synergy between CENP-K 
and human KNL1 for assembly of the human kinetochore 
(Cheeseman et al. 2008). However, double CENP-X/CENP-Q–, 
CENP-X/CENP-K–, and CENP-X/CENP-W–depleted cells did 
not show synergistic phenotypes compared with the singly de-
pleted cells (unpublished data). In total, these results suggest 
that depletion of human CENP-X causes defects that are dis-
tinct from those associated with other CCAN components and 
suggests that CENP-X plays a critical role in proper chromo-
some segregation.

Kinetochore localization of the  
CENP-S–CENP-X complex occurs 
downstream of the CENP-H complex  
but is distinct from the CENP-O complex
To define the relationship of CENP-S and -X to the other com-
ponents of the CCAN, we next conducted localization experi-
ments. We found that CENP-X localization was abolished in 
CENP-S–deficient cells and that CENP-S localization was 
eliminated in CENP-X–deficient cells (Fig. 3 A). We also ob-
served that CENP-X RNAi in human cells eliminated GFP–
CENP-S kinetochore localization (Fig. S3 D). In combination 
with the biochemical purifications described in the previous 

mitosis after release from a nocodazole block (Minoshima  
et al., 2005). Therefore, we tested the ability of CENP-S–deficient 
cells to recover from spindle damage (Fig. S3 C). We treated cells 
with nocodazole for 12 h and then removed the drug and examined 
the entry of the cells into interphase. Wild-type cells progressed 
to G1 phase immediately, and <10% were mitotic 4 h after re-
lease from the nocodazole block. In contrast, 60% of CENP-50 
(U) (a CENP-O class protein)–deficient cells were mitotic 4 h 
after release from the nocodazole block, as reported previously 
(Minoshima et al., 2005). In CENP-S–deficient cells, 15% of 
cells at 4 h were mitotic after release from the nocodazole block. 
Although this suggests a slight defect in the recovery from spin-
dle damage in CENP-S–deficient cells compared with wild-type 
cells, the defect is minor compared with CENP-50 (U)–deficient 
cells. These results suggest that CENP-S–CENP-X function is 
distinct from the CENP-O class of proteins.

Finally, we also analyzed the mitotic behavior after deple-
tion of human CENP-X by siRNA-based knockdown in HeLa 
cells (Fig. 2 B). In contrast to DT40 cells, CENP-X RNAi in 
HeLa cells resulted in numerous mitotic defects. Although we 
observed a small subset of CENP-X–depleted cells in which 
chromosomes were largely aligned at a metaphase plate, nu-
merous instances of moderately and highly misaligned chromo-
somes were observed in these cells (Fig. 2 B). This strong defect 
in chromosome alignment is qualitatively similar to our previ-
ous analyses of CENP-K– and CENP-W–depleted HeLa cells 
(Okada et al., 2006; Hori et al., 2008a). However, in contrast to 
CENP-K and -W depletions, we did observe some examples of 

Figure 2.  Both CENP-S– and CENP-X–deficient DT40 cells are viable but show defects in mitotic progression. (A, left) Dynamics of chromosomes in wild-type 
(WT) or CENP-S–deficient cells visualized by time-lapse observation of living cells. Selected images of chromosomes from prophase to anaphase in these 
cells are shown. (right) Quantification of the time for progression from prophase to anaphase in wild-type and CENP-S–deficient cells as determined by time-
lapse microscopy of living cells. (B) Chromosome morphology and -tubulin staining (green) in human HeLa cells after siRNA-based knockdown for CENP-X. 
Human anticentromere antibodies (ACA) were used to detect the position of centromeres (red), and DNA (blue) was stained with Hoechst. Bars, 10 µm.
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CENP-C, -T, -K, -50 (U), and -S in CENP-X– and CENP-50 (U)–
deficient cells. Our observations indicate that the localization of  
the tested CCAN proteins did not change in CENP-X– and 
CENP-50 (U)–deficient cells (Fig. 3 C).

The phenotypes of the CENP-S– and CENP-X–deficient 
cells are distinct from those of cells with KO of the CENP-O 
complex proteins based on the recovery from spindle damage  
assay (Fig. S3 C). Consistent with these distinct functional roles, 

section, these results support a model in which CENP-S and -X 
form a closely associated complex.

We next examined the kinetochore localization of CENP-S 
in CENP-K (a component of the CENP-H–containing com-
plex)– or CENP-T–deficient cells. The kinetochore localization 
of CENP-S was eliminated in both CENP-K– and CENP-T– 
deficient cells (Fig. 3 B). We also examined the kinetochore 
localization of representative CCAN components, including 

Figure 3.  Kinetochore localization of the CENP-S–
CENP-X complex occurs downstream of the CENP-H 
complex but is distinct from the CENP-O complex.  
(A) CENP-X localization in CENP-S–deficient cells 
(CENP-S OFF) and CENP-S localization in CENP-X– 
deficient cells (CENP-X OFF). WT, wild type. (B) CENP-S  
localization in CENP-K– or CENP-T–deficient cells 
(CENP-K OFF or CENP-T OFF, respectively). (C) Immuno
fluorescence analysis in wild-type DT40 and CENP-50–  
and CENP-X–deficient cells with the indicated antibodies  
(green). DNA was counterstained with DAPI (blue).  
(D) Imaging of human HeLa cells stably expressing 
GFP-tagged CENP-H after siRNA-based knockdown 
for control or CENP-X. Bars, 10 µm.
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chromatin region in CENP-S–deficient cells was longer than 
that in wild-type cells (Fig. 4 A). Therefore, we measured the 
distance in 150 kinetochores from our EM analysis for both 
CENP-S–deficient and wild-type cells and found that the dis-
tance in CENP-S–deficient cells (29.9 nm) is significantly longer 
than that in wild-type cells (23.9 nm; Fig. 4 D). The distance in 
CENP-50 (U)–deficient cells was 26.3 nm, which is slightly 
longer than that in wild-type cells but shorter than that in CENP-S–
deficient cells. Recent studies suggested that the condensin 
complex regulates inter- and intrakinetochore distances under 
tension (Maresca and Salmon, 2009; Uchida et al., 2009). How-
ever, inter- and intrakinetochore distances are not changed in 
condensin-null DT40 cells in the absence of tension (Ribeiro et al., 
2009), which suggests that there is a mechanism to prevent the 
kinetochore from stretching in the absence of external force. 
Our EM analysis was performed after treatment with nocodazole, 
which eliminates kinetochore–microtubule attachments and spindle 
forces. To confirm the EM observations, we stained chromo-
somes with anti–CENP-T (an inner kinetochore protein) or anti-
Ndc80 (Hec1; an outer kinetochore protein) antibodies after 
nocodazole treatment and measured the distances between sis-
ter kinetochores in CENP-S– and CENP-X–deficient and wild-
type cells. The distance between Ndc80 at two paired sister 
kinetochores was increased in CENP-S–CENP-X–deficient cells. 
In contrast, the distance between CENP-T between two paired 
inner kinetochores was not changed (Fig. 4 E). These results in-
dicate that the intrakinetochore distance is increased in both 
CENP-S and –CENP-X–deficient cells and that this occurs 
structurally between the inner kinetochore protein CENP-T and 
the outer kinetochore protein Ndc80.

CENP-S– and CENP-X–deficient cells 
display reduced localization of outer 
kinetochore proteins
The EM analysis suggests that there are defects in the proper 
formation of a functional kinetochore outer plate in CENP-S–
deficient cells. Therefore, we next analyzed the localization of 
outer kinetochore proteins in CENP-S– or CENP-X–deficient 
cells. The KMN network is located at the outer plate (DeLuca  
et al., 2005) and has a central role in forming kinetochore– 
microtubule attachments (Cheeseman et al., 2006). Although 
the KMN network subunits KNL1, Mis12, and Ndc80 all local-
ized to kinetochores in CENP-S– and CENP-X–deficient DT40 
cells, we found that the signal intensities of Ndc80 (80% rela-
tive to control; Fig. 5 A) and KNL1 (not depicted) were reduced 
in CENP-S– and CENP-X–deficient cells relative to controls. In 
contrast, we did not detect significant differences of Mis12 sig-
nals between the control and mutant cells.

We also conducted similar experiments to determine whether 
CENP-X is required for outer kinetochore assembly in human cells 
(Fig. 5 B). We observed a strong reduction in the levels of human 
KNL1 (35 ± 38% relative to control) and Ndc80 (53 ± 11% relative 
to control) at kinetochores, but the level of Dsn1 (a Mis12 complex 
protein) was not changed. In total, these results demonstrate that 
the assembly of the outer kinetochore components KNL1 and 
Ndc80 is compromised in CENP-S– and CENP-X–deficient cells, 
which causes reduced outer plate formation.

we observed clear CENP-S signals in CENP-50 (U)–deficient 
cells (Fig. 3 C), indicating that the kinetochore localization and 
function of the CENP-S–CENP-X complex is distinct from the 
CENP-O complex. We have previously shown that CENP-S  
localization does not change in CENP-C–deficient cells (Hori et al., 
2008a), suggesting that CENP-C has distinct function from the 
CENP-S–CENP-X complex. We also confirmed that the localiza-
tion of human CENP-H and -O is not affected in human cells  
depleted for CENP-X (Fig. 3 D and not depicted). In total, these  
localization experiments demonstrate that kinetochore targeting of 
the CENP-S–CENP-X complex occurs downstream of the CENP-H 
complex and is distinct from CENP-C and the CENP-O complex.

Kinetochore outer plates of  
CENP-S–deficient cells are smaller than 
those of wild-type cells
Although we did not observe an apparent reduction in the kineto-
chore localization of established CCAN proteins in CENP-S– or 
CENP-X–deficient cells (Fig. 3), it is possible that CENP-S and  
-X play a role in controlling outer kinetochore assembly. To de-
termine whether CENP-S or -X play a global role in controlling 
the assembly of non-CCAN proteins, we examined the structural 
morphology of the kinetochore outer plate by EM. For these ex-
periments, we imaged 30–40 170-nm-thick serial sections for in-
dividual mitotic cells treated with nocodazole. In both CENP-S– 
deficient cells and wild-type DT40 cells, we observed similar 
numbers of clear electron-dense kinetochore outer plates (Fig. 4, 
A and B). We also observed a similar number (26.6 ± 8.8) of outer 
plates in CENP-50 (U)–deficient cells. In contrast, we observed 
that CENP-H deficiency causes a severe reduction in the number 
of visible outer plates (unpublished data), as previously shown 
for CENP-T deficiency (Hori et al., 2008a).

Although we did not detect differences in the numbers of 
outer plates between CENP-S–deficient cells and wild-type DT40 
cells, we found that the plate length of CENP-S–deficient cells 
was shorter than that of wild-type cells. As shown in Fig. 4 C, the 
length of outer kinetochore plates varied even in individual cells. 
In wild-type cells, we observed a main peak of plate length of 
200 nm and a shoulder peak of 300 nm, with a mean plate 
length of 227 nm (±70.5 nm; Fig. 4 C). In CENP-S–deficient 
cells, we observed a main peak of 150 nm and a shoulder peak 
of 240 nm, with a mean size of 185 nm (±61.7 nm; Fig. 4 C). 
The plate length of CENP-50 (U)–deficient cells (261 ± 148.5 nm) 
was not significantly different from that of wild-type cells.  
These data suggest that CENP-S is involved in the formation of 
a functional kinetochore outer plate, which is essential for 
kinetochore–microtubule attachment and faithful mitotic progres-
sion. Liu et al. (2006) have previously reported that outer plate 
morphology is altered after treatment of siRNA against CENP-I. 
The contribution of CENP-S to the formation of a functional  
kinetochore may function coordinately with the CENP-I pathway.

Intrakinetochore distance is increased in 
CENP-S– and CENP-X–deficient cells in the 
absence of tension
During our analysis of outer plate structure by EM, we observed 
that the distance between the outer plate and electron-dense 
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Figure 4.  The length of the outer plate and the distance of the interkinetochore in CENP-S–deficient cells. (A) Electron micrograph showing a typical 
image of the kinetochore outer plate in wild-type (1 and 1) or CENP-S–deficient cells (2 and 2). (B) Numbers of identifiable outer plates per cell (mean  
± SD). Approximately 35 serial sections were made for each cell, and the numbers of outer plates were counted. (C) Distribution of the outer plate length 
in wild-type or CENP-S–deficient cells. In both cell lines, two peaks with distribution were observed. The two peaks in the distribution of the plate length are 
likely caused by differences in sample orientation. As the orientation of some cells is not plane of the section, the length of plates varies depending on the 
angle of the section against a chromosome. (D) Distance between outer plate and electron-dense chromatin region in wild-type or CENP-S–deficient cells.  
(E) Distances between Ndc80 and Ndc80 or CENP-T and CENP-T of control or CENP-S– or CENP-X–deficient metaphase cells in the absence of micro
tubules. Arrows indicate sister kinetochore pairs. (D and E) Error bars represent SD. Bars: (A) 200 nm; (E) 5 µm.
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Figure 5.  Localization of outer plate proteins in CENP-S– or CENP-X–deficient cells. (A) Immunofluorescence analysis in wild-type (WT) DT40 or CENP-S–  
or CENP-X–deficient cells with anti-Ndc80 and -Mis12 antibodies. Signal intensities at each kinetochore were measured in these cells. Error bars represent 
SD. (B) Immunofluorescence analysis with anti-Ndc80, -KNL1, or -Dsn1 antibodies in HeLa cells treated with control or CENP-X siRNAs. The numbers in 
the micrographs are relative signal intensities of kinetochore signals. (C) A model for the assembly of kinetochore proteins at mitosis. The CENP-S–CENP-X 
complex is essential for the stable assembly of outer kinetochore proteins. In addition, the CENP-S–CENP-X complex generates a discrete CCAN structure 
to prevent the kinetochore from overstretching (left). In CENP-S– and CENP-X–deficient cells, the amount of KNL1 and Ndc80 at kinetochores is reduced, 
and CCAN structure is less tight, which causes kinetochore to be overstretched (right). Bars, 10 µm.
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methanol for 15 min at 20°C, permeabilized in 0.5% NP-40 in PBS for 
10 min at room temperature, rinsed three times in 0.5% BSA, and incu-
bated for 1 h at 37°C with primary antibody. Binding of primary antibody 
was then detected with Cy3- or FITC-conjugated goat anti–rabbit IgG (Jackson 
ImmunoResearch Laboratories) diluted to an appropriate concentration in 
PBS/0.5% BSA. Affinity-purified rabbit polyclonal antibodies were used 
against recombinant chicken CENP-C (Fukagawa et al., 1999), CENP-H 
(Fukagawa et al., 2001), CENP-K (Okada et al., 2006), CENP-50 
(Minoshima et al., 2005), CENP-T (Hori et al., 2008a), and CENP-S. 
Other antibodies used in this study were described previously (Nishihashi 
et al., 2002; Hori et al., 2003; Regnier et al., 2005). Chromosomes and 
nuclei were counterstained with DAPI at 0.2 µg/ml in Vectashield antifade 
(Vector Laboratories). Immunofluorescence images were collected with a 
cooled EM charge-coupled device camera (Quntem; Roper Scientific) 
mounted on an inverted microscope (IX71; Olympus) with a 100× NA 
1.40 objective lens together with a filter wheel at room temperature. Sub-
sequent analysis and processing of images were performed using Meta-
Morph software (Roper Scientific). Immunofluorescent human cells were 
imaged on a Deltavision Core system (Applied Precision, LLC) equipped 
with a camera (CoolSNAP HQ2; Photometrics). All images were scaled 
and processed identically.

Living cell observation
For live cell imaging, a histone H2B-RFP plasmid was transfected into 
CENP-S–deficient cells to visualize chromosomes. Fluorescently stained liv-
ing cells were observed with an IX71 inverted microscope with an oil  
immersion objective lens (Plan-Apochromat 60× NA 1.40) in a temperature-
controlled box to keep the temperature at 38°C. Time-lapse images were 
recorded at 3-min intervals with an exposure time of 0.2–0.3 s using a 
CoolSNAP HQ2 camera. Subsequent analysis and processing of images 
were performed using IPLab software (Signal Analytics).

EM
DT40 cells were treated with 500 ng/ml nocodazole for 3 h and fixed 
in 2.5% glutaraldehyde and 0.15% tannic acid in the 0.1 M Na caco-
dylate buffer for 1 h. Postfixation was performed in 2% OsO4 for 1 h on 
ice. The cells were dehydrated in ethanol and then infiltrated with Epon 
812. Polymerization was performed at 60°C for 48 h. Serial sections 
were cut with an ultramicrotome (Leica) equipped with a diamond knife 
(Diatome), and sections were stained with uranyl acetate and lead  
citrate and examined in an electron microscope (JEM1010; JEOL). The 
contrast of each image was normalized with the brightness of the mem-
brane structure.

Online supplemental material
Fig. S1 shows the relation of the CENP-S–CENP-X complex with the CENP-T–
CENP-W complex. Fig. S2 indicates the strategy for generating KO cell 
lines for CENP-S and -X. Fig. S3 shows the phenotype for CENP-S– and 
CENP-X–deficient cells. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200903100/DC1.
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