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Abstract

Arabinogalactan proteins (AGPs) are structurally complex plasma membrane and cell wall proteoglycans that are
implicated in diverse developmental processes, including plant sexual reproduction. Male gametogenesis (pollen

grain development) is fundamental to plant sexual reproduction. The role of two abundant, pollen-specific AGPs,

AGP6, and AGP11, have been investigated here. The pollen specificity of these proteoglycans suggested that they

are integral to pollen biogenesis and their strong sequence homology indicated a potential for overlapping function.

Indeed, single gene transposon insertion knockouts for both AGPs showed no discernible phenotype. However, in

plants homozygous for one of the insertions and heterozygous for the other, in homozygous double mutants, and in

RNAi and amiRNA transgenic plants that were down-regulated for both genes, many pollen grains failed to develop

normally, leading to their collapse. The microscopic observations of these aborted pollen grains showed
a condensed cytoplasm, membrane blebbing and the presence of small lytic vacuoles. Later in development, the

generative cells that arise from mitotic divisions were not seen to go into the second mitosis. Anther wall

development, the establishment of the endothecium thickenings, the opening of the stomium, and the deposition of

the pollen coat were all normal in the knockout and knockdown lines. Our data provide strong evidence that these

two proteoglycans have overlapping and important functions in gametophytic pollen grain development.
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Introduction

Pollen ontogeny is an attractive model to study cell division

and differentiation. The progression from proliferating
microspores to terminally differentiated pollen is character-

ized by a large-scale repression of early programme genes

and the activation of a unique late gene-expression pro-

gramme in mature pollen. In Arabidopsis, all microspor-

ocytes will eventually undergo meiosis, resulting in tetrads

of haploid microspores, each of which will, in turn, develop

into a pollen grain. This pattern of development is quite

clear, but little is known about the underlying molecular
mechanisms. Only now, are the roles of specific genes

involved in male gametogenesis beginning to be understood

(Yang et al., 1999; Honys et al., 2006; Quan et al., 2008;

Toller et al., 2008).

Arabinogalactan proteins (AGPs) are a class of structur-

ally complex proteoglycans, present at the surface of cells
throughout the plant kingdom. The protein backbones of

AGPs are rich in proline/hydroxyproline, serine, alanine,

and threonine and are modified by the addition of type II

arabinogalactan polysaccharides and arabinose oligosac-

charides (Showalter, 2001). AGPs can be divided into

several classes: classical AGPs, lysine-rich AGPs, AG

peptides, fasciclin-like AGPs (FLAs), and other chimeric

AGPs. AGP6 and AGP11 are classical AGPs as they have
the characteristic 85–151 amino acids and consist of an N-

terminal signal peptide, a Pro/Hyp-rich AGP central

domain and a predicted C-terminal glycosylphosphatidyli-

nositol (GPI) lipid anchor addition sequence (Schultz et al.,
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1998; Showalter, 2001). By contrast, lysine-rich AGPs have

a small lysine-rich region within the classical AGP domain;

AG peptides are typically only 10–15 amino acids in length;

and FLAs contain both AGP and fasciclin-like domains

(Schultz et al., 2002; Yang and Showalter, 2007). GPI

anchored AGPs are believed to be tethered to the external

surface of the plasma membrane and are then released to

the extracellular matrix as a consequence of the cleavage
action of specific phospholipases. GPI anchoring and

release may confer localized or polarized targeting and alter

the functional properties of proteins (Lalanne et al., 2004).

AGPs have been implicated in diverse developmental

processes, including somatic embryogenesis (van Hengel

and Roberts, 2002), cell proliferation (Serpe and Nothnagel,

1994), cell expansion (Willats and Knox, 1996; Vissenberg

et al., 2001), programmed cell death (Motose et al., 2004),
wound responses (Guan and Nothnagel, 2004), root mor-

phology (Seifert et al., 2002), pollen tube growth (Cheung

et al., 1995; Wu et al., 1995; Levitin et al., 2008), and plant

hormonal signalling pathways (Suzuki et al., 2002). Evi-

dence implicating AGPs in sexual reproduction has been

obtained by our group, for several plant species (Coimbra

and Salema, 1997; Coimbra and Duarte, 2003; Coimbra

et al., 2005). Recently, the selective labelling obtained with
AGP glycan monoclonal antibodies during Arabidopsis

pollen and pistil development, suggested that some AGPs

glycan epitopes are markers for gametophytic cell differen-

tiation (Coimbra et al., 2007).

Despite the presence of tissue-specific carbohydrate

epitopes on AGPs, these investigations do not allow the

characterization of a single type of AGP, but a set of AGPs

with similar epitopes. Antibodies bind to carbohydrate
epitopes that are present on AGPs with different protein

backbones, and at the same time, individual protein back-

bones may be differentially glycosylated.

The expression profiles of AGPs in Arabidopsis were

obtained from several microarray hybridization data sets

(Zimmermann et al., 2004). Microarray experiments are

extremely useful in identifying targets for further analysis,

but such experiments should be viewed as starting points
and must be confirmed by independent means. It was

possible to validate the results showing that AGP6 and

AGP11 are pollen grain and pollen tube specific (Pereira

et al., 2006).

AGP6 and AGP11 are closely related, encoding proteins

that share 68% amino acid sequence identity, suggesting

that they are paralogous genes and that their functions may

overlap. More recently, Levitin et al. (2008) showed that
these two AGPs are required for pollen tube growth and

stamen function, by using RNAi lines with reduced AGP6

and AGP11 expression.

In the present work, null mutants and transgenic plants

were used as an approach to identify phenotypic traits

attributable to either or both AGP6 and AGP11, during

pollen grain development.

This work was also complemented by gene silencing
studies. Two Arabidopsis transgenic lines, obtained by

RNAi technology, and silenced for both AGP6 and AGP11

were used. The constructions were made under the control

of the 35S promoter and also under the control of the native

promoter for the AGP6 gene. Our results indicate that

AGP6 and AGP11 are integral to pollen grain development,

but also that some functional redundancy exists.

Materials and methods

Plant materials and growth conditions

Ds-tagged Arabidopsis lines Ds54-4754-1 and Ds11-4025-1

were obtained from the RIKEN GSC Arabidopsis Ds

transposon tag line collection (Kuromori et al., 2004), and

designated as agp6 and agp11, respectively. PCR amplifica-
tion products encompassing regions of the AGP6 or AGP11

coding sequences and the transposon sequence were gel

extracted and sequenced. The Ds transposon in agp6 and in

agp11 are inserted just after a guanine base in position 130

bp and an adenine base in position 192 bp from the

initiation codon, respectively. RNAi and amiRNA trans-

formation experiments were performed in an Arabidopsis

Col-0 background. Plants were germinated and grown in
Murashige and Skoog (1962) medium with 0.7% agar.

Plantlets were then transferred to soil and kept in a growth

chamber at 21 �C under long days (16/8 h light/dark) and

60% relative humidity. Pollen tube germination and growth

were according to Coimbra et al. (2007).

Light microscopy

Anthers were fixed in 2% paraformaldehyde and 2.5%

glutaraldehyde in phosphate buffer (0.025 M, pH 7, with

one micro drop of Tween 80), placed under vacuum for 1 h

and then at 4 �C overnight. After dehydration in a graded

ethanol series, the material was embedded in LR White.

Thick sections (0.5 lm) were obtained with a Leica Reichert

Supernova microtome, placed on glass slides, and stained
with a solution of 1% Methylene blue or with Calcofluor

white (fluorescent brightener; Sigma). Sections for fluores-

cence microscopy were mounted with Vectashield (Vector

laboratories, Petersborough, UK), and sections for bright

field microscopy were mounted with Eukitt quick-harder

(Fluka). Images were captured with a Leica DFC420

camera, and processed with Leica Application Suite soft-

ware.

Electron microscopy

For Transmission Electron Microscopy (TEM), anthers

were fixed as described above, and post-fixed in OsO4 (1%)

in the same buffer for 2 h, dehydrated in a graded ethanol

series and embedded in EPON resin. Ultra-thin sections

(40–50 nm), obtained with a Leica Reichart Supernova
microtome, were mounted on 400 mesh copper grids

(G2400C Agar Scientific Ltd.), stained in uranyl acetate

followed by lead citrate, and examined in a Zeiss 902

electron microscope. Images were recorded with an Axio-

cam camera and treated with Axiovision 4 software.
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For Scanning Electron Microscopy (SEM), anthers were

fixed as described for TEM, dehydrated in a graded ethanol

series and then mounted on stubs. After coating with gold,

the samples were examined in a Jeol JSM-35C scanning

electron microscope.

RNAi Arabidopsis

For preparation of stable AGP6 RNAi lines of Arabidop-
sis, the AGP6 RNAi vector with 450 bp of AGP6 coding

sequence, in the sense and antisense orientations, were

amplified and inserted into pK7GWIWG2(I) vector (Karimi

et al., 2002). AGP6 shows 74% nucleotide sequence

similarity with AGP11. The vector was under the control of

the 35S promoter and the nopaline synthase terminator and

was used to transform Arabidopsis plants via Agrobacterium

tumefaciens (LBA4404) transformation (Clough and Bent,
1998).

amiRNA Arabidopsis

For preparation of stable amiRNA, AGP6+AGP11-specific

sequences were identified with the WMD Web Micro-

RNA Designer (www.weigelworld.org). The amiRNA was

constructed according to Schwab et al. (2006) using the

following sequences: I miR-s gaTTGGGGAGGAGACT-
GTGGGTGtctctcttttgtattcc; II miR-a gaCACCCA-

CAGTCTCCTCCCCAAtcaaagagaatcaatga; III miR*s

gaCAACCACAGTCTCGTCCCCATtcacaggtcgtgatatg; IV

miR*a gaATGGGGACGAGACTGTGGTTGtctacatata-

tattcct; pRS300-A 5#-CTGCAAGGCGATTAAGTT-

CGGTAAC; and pRS300-B 5#-GCGGATAACAATTT-

CACACAGGAAACAG. The resulting miR precursor was

initially transferred into the pENTR-D-TOPO vector
(Invitrogen, KanR). The ProAGP6 was PCR amplified and

transferred into the pENTR-5#-TOPO (TA) vector. Both

sequences were then transferred via a single LR recombina-

tion reaction into the pK7m24GW3 (SepR in bact & KanR

in plant) vector (Karimi et al., 2002). The ProAG-

P6:AGP6 + AGP11 amiRNA sequence was transferred into

Arabidopsis plants via Agrobacterium (C58) transformation

(C58) (Clough and Bent, 1998).

Real-time PCR

Anther mRNA extracts were reverse transcribed using

Promega Reverse Transcription System and poly(dT)12–18
to prime the reactions. cDNA was amplified using the iQ�
SYBR� Green Supermix on the iQ�5 Real-Time PCR

Detection System (Bio-Rad).

Real-time RT-PCR reactions were run in duplicates. After 3

min at 95 �C followed by a 10 s denaturation step at 95 �C,
samples were run for 40 cycles of 10 s at 95 �C and 30 s at 60 �C.
After each run, a dissociation curve was acquired to check for

amplification specificity by heating the samples from 60 �C to

95 �C. Serial dilutions of pure genomic DNA from Arabidopsis

ecotype Nossen were used to set up a calibration curve, which

was used to quantify plant DNA in each sample.

At the end of the PCR cycles, the data were analysed with

the iQ5 2.0, Standard Edition Optical System Software

v2.0.148.060623 (Bio-Rad).

Accession numbers

The Arabidopsis Genome Initiative locus identifiers are as
follows: AGP6 (At5g14380), AGP11 (At3g01700), PRF5

(At2g19770), and UBC9 (At4g27960).

Results

The expression pattern of AGP6

In earlier RT-PCR experiments it was shown that AGP6 is

expressed in pollen grains and in germinating pollen tubes

(Pereira et al., 2006). Data obtained from the Affymetrix

AG and ATH1 GeneChip arrays (www.genevestigator.

ethz.ch) also indicate that AGP6 is pollen specific. To

determine with greater accuracy the temporal expression

profile of AGP6, Arabidopsis plants were transformed with
a ProAGP6:GFP gene construct. GFP fluorescence was

absent in all vegetative plant parts, but became clearly

visible just after the appearance of the locules in anthers

(Fig. 1A, B). This stage corresponds to stage 9 as

described by Smyth et al. (1990) and comprises the rapid

lengthening of all organs, including stamens. GFP fluores-

cence was restricted to pollen and pollen tubes and could

be clearly distinguished, particularly in heterozygous
plants, from the green yellow autofluorescence typical of

the exine and of the endothecium lignin thickenings of the

anther wall (Fig. 1C). GFP fluorescence persisted through

to the mature pollen grains and was observed in growing

pollen tubes (Fig. 1D).

Mutations in both AGP6 and AGP11 affect
pollen development

AGP6 expression early in male gametophyte biogenesis

suggested that the absence of the proteoglycan may disrupt

the process. A reverse genetics approach was used to

characterize the biological function of both AGP6 and

AGP11 in Arabidopsis. Ds tagged lines for AGP6 and

AGP11 were verified as having a transposon inserted in the

coding sequences. The mutants showed no detectable
accumulation of AGP6 or AGP11 transcripts in RT-PCR

(Fig. 2A), indicating that they are null mutations. How-

ever, neither agp6 nor agp11 mutants showed obvious

defects in morphology as assessed by optical and electron

microscopy.

To determine whether the biological roles of AGP6 and

AGP11 are redundant, the two homozygous lines were

crossed to obtain agp6 agp11 double mutants, using agp6

as the male to fertilize emasculated agp11 plants. F1 plants

were, as expected, all heterozygous for both insertions.

Optical microscopy of anthers showed that some of the F1

pollen grains had a collapsed, aberrantly shaped pheno-

type (Fig. 2C). F2 plants homozygous for one of the
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insertions and heterozygous for the other were sub-

sequently used for pollen grain developmental studies. In

these plants more than 50% of the pollen grains inside each

locule were devoid of content and had a collapsed appear-

ance (Fig. 2D, E). This dramatic effect became apparent

just before the first pollen asymmetric cell division,

corresponding with the timing of the onset of GFP

fluorescence in the ProAGP6:GFP transgenic plants

(Fig. 1). The F3 generation obtained by self-pollination of

agp6–/– agp11+/– F2 plants, produced 20.35% of plants

which were homozygous for both agp6 and agp11 (n¼113,

v2¼4.69, P <0.05).

Comparable results were obtained by self-pollination of

agp6+/– agp11–/–. The observed genotypic distortions of

the offspring was mainly due to a higher than expected

percentage of heterozygotes. Tests were performed by PCR

for the specific transposons. The absence of expression of

both genes in double null mutants was confirmed by RT-

PCR studies for some plants (Fig. 2B). The observation of

pollen development in these plants showed the same

aberrant development of pollen, with more than 50% of

pollen grains collapsing during development (Fig. 2F). It is

worth noting that, in all lines, anther wall tissues were

found to be well preserved and the anthers dehisced

similarly to wild-type plants (Fig. 2C–F), indicating the

pollen-specific nature of the phenotype. The opening of the

anthers was further evaluated by scanning electron micros-

copy observations (Fig. 2G, H). The collapsed pollen

grains phenotype was also characterized by transmission

electron microscopy (Fig. 2I, J), which clearly showed the

degeneration of pollen contents.

Down-regulation of AGP6 and AGP11 in
transgenic plants

To complement this work, RNAi and amiRNA approaches

were used to knock down the expression of the two genes in

transgenic plants. 35S promoter-driven RNAi and

ProAGP6-driven amiRNA constructs were generated, due

to the controversy related to the efficiency of the 35S

promoter in pollen. The sequences used had homology to

both AGP6 and AGP11, so as to obtain transgenic plants
down-regulated for both genes.

The down-regulation of both AGP6 and AGP11 tran-

script levels were confirmed in the anthers of the RNAi

plants by conventional RT-PCR and in the anthers of the

amiRNA plants by real-time RT-PCR (Fig. 3A, B).

Optical microscopy of pollen grains in the anthers of the

amiRNA transgenic lines showed aborted pollen grains.

These pollen grains were found to be collapsed and with no
contents (Fig. 3C). The anther wall was well preserved,

exactly as for the knockout mutants (Fig. 2F).

To evaluate further the timing when degeneration starts

in these transgenic lines, pollen development in wild-type

plants (Fig. 4A) was compared with pollen development in

plants with AGP6 and AGP11 down-regulated by RNAi.

The phenotype of these transgenic lines was analysed

further by electron microscopy observations of anthers.
Both types of plants show a normal pattern of development

up to the young microspore stage. No differences were

observed inside the anther locules, during the whole process

of meiotic division up to the tetrad stage of pollen

development (Fig. 4B). The collapse of pollen grains starts

at the stage of the young microspore and is accompanied by

Fig. 1. Transgenic Arabidopsis plants expressing a ProAGP6:GFP construct. (A) Low-power binocular fluorescence microscope of

a flower in a stage where the anthers have their locules already formed and are extending. GFP fluorescence is exclusively visible in

pollen grains. (B) Anther at the immediately preceding stage of development, with reference to the stage in (A). No fluorescence could be

observed. Typically in this stage the locules are formed and microspores are released from tetrads. (C) Mature dehiscent anther, showing

GFP-labelled (arrows) and unlabelled pollen grains (arrow heads). The anther wall is also visible as green-yellow autofluorescence. (D)

Fluorescence microscopy of germinating mature pollen. GFP fluorescence is visible in all pollen grains and along all pollen tube

extension. Bars: (A) 1 mm; (B, C) 500 lm; (D) 50 lm.
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Fig. 2. Ds transposon tag lines for AGP6 and AGP11. (A) Duplex RT-PCR amplification products of AGP6 and AGP11 mRNA transcripts

in pollen of Arabidopsis wild-type (wt), and of Arabidopsis tag lines containing the Ds transposon in AGP6 (agp6) and in AGP11 (agp11)

genes. Only in wild-type plants are the two expected amplification products visible. (B) RT-PCR amplification products of AGP6 and

AGP11 mRNA transcripts in pollen of wild-type Arabidopsis (wt), and of three agp6 agp11 double mutant plants (P1, P2, P3). Figures

under AGP and reference gene names refer to expected sizes of PCR amplification products. (C) Light micrograph of an anther of F1

plants, heterozygous for AGP6 and AGP11. Pollen grains show a collapsing phenotype (arrows) that contrasts with the ones that are

roughly spherical pollen grains, and show no phenotype (arrow head). (D) Light micrograph of an anther of an agp6 F2 plant (and

heterozygous for AGP11). At the time of dehiscence, more than 50% of the pollen grains show a collapsed phenotype. (E) Light

micrograph of an anther of an agp11 F2 plant (and heterozygous for AGP6), exhibiting the same pollen morphology shown in (D). (F) Light

micrograph of an anther of an agp6 agp11 double mutant F3 plant. Collapsing of pollen grains is evident, while some pollen grains still

show a normal morphology. (G) Scanning electron micrograph of a wild-type dehiscent anther, showing normal roundish pollen grains.

(H) Scanning electron micrograph of an agp6 agp11 double mutant dehiscent anther. The collapsed pollen grains are evident. (I)

Transmission electron micrograph of an agp6 agp11 double mutant. The collapse of the pollen grain is evident. (J) High magnification

transmission electron micrograph of pollen grains from of an agp6 agp11 double mutant. The pollen grain in the image shows a reduced

cell lumen and a well-developed exine wall (arrow). En, endothecium; Ep, epidermis; L, cell lumen; S, stomium. Bars: (C, D, E, F) 20 lm;

(G, H) 60 lm; (I, J) 5 lm.
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extensive shrinkage of the cytoplasm (Fig. 4C), blebbing of the

plasma membrane, and a striking separation of the plasma

membrane from the intine wall (Fig. 4D) compared to the

wild type (Fig. 4F). In some of the observed pollen grains,

asymmetric cell division occurred, although the second pollen

mitosis was never observed and lytic vacuoles appeared in the

entire pollen cytoplasm (Fig. 4E). At later stages of de-

velopment, the collapse of pollen was even more remarkable
(Fig. 4G, H) due to the degeneration of all the pollen grain

contents. Although with an empty body, pollen grains are

prepared to be shed as in the wild type, with a well-developed

layer of pollen coat deposited by the tapetum cells (Fig. 4H).

Discussion

AGP6 and AGP11 encode arabinogalactan proteins that

belong to the classical AGP subfamily. Both are strongly

and specifically expressed in pollen (Pereira et al., 2006). By

careful inspection of the images collected of ProAGP6:GFP
plants, no evidence was found of GFP fluorescence outside

pollen grains or pollen tubes. The green yellow light emitted

by the anther walls at later stages of development are due to

the autofluorescence typical of the lignin thickenings of the

endothecium. These data contribute to the increasingly

comprehensive view of the behaviour of individual genes in

each gene family and of the gametophytic reprogramming

of gene expression in Arabidopsis.
A reverse genetics approach was undertaken in an attempt

to characterize further the biological significance of the two

genes, AGP6 and AGP11, during pollen development. In the

single T-DNA insertional null mutants of either AGP6 or

AGP11, no macroscopic or microscopic phenotypic altera-

tions were observed, as compared to wild-type Arabidopsis,

corroborating a suggestion hypothesized earlier that these two

genes have redundant functions (Pereira et al., 2006). These
conclusions are conflicting to those reached by Levitin et al.

(2008) who used lines of Arabidopsis carrying single point

mutations in AGP6. It is not clear how single point mutations

in AGP genes could affect function so dramatically. Even if

a proline hydroxylation site or an O-Hyp glycosylation site

was affected, the polypeptide chains of AGPs are thought to

be abundantly and repetitively glycosylated by the specific

population of glycosyltransferases. One sugar chain less may
be predicted to have minor consequences.

The production of double or multiple gene null mutants

is of crucial importance to the study of gene function in

Arabidopsis.

In plants homozygous for one of the insertions and

heterozygous for the other and in double homozygous

mutant lines, many of the pollen grains failed to develop

normally and collapsed, indicating that the genes are
important gametophytically for pollen development.

Fig. 3. Down-regulation of AGP6 and AGP11 in RNAi and

amiRNA plants. (A) RT-PCR amplification products of AGP6 and

AGP11 mRNA transcripts in mature anthers of wild-type (wt) and

RNAi Arabidopsis. Figures in the top row refer to PCR cycle

numbers. UBC9 was used as the reference gene. (B) Real-time

RT-PCR amplification products of AGP6 and AGP11 mRNA

transcripts in anthers of wild-type (wt) and amiRNA Arabidopsis. In

the panel each bar represents an average of two independent

reactions and technical replicates. The anthers were at stage 10 of

pollen development according to Smyth et al. (1990). AGP6 and

AGP11 transcript levels were normalized to UBC9 levels. (C) Light

micrograph of an anther from a plant exhibiting an amiRNA
construction. Some pollen grains show a collapsing phenotype

(arrow) while others look phenotypically normal. Bar: 20 lm.
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Fig. 4. Microscopy images of plants down-regulated for AGP6 and AGP11 by RNA interference (RNAi). (A) Light micrograph of an anther

from a wild-type plant showing normal pollen morphology at the stage of mature microspores. (B) Electron micrograph of an anther from

an RNAi plant at the tetrad stage of development. The young microspore, surrounded by the callose wall, shows the initiation of the

building of the exine wall (arrow). (C) Light micrograph of an anther from an RNAi plant at the beginning of the microspore stage of

development. The anther shows a well-developed tapetum. As expected for this stage of development the endothecium is not

differentiated yet. (D) Electron micrograph of a pollen grain from the anther in (C); the retraction of the plasma membrane is evident

(arrow). The exine wall shows its final architecture. (E) Electron micrograph of a wild-type pollen grain. (F) Higher magnification of one of

the pollen grains in (C), showing the presence of lytic vacuoles (*) as well as the cytoplasm retraction (arrow). (G) Light micrograph of an

anther from an RNAi plant at the end of pollen development. It is evident the collapsing of all the pollen grains observed inside the pollen

sac. (H) Electron micrograph detail from the same anther in (G). The anther releases empty pollen grains completely devoid of contents,

with a well-developed pollen coat (arrow). Ep, epidermis; En, endothecium; T, tapetum. Bars: 5 lm.
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Mutants are gametophytic if they disrupt genes that act

after meiosis in the haploid phase of pollen development,

and thus only the pollen grains carrying the mutant allele

are expected to be affected. Whereas this may explain the

presence of both normal and abnormal pollen in the F1

heterozygous lines, in the homozygous agp6 agp11 mutants

there was some pollen viability, since a low percentage of

the pollen grains were able to develop and germinate into
functional pollen tubes, as assessed by the presence of seeds

in self-pollinated plants. This indicates either that AGP6

and AGP11 are non-essential for stabilizing pollen grain

development, or that an alternative pathway, potentially

involving the ectopic or up-regulation of the expression of

other AGPs, is able partially to compensate for the loss of

the two proteins. Indeed, the Arabidopsis AGP family

contains at least 47 members and several AGPs have been
shown to be expressed in pollen grains (Schultz et al., 2002;

Lalanne et al., 2004). In many multigene families, redun-

dancy frequently thwarts efforts to obtain a phenotype and

thus infer a function for the protein. Edelman and Gally

(2001) suggested that gene degeneracy should be considered

in addition to redundancy, signifying that important de-

velopment processes may be ‘covered’ by several proteins,

any of which might accomplish the task in the absence of
another. For instance, although the MADS box gene,

AGAMOUS (AG), is essential for stamen and carpel

development, it has been shown that, in some mutant

backgrounds, even in the absence of AG, sepals can be

converted into carpelloid organs (Pinyopich et al., 2003).

This indicates an AG-independent pathway for carpel

development. This may help to explain why some pollen

grains developed in the homozygous agp6 agp11 back-
ground.

Levitin et al. (2008) recently showed that AGP6 and

AGP11 are involved in pollen tube growth. The authors

suggest that the reduction of AGP6 and of AGP11

expression by RNAi caused inhibition of pollen tube

growth and hampered pollen release. By contrast, it has

been shown here that the reduction in fertility is due to the

abortion of pollen grains during development. Knockout
and knockdown mutants have been studied in detail and the

only morphological trait affected by the absence or down-

regulation of AGP6 and AGP11 is pollen abortion.

In recent years, a number of AGP mutants have been

generated that are helping to identify the function of the

products of various gene family members and to provide

a framework to explore the underlying mechanisms of AGP

function. A study of the overexpression of tomato LeAGP1
linked this protein to cytokinin signalling (Sun et al., 2004).

AGP30 was shown to be required for root regeneration and

seed germination and to enhance the plants response to abcisic

acid (van Hengel and Roberts, 2003; van Hengel et al., 2004).

AGP18 is essential for female gametogenesis as functional

megaspores in RNAi plants failed to enlarge and divide,

resulting in ovule abortion and reduced seed set (Acosta-

Garcia and Vielle-Calzada, 2004). AGP17 might influence
Agrobacterium binding, either by providing a binding site on

the root surface or by reducing free salicylic acid levels

through a signal transduction pathway involving the GPI

anchor (Gaspar et al., 2004).

As all classical AGPs possess GPI anchors, it has been

suggested that AGPs are involved in interactions with other

membrane proteins, in cell–cell recognition events and in

signal transduction pathways (Seifert and Roberts, 2007).

Lalanne et al. (2004) have shown that preventing GPI

anchor addition results in pollen tube growth defects.
Heterozygous GPI biosynthetic knockout mutations in

Arabidopsis had no effects on sporophytic development and

megagametogenesis, but showed male gametophyte-specific

effects that almost completely blocked transmission through

pollen. Similar experiments (Alfieiri et al., 2003) were used

to show that GPI-anchored proteins were important for

sperm-egg adhesion in mammals.

On the whole, the evidence presented here indicates that
AGP6 and AGP11 are functionally redundant genes with

important roles in Arabidopsis pollen grain development.
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