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Abstract
A probabilistic discrete event system (PDES) is a nondeterministic discrete event system where the
probabilities of nondeterministic transitions are specified. State estimation problems of PDES are
more difficult than those of non-probabilistic discrete event systems. In our previous papers, we
investigated state estimation problems for non-probabilistic discrete event systems. We defined four
types of detectabilities and derived necessary and sufficient conditions for checking these
detectabilities. In this paper, we extend our study to state estimation problems for PDES by
considering the probabilities. The first step in our approach is to convert a given PDES into a
nondeterministic discrete event system and find sufficient conditions for checking probabilistic
detectabilities. Next, to find necessary and sufficient conditions for checking probabilistic
detectabilities, we investigate the “convergence” of event sequences in PDES. An event sequence is
convergent if along this sequence, it is more and more certain that the system is in a particular state.
We derive conditions for convergence and hence for detectabilities. We focus on systems with
complete event observation and no state observation. For better presentation, the theoretical
development is illustrated by a simplified example of nephritis diagnosis.
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1. Introduction
When applying discrete event system theory (Cao, Lin, & Lin, 1997; Cassandras & Lafortune,
1999; Cieslak, Desclaux, Fawaz, & Varaiya, 1988; Heymann & Lin, 1994; Kumar & Shayman,
1998; Lafortune & Lin, 1991; Li, Lin, & Lin, 1998; Lin, & Wonham, 1988; Ozveren & Willsky,
1990; Ramadge, 1986; Ramadge & Wonham, 1987; Ramadge & Wonham, 1989; Thistle,
1996; Wonham & Ramadge, 1988), we often need to know the state of a system. Clearly, if
the initial state of a system is unknown, or if the system is nondeterministic, then we may not
know the current state. In general, the state estimation is based on observations of events and
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state outputs. For example, by observing a copy machine, we cab see a page being fed into the
machine and its copy being made. But we may not be able to observe the movement of papers
inside the copy machine. The events that can be seen are called observable events. Knowing
what observable events have occurred can help us to determine the current state of the system.
We may also observe some state outputs that can help us to obtain more information about the
state of the system. For example, a signal warning that papers are jammed in the copy machine
will tell us some papers are stuck in the paper path, but it may not tell us how many papers are
stuck or where they are stuck.

State estimation is always an important problem in system and control theory. In classical
control theory, the state estimation problem is investigated in terms of observability, while in
discrete event systems, the problem is investigated in terms of detectability. Although the state
estimation of discrete event system is investigated early in Ozveren & Willsky (1990),
Ramadge (1986), the full-scale study has not been done until our previous work (Shu, Lin, &
Ying, 2006; Shu, Lin, & Ying, 2007). We investigate the detectabilities of deterministic as
well as nondeterministic discrete event systems in Shu, Lin, & Ying (2006), Shu, Lin, & Ying
(2007). We say that a system is detectable if we can determine its state along some trajectories
of the system. We say that a system is strongly detectable if we can determine its state along
all trajectories of the system. We can check if a system is detectable or strongly detectable by
constructing an observer, which summarizes the current estimate of the state of the system. In
other words, by following the observer, we can say that after a sequence of observations, the
system is in one among a set of possible states. If this set consists of only one state, then the
state of the system is known exactly. By constructing the observer, we can not only know the
current estimate of the state, but also check detectability and strong detectability of the system.

Although we have investigated the detectabilities of deterministic as well as nondeterministic
discrete event systems in Shu, Lin, & Ying (2006), Shu, Lin, & Ying (2007), there are some
limitations of the previous work in dealing with some practical applications, especially in
biomedical applications, where transition probabilities are important. Let us take nephritis for
example. If we want to know if one person has nephritis or if the person has recovered from
nephritis, the effective way is to check the urine sample. For a previously healthy person, if
his/her urine sample is positive, then the person has developed nephritis recently. It is more
difficult to check if a patient has recovered from nephritis. If his/her urine sample is positive,
then the person still has nephritis. But if his/her urine sample is negative, it is possible that the
patient has recovered from nephritis (we assume the probability is 0.7); or the patient may still
have nephritis (we assume the probability is 0.3) because only repeated negative tests can
confirm that the patient has recovered from nephritis. In order to model this formally, we define
two discrete states:

Normal (q1): the person is healthy

Failure (q2): the person has nephritis

and two events:

α̃: Urine test is negative

β̃: Urine test is positive

Now, it is not difficult to derive the following probabilistic discrete event system (PDES) model
based on the reasons given above (a formal definition of PDES will be given shortly):

Since our goal is to determine whether a person is healthy or has nephritis; naturally, the
problem can be translated into a state estimation problem of PDES.
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Hence, in this paper, we consider the state estimation problem of probabilistic discrete event
systems. We assume that a system is nondeterministic and assign probabilities to the
nondeterministic transitions. The additional information on probabilities introduces more
complexities as well as more opportunities to the state estimation problem. In particular,
although we may never be 100% sure about the state of the system, we may be more and more
certain about our estimation of the state as we observe more and more event occurrences.
Therefore, a system may be undetectable in the non-probabilistic sense, but detectable in the
probabilistic sense.

As one can expect, checking probabilistic detectabilities are much more complex than checking
non-probabilistic detectabilities. Constructing an observer will not be sufficient for checking
probabilistic detectabilities. We must study the asymptotical behavior of the system. Markov
chains are similar but not identical, to probabilistic discrete event systems. The state estimation
problem has been investigated in Markov chain (Doucet & Andrieu, 1999; Doucet, Logothetis,
& Krishnamurthy, 2000; Evans & Evans, 1997; Evans & Krishnamurthy, 1999; Evans &
Krishnamurthy, 2001; Ford & Moore, 1998; Habiballah, Ghosh-Roy, & Irving, 1998).
However, the state estimation problems discussed in the literature of Markov chains are
different from the estimation problem to be discussed in this paper, in at least the following
two aspects: (1) While the observations in the estimation problems of Markov chains are some
continuous variables and/or states, the observation in our estimation problem is the occurrence
of events. Clearly, the observations in Markov chains are not event observations. In fact, the
concept of events is not explicitly defined in Markov chains. Furthermore, observation noises
are usually assumed in Markov chains but we do not have such an issue in our estimation
problem. (2) States to be estimated are often not the states of the Markov chains but the state
variables of some linear or nonlinear continuous systems built on the hidden Markov chains.
To the best of our knowledge, the state estimation problem as defined in this paper has not
been studied before.

We will first briefly review non-probabilistic discrete event systems and their detectabilities
in Section 2, as our new results are built on the previous results in Shu, Lin, & Ying (2006),
Shu, Lin, & Ying (2007). We will then define probabilistic discrete event systems and
probabilistic detectabilities in Section 3. Again, two versions of detectabilities will be defined.
The weak version requires the system be detectable for some trajectories of the system and the
strong version requires the system be detectable for all trajectories of the system. To check
detectability and strong detectability, in Section 4, we convert a probabilistic discrete event
system into a non-probabilistic discrete event system, construct its observer, and investigate
circular strings in the observer. For each circular string, we build its realizations to determine
the system behavior along the string. By investigating the realizations, we can determine if the
circular string converges or not. We can then determine the detectabilities of the system.

2. Non-Probabilistic Discrete Event Systems and Detectabilities
We first briefly review the results on non-probabilistic detectability of discrete event systems
studied in Shu, Lin, & Ying (2006), Shu, Lin, & Ying (2007). We use an automaton (also called
state machine or generator) to model a discrete event system (Cassandras & Lafortune, 1999;
Ramadge & Wonham, 1987; Lin, & Wonham, 1988):

where Q is the set of discrete states, Σ is the set of events, and δ is the transition function
describing what event can occur at one state and the resulting new state. We assume that the
system is nondeterministic, that is, the transition function is given by δ: Q×Σ → 2Q. Another
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equivalent way to define the transition function is to specify the set of all possible transitions:
{(q,σ,q′): q′ ∈ δ(q,σ)}. With a slight abuse of notation, we will also use δ to denote the set of
all possible transitions. We sometimes need to extend the definition of δ: Q×Σ → 2Q to δ:
2Q ×Σ → 2Q: For a subset of states x ⊆ Q, the next set of possible states after σ is defined as

.

In this paper, we will assume that all events are observable and no states are observable. (In
the terminologies of Shu, Lin, & Ying (2006), Shu, Lin, & Ying (2007), this means Σo = Σ and
Y = φ.) We also assume that the system G = (Q,Σ,δ) is deadlock free, that is, for any state of
the system, at least one event is defined at that state: (∀q ∈ Q)(∃ σ ∈ Σ)δ(q,σ) ≠ φ.

In Shu, Lin, & Ying (2006), Shu, Lin, & Ying (2007), the following state estimation problem
is solved. Given a nondeterministic discrete event system, we do not know the initial state of
G = (Q,Σ,δ). Under what conditions can we determine the current state of the system after a
finite number of event observations?

Depending on whether we want to determine the current state for all trajectories or some
trajectories and for all future times or some future times, we can define four types of
detectabilities as shown in Table 1.

For example, strong detectability requires that we can determine the current state and the
subsequent states of the system after a finite number of event observations for all trajectories
of the system. This is the strongest version of detectability and only a few practical systems
will be detectable in this strong sense. The procedure to check strong detectability can be
summarized as follows.

Step 1, we convert the nondeterministic automaton G = (Q,Σ,δ) into a deterministic automaton
Gobs called observer using the standard method [1].

where X ⊆ 2Q is the state space5, xo = Q is the initial state, the transition function is given by
ξ(x,σ) = {q ∈ Q: (∃q′∈ x)δ(q′,σ) = q}, and Ac denotes the accessible part. The automaton
Gobs tells us which subset of states the system could be in after observing a sequence of events
(that is, the state estimate).

Step 2, we mark the states in Gobs that contain a singleton state of Q.

where |x| denotes the number of elements in x.

Step 3, we check if all loops in Gobs are entirely within Xm. If so, then the system can always
reach Xm and stay within Xm after a finite number of observations (transitions). This is because
of the assumption that the system is deadlock free. Therefore, the system is strongly detectable.

5We use the following standard notations for the states and the set of states in the observer: The set of states of the observer is denoted
capital letter X. Its element, that is, a state of the observer is denoted by small letter x. Note that since a state of the observer is a subset
of states of the original automaton, x denotes the same object which can be interpreted as either a state of the observer or a subset of states
of the original automaton.
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Procedures to check other detectabilities are similar and can be found in Shu, Lin, & Ying
(2006), Shu, Lin, & Ying (2007).

The above defined detectabilities are non-probabilistic. They are independent of probabilities
of event occurrences. Therefore, if a system is detectable, then we can determine the state of
the system for sure after finite event observations. This version of detectabilities may be too
restrictive because in many applications, especially in medical applications, we can never
determine the state of the system for sure, but we can be more and more certain that the system
is in a particular state. For such applications, we investigate probabilistic detectabilities. This
requires the introduction of probabilistic discrete event systems. From now on, if it is clear
from the context, we will call probabilistic detectabilities simply as detectabilities.

3. Probabilistic Discrete Event Systems and Detectabilities
To generalize the model of non-probabilistic discrete event systems to that of probabilistic
discrete event systems, we first reformulate non-probabilistic automata G = (Q,Σ,δ) and
represent states, events, and their transitions by vectors and matrices: We enumerate the states
of G as k = 1,2,…n, where n = |Q|= the number of states in G. The current state of the system
is represented by a vector

where (qk) ∈ {0,1} indicates whether the system is currently in state k, that is, {k: p(qk) = 1}
is the set of states the system may be in. Each event σ is represented by an event transition
matrix

where σij equals 1 if σ is defined from state i to state j; and equals 0 otherwise. In this way, if
the current state of the system is q and σ occurs in the system, then the next state will be qσ in
terms of matrix multiplication; that is, δ(q,σ) = qσ. Note that, with a slight abuse of notation,
we use q to denote both a state and the vector representing the state. Similarly, we use σ to
denote both an event and the matrix representing the event transition.

A probabilistic automaton is denoted by

where Q ̃, Σ̃, and δ̃ are extensions of Q, Σ, and δ respectively. They are defined as follows. Q ̃
∈ Q ̃ is a probabilistic state vector (representing the estimation of the state)
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where p(qk) ∈ [0,1] with  takes values between 0 and 1 and represents the probability

for the system to be in state k. Equation  states the sum of the probabilities in different
states must be one. σ̃ ∈ Σ̃ is a probabilistic event transition matrix

where σ̃ij ∈ [0,1] with  or 0, for 1 ≤ i ≤ n, represents the probability for the system to
transit from state i to state j when event σ̃ occurs. Therefore, if the current state vector is Q ̃ and
σ̃ occurs in the system, then the next state will be δ̃(Q ̃,σ̃). Since some events may not be defined

in some states, we allow  for some i. Note that stochastic automaton is discussed in
details early in Paz, (1971), Rabin, (1963) and our probabilistic discrete event system is slight
modification of stochastic automaton.

For a system modeled by a probabilistic automaton, our goal is to solve the following problem.

State Estimation Problem
Given a probabilistic discrete event system

we do not know the initial state of G ̃ = (Q ̃,Σ̃,δ̃), but we can observe event occurrences. Under
what conditions can we obtain more and more accurate estimate of the current state of the
system after more and more event observations?

By obtaining more and more accurate estimate of the current state of the system, we mean the
following: Consider an infinite sequence of events s̃ = σ̃1σ̃2σ̃3…σ̃k …, that is, s̃ is a string in
an ω-language (s̃ ∈Σ̃ω) representing a possible trajectory of the system (Thistle, & Wonham,
1994). Note that under the deadlock-free assumption, any (finite) sequence can be extended to
an infinite sequence. Along the sequence s̃, the state estimation can be obtained as follows.
Initially, we do not know which state the system is in. We assume that all states are equally
likely initially; that is, Q ̃o = [1/n … 1/n]. After the occurrence and observation of σ̃1, the
likelihood of the system in each state is given by Q ̃oσ̃1. However, the sum of elements in
Q ̃oσ̃1 may not be equal to 1, as the early state estimation may be wrong and hence may not be
σ̃1 defined at some state in the early estimation. To overcome this difficulty, we introduce a
normalization operator N(.) as
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Then, the state estimation after σ̃1 is N(Q ̃oσ̃1). Note that the operator N(.) has the following
property6:

In other words, it is sufficient to apply N(.) once. Using N(.), we can estimate the state of the
system after observing a sequence of events t̃ = σ̃1 σ̃2…σ̃k as

In other words, Q ̃ = δ̃(Q ̃o, t̃) = N(Q ̃o t̃). If the maximal element in Q ̃ approaches 1, then we are
more and more certain that the system is in one particular state (corresponding to the maximum
element). In this case, we say that s̃ = σ̃1σ̃2σ̃3…σ̃k… converges.

Formally, an infinite sequence s̃ = σ̃1σ̃2σ̃3…σ̃k… of G ̃ converges if

With this definition of convergence, we can define strong (probabilistic) detectability as
follows.

Definition 1 (Strong Detectability)
A probabilistic discrete event system

is strongly detectable if from the initial state , all infinite sequences s̃ =
σ̃1σ̃2σ̃3…σ̃k … of G ̃ converge.

Strong detectability requires all infinite sequences converge. If only some sequences converge,
then we have (weak) detectability.

Definition 2 (Weak Detectability)
A probabilistic discrete event system

is weakly detectable (or simply detectable) if from the initial state , there
exists at least one infinite sequence s̃ = σ̃1σ̃2σ̃3…σ̃k… of G ̃ that converges.

6Note that this property is different from that of idempotent, which means N(N(Q ̃oσ̃1 σ̃2)) = N(Q ̃oσ̃1σ̃2).
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Before we derive conditions for checking detectability and strong detectability, let us first get
some intuitions from the following example.

Example 1
Let us first consider the nephritis diagnosis system shown in Figure 1. The system has two
states and two events. The event transition matrices are

Assuming , we can estimate the probabilistic state vector after observing
various sequences of events as follows.

Hence, we are certain that the system is in State 2 (having nephritis) after observations of event
β̃ (positive urine test) and we are more and more certain that the system is in State 1 after more
and more observations of event α̃. On the other hand, if we keep observing string β̃α̃, then we
are not sure about the current state the system. In other words, some infinite sequences converge
but some others do not. Intuitively we know the system is detectable and not strongly detectable.

4. Checking Detectabilities
To check detectabilities, we first convert the probabilistic automaton G ̃ = (Q ̃, Σ̃, δ̃) into a non-
probabilistic (and nondeterministic) automaton

where Q = {q1, q2, …, qn}, Σ = {σ1, σ2,…, σ|Σ̃|}, and δ are defined as follows.

In other words, transition (qi, σ, qj) is defined in convert(G ̃) if and only if the probability of
event σ̃ occurring at state qi and leading to state qj is non-zero. δ can be extended to a mapping
δ: 2Q × Σ → 2Q as described before. After converting G ̃ = (Q ̃, Σ̃, δ̃), we can take G = convert
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(G ̃) and follow the steps outlined in Section 2 to obtain the observer automaton Gobs = (X, Σ,
ξ, xo).

To see the connections between states and transitions of G ̃ and Gobs, let us define, for a
probabilistic state , its corresponding non-probabilistic
state convert(Q ̃) = {qi: p(qi) ≠ 0}. Hence, for , convert(Q ̃o) = Q = xo.

Lemma 1

Starting from the initial state , if a sequence of events t̃ = σ̃1σ̃2…σ̃k is
observed, then the set of possible states the system may be in is given by

where t = σ1σ2…σk is the corresponding sequence in convert(G ̃).

Proof—From our discussion in Section 3, the state of the system after observing a sequence
of events t̃ = σ̃1σ̃2…σ̃k in G ̃ is given by

Therefore, we only need to prove ξ(xo, t) = convert(N(Q ̃ot̃)), which can be done by a simple
induction on the length of t̃ = σ̃1σ̃2…σ̃k.

Q.E.D.

Now we can present our first result.

Theorem 1
1. If G = convert(G ̃) is non-probabilistically detectable, then G ̃ is detectable.

2. If G = convert(G ̃) is strongly non-probabilistically detectable, then G ̃ is strongly
detectable.

Proof
1. If G = convert(G ̃) is non-probabilistically detectable, then by the definition, the current

state and the subsequent states of the system can be determined after finite number
of event observations for some trajectories of the system. In other words, there exists
an infinite string σ1σ2…σk… such that for sufficiently large k, | ξ(xo, σ1σ2…σk) |= 1.
By Lemma 1,

Therefore, |ξ (xo, σ1 σ2…σk) | = 1 implies that there is only one element in N(Q ̃oσ̃1σ̃2…σ̃k) that
is non-zero and it must be 1. Hence max N(Q ̃oσ̃1σ̃2…σ̃k) = 1 and G ̃ is detectable

1. Similar proof but for all trajectories of the system.
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Q.E.D.

To check if G = convert(G ̃) is non-probabilistically detectable or strongly non-probabilistically
detectable, the results of Shu, Lin, & Ying, (2006) can be used.

Example 2
For the probabilistic automaton G ̃ shown in Figure 1, the converted nondeterministic
automaton G = convert(G ̃) is given in Figure 2.

Using the procedure of Section 2, we can compute the observer automaton Gobs, which is shown
in Figure 3.

From Gobs, we can see that G = convert(G ̃) is (weak) non-probabilistically detectable but not
strongly non-probabilistically detectable. By Theorem 1, G ̃ is (weak) detectable. We do not
know if it is strongly detectable because the conditions in Theorem 1 are only sufficient but
not necessary. This can be seen as follows: From Figure 3, we know that the event sequence
ααα··· does not lead to singleton state. However, the corresponding probabilistic event sequence
α̃α̃α̃··· is convergent.

To obtain necessary and sufficient conditions for checking detectabilities, we need to consider
infinite sequences generated by Gobs. These strings must form circles in Gobs. Let us define
circular strings in Gobs that start and end at the same state x∈X as

The set of all circular strings in Gobs are given by

We denote a circular string from x ∈ X, v = σ1σ2…σj ∈ Lc (Gobs, x) as a pair (x,v), its realization
is a sequence

where y0 ⊆ x ⊆ Q, y1 = δ(y0, σ1), y2 = δ(y1, σ2), …, yj = δ (yj−1, σj) such that yj ⊆ y0. A realization
has the following property: if the system G = convert(G ̃) starts within states y0, then after the
realization, the system remains within states y0. A realization is nonblocking if for all i = 0,1,
…, j−1 and for all q∈yi, δ(q, σi+1) ≠ φ.

If we start from y0 = x, then by the definition of Gobs, ξ(x,v) x. Therefore,
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is a realization with xj ⊆ x. However, R(x,v) may block. Also, it may not be minimal. A
realization R(y,v) is a minimal realization if there exists no other realization R(y′,v) such that
y′⊂y. To find realizations and minimal realizations, we construct a transition graph

for v ∈ Lc(Gobs, x) as follows. The nodes of TG(x,v) are x. For q1, q2 ∈ x, the arc (q1, q2) ∈
Arc(v, x) is defined if and only if q2 ∈ δ(q1,v). In other words, (q1, q2) ∈ Arc(v, x) means that
starting from state q1 ∈ x, it is possible for the system to end at state q2 ∈ x. If the system starts
at a subset of states y ⊆ x, then the set of possible states after v is

From these definitions, we can check a realization and nonblocking realization as follows.

1.  is a realization if and only if Post(y0) ⊆y0.

2.  is a nonblocking realization if and only if it
is a realization and for all i = 0,1,…, j−1 and for all q ∈ yi, δ(q, σi+1) ≠ φ.

Checking minimal realization is more involved and needs the concept of strongly connected
subgraphs. A subgraph with states y ⊆ x is strongly connected if and only if there exists a direct
path from any state to any other state in y. For a subgraph with only one node, it is strongly
connected if and only if the node has a self loop. Strongly connected subgraphs are related to
minimal realizations as follows.

Lemma 2
R(y,v) is a minimal realization if and only if Post(y) ⊆ y and the subgraph of y is strongly
connected.

Proof—If y has only one state, then the result is obvious. If y has more than one states, then
we can partition states or remove states to prove the result as follows.

If the subgraph of y is not strongly connected, then we can partition it into two subgraphs y1
and y2 and there is no direct path from states in y1 to states in y2. We can remove states in y2
and the remaining subgraph still satisfies Post(y1) ⊆ y1. Therefore, R(y1, v) is a realization and
R(y,v) is not a minimal realization.

On the other hand, if the subgraph of y is strongly connected, then removing any subset y′ from
y will result in Post(y \ y′) ⊆ (y \ y′) no longer true.

Q.E.D.

Given a pair (x,v) with v = σ1σ2…σj ∈ Lc (Gobs, x), we say that it converges if it has a unique
minimal and nonblocking realization
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such that

R(y,v) is called the convergent realization of (x,v) and denoted by Rc (y,v). Therefore, a pair
(x,v) converges if and only if it has the (unique) convergent realization Rc (y,v).

Given a circular string v = σ1σ2…σj ∈Lc (Gobs), we say that v = σ1σ2…σj converges if there
exists a convergent pair (x, v); and v = σ1σ2…σj strongly converges if all the pairs (x, v) are
convergent.

Theorem 2
A PDES G ̃ = (Q ̃, Σ̃, δ̃) is detectable if and only if the corresponding G = convert(G ̃) and Gobs
have at least one convergent circular string v ∈ Lc (Gobs).

Proof—(IF) Assume that G = convert(G ̃) and Gobs has a convergent circular string v = σ1σ2…
σj ∈ Lc (Gobs, x) whose convergent realization is

By the definition, R(y,v) is the unique minimal and nonblocking realization of v ∈Lc (Gobs, x)
and |y| =|y1| = … =|yj| = 1.

Let u ∈ Σ* be a string such that ξ(xo,u) = x (u exists because x is accessible). By Lemma 1, we
have x = convert(δ̃ (Q ̃o, ũ)). Let Q ̃ = (Q ̃o, ũ) and ṽ = σ̃1σ̃2… σ̃j; that is, Q ̃ and ṽ are state set
and string in G ̃ corresponding to x and v in G. We prove that when ṽ repeats infinitely, the
infinite sequences s̃ = ũṽṽ … ṽ … of G ̃ converge. Since | y | = 1, let us write y = {qi}, that is,
y is the ith state. Because R(y,v) is a nonblocking realization, pi (N(Q ̃ṽm)) ≥ pi(Q ̃) and
limm→∞ pi (N(Q ̃ṽm)) ≥ p(qi). Because y ⊆ x and there are no other minimal and nonblocking
realizations, for all other states qj, {qj} ≠ y, limm→∞ pj (N(Q ̃ṽm)) = 0. Hence,

In other words,

So G ̃ = (Q ̃, Σ̃, δ̃) is detectable. This proves the “IF” part.

(ONLY IF) Assume that G ̃ = (Q ̃, Σ̃, δ̃) is detectable. Then there exists an infinite sequence s̃
of G ̃ that converges. Since the corresponding s is an infinite string in G = convert(G ̃) and
Gobs, it must visit some state x of Gobs infinitely often.
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For a state q ∈x, let pm(q) be the probability of G ̃ being at q when s̃ visits x for the mth time.
Since s̃ converges, there must exist a unique state q ∈ x such that pm(q) →1 as m → ∞. Let
m be sufficiently large and ε is sufficiently small and pm+1(q) ≥ pm (q) ≥1−ε. Let v = σ1σ2…
σj be the substring of s between the mth and (m+1)st visit of x by Gobs. Clearly v ∈Lc (Gobs,
x) is a circular string. We want to show that v converges and

 is the convergent realization with yj = {q}.

To do so, let us first show that R({q},v) is a realization; that is, yj ⊆ {q} as follows. If yj ⊆
{q}, then when the system starts at {q} and after the occurrence of v = σ1σ2…σj, it may move
outside of {q}, hence the probability of returning to {q} after v is less, contradicting the
assumption pm+1(q) ≥ pm (q) ≥1−ε. R({q},v) is minimal because {q} consists of only one state.
Also, |y1|= … =|yj|= 1 must be true because s̃ converges. Also R({q},v) is nonblocking because
any yi is a singleton state. Furthermore, R({q},v) is the unique realization that is minimal and
nonblocking, because otherwise, q ∈ x is not the unique state such that pm(q) →1 as m→∞.
All these facts together show that v ∈ Lc (Gobs, x) is a convergent circular string. This proves
the “ONLY IF” part.

Q.E.D.

The above theorem gives a necessary and sufficient condition for checking (weak)
detectability. Now let us present the following theorem for a necessary and sufficient condition
for checking strong detectability.

Theorem 3
A PDES G ̃ = (Q ̃, Σ̃, δ̃) is strongly detectable if and only if all circular strings v ∈Lc (Gobs) of
the corresponding G = convert(G ̃) and Gobs strongly converge.

Proof—(IF) Assume that all circular strings v ∈ Lc (Gobs) of the corresponding G = convert
(G ̃) and Gobs strongly converge. Let us prove that G ̃ = (Q ̃, Σ̃, δ̃) is strongly detectable by
contradiction. Suppose that G ̃ = (Q ̃, Σ̃, δ̃) is not strongly detectable. Then there exists an infinite
sequence s̃ = σ̃1σ̃2σ̃3…σ̃k… of G ̃ that does not converge; that is,

The infinite sequence s̃ = σ̃1σ̃2σ̃3…σ̃k… of G ̃ must visit at least one state x of Gobs infinitely
often. Let u∈ Σ* be a string such that ξ (xo,u) = x. By Lemma 1, we have x = convert(δ̃
(Q ̃o,ũ)). The infinite sequence can be re-written as s̃ = ũα̃1α̃2…α̃k…, where α̃k ∈Σ̃. Because all
circular strings strongly converge, there exists a nonblocking path

such that {qi} = y0 ⊆ x, yj = δ(yj−1, αj), and |y0|= | y1|= … =| yj| =… = 1. Denote by p(yj) the
probability for G ̃ to be in state yj along the sequence s̃ = ũα̃1α̃2…α̃k…. Then clearly p(yj) ≤ p
(yj+1). Furthermore, we can conclude that p(yj) → 1 as j→ ∞ because otherwise, there exists a
different nonblocking path
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such that {q′i} = y′0⊆x, y′j = δ(y′j−1, αj). From these two different infinite paths, we can obtain
two different minimal and nonblocking realizations for some circular strings, which contradicts
the assumption that all circular strings v ∈Lc (Gobs) of the corresponding G convert(G ̃) and
Gobs strongly converge. This proves the “IF” part.

(ONLY IF) Assume that Gobs has a circular string v = σ1σ2 …σj ∈ Lc(Gobs, x) that does not
converge. Let u ∈ Σ* be a string such that ξ(xo,u) = x. By Lemma 1, we have x = convert(δ̃
(Q ̃o,ũ)). Let us prove that the infinite sequences s̃ = ũṽṽ…ṽ… of G ̃ does not converge by
contradiction.

For a state q ∈x, let pm(q) be the probability of G ̃ = (Q ̃, Σ̃, δ̃) being at q when s̃ visits x for the
mth time. If s̃ converges, there must exist a unique state q ∈x such that pm(q) →1 as m → ∞.
Let m be sufficiently large and ε is sufficiently small and pm+1(q) ≥ pm(q) ≥1 − ε. Consider

If y j ⊈{q}, then when the system starts at {q} and after the occurrence of v = σ1σ2 …σj, it may
move outside of {q}, hence the probability of returning to {q} after v is less, contradicting the
assumption pm+1 (q) ≥ pm(q). Therefore, yj ⊆ {q} and R({q},v) is a realization. R({q},v) is
minimal because {q} consists of only one state. R({q},v) is nonblocking because the system
is strongly detectable. Furthermore, R({q},v) is the unique realization that is minimal and
nonblocking, because otherwise, q ∈ x is not the unique state such that pm(q) → 1 as m → ∞.
Finally, |y1|= … =|yj|=1 must be true because s̃ converges. Therefore, v ∈ Lc(Gobs, x) is a
convergent circular string, which contradicts the assumption that v = σ1σ2 …σj does not
converge. This proves the “ONLY IF” part.

Q.E.D.

Example 3 (continued)
Let us check circular strings in Figure 3 and determine the detectability of the nephritis
diagnosis system in Figure 1. For the pair ({q1, q2},βα), its transition graph TG(x,v) = TG
({q1, q2},βα ) is as follows:

Clearly R({q1, q2},βα) is a minimal realization. Although it is nonblocking, it is not convergent.
Therefore, the system is not strongly detectable.

For the pair ({q1, q2},α), we have its transition graph TG(x,v) TG = ({q1, q2},α) as follows:

The minimal realization is R({q1},α). It is not difficult to see that it is a convergent realization.
Hence the system is detectable.

5. Conclusion
In this paper, we considered detectabilities of probabilistic discrete event system. We defined
(probabilistic) detectabilities both in a strong sense and in a weak sense. Compared with the
detectabilities considered in our early work (Shu, Lin, & Ying, 2006; Shu, Lin, & Ying,
2007), the problem becomes much more complex because the transition probabilities must be
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taken into consideration. We defined the convergence for circular strings. Based on the
definition of convergence for circular strings, we derived the necessary and sufficient
conditions for (probabilistic) detectability and strong (probabilistic) detectability. All the
results are illustrated by examples.
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Figure 1.
The nephritis diagnosis system modeled by PDES

Shu et al. Page 19

Automatica (Oxf). Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The converted non-probabilistic and nondeterministic discrete event system from Figure 1
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Figure 3.
The observer of the nondeterministic discrete event system in Figure 2
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Figure 4.
the transition graph of the pair ({q1, q2},βα)
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Figure 5.
the transition graph of the pair ({q1, q2},α)
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Table 1

Four types of detectabilities
For all trajectories For some trajectories

For all future times Strong Detectability (Weak) Detectability
For some future times Strong Periodic Detectability (Weak) Periodic Detectability
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