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ABSTRACT Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data
describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed
by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inade-
quate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate
image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful
spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding
(SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quan-
titative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy
and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent
beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard
thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and
statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-
shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distri-
bution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can
readily be applied to quantify the spatial interactions of other nuclear compartments.
INTRODUCTION

The mammalian cell nucleus is structurally and functionally

complex and contains morphologically distinct chromatin

domains and numerous protein subcompartments constrained

within a defined nuclear volume. These include the nucleolus,

SC35 domains (also known as splicing speckles or interchro-

matin granule clusters), Cajal bodies, and promyelocytic

leukemia (PML) nuclear bodies (NBs). It is generally accepted

that the spatial organization of these nuclear compartments is

inherently connected to their role in gene expression and cell

regulation. Confocal laser scanning microscopy (CLSM) of

fluorescently labeled antibodies directed against specific anti-

gens has proven to be an especially valuable tool in the study of

the mammalian interphase nucleus. Such imaging not only

provides the opportunity for visualizing nuclear compartments

in situ but also facilitates quantitative approaches to investi-

gate the spatial interactions of these compartments. To date

many nuclear associations have been identified subjectively

and there is now a growing need to establish quantitative

methods that take into account statistical and probabilistic

spatial associations of nuclear compartments, particularly

given the complexity and dynamic nature of nuclear function.

A major problem in analyzing CLSM images of interphase

nuclei is an inability to objectively and accurately segment
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images, particularly if they contain irregular-shaped objects

of multiple overlapping foci.

Currently, user-defined thresholding is the most common

approach for segmenting CLSM images of the cell nucleus

(e.g., (1–3)). Generally, the user selects a global threshold

such that individual image pixels are labeled as object pixels

if their intensity is greater than that threshold and as background

pixels otherwise. The correct choice of threshold is crucial since

further processing and analysis of the distinct compartments

entirely depends on the quality of the segmentation; too low

a threshold can result in background pixels being included in

the analysis, while too high a threshold may lead to low-

intensity signal being discarded (4). User-defined thresholding

is generally considered the gold standard for segmentation of

CLSM images since the human visual system outperforms

most algorithms at qualitative tasks (5). While such threshold-

ing may be accurate it is fundamentally subjective, and this

generates a demand for automated methods that perform as

well as manual thresholding. Furthermore, automated methods

are becoming increasingly desirable to cope with high-

throughput microscopy techniques since they eliminate the

time-consuming labor associated with manual thresholding.

At present, most automated segmentation algorithms work

in two dimensions (2D); these algorithms therefore segment

three-dimensional (3D) CLSM image stacks slice by slice,

losing valuable information about the 3D image set. Some

thresholding algorithms have been designed for 2D and 3D

microscopy images but their applications are limited and
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generally focus on the task of cell or nucleus segmentation

(6–8). Here we present a novel automatic threshold method,

based on attribute similarity ideas (9), that has been designed

specifically for the task of segmenting nuclear compartments

in 3D CLSM image stacks. The algorithm, named stable count

thresholding (SCT), delivers an accurate 3D segmentation of

nuclear compartments that is readily accessible to subsequent

statistical spatial analysis of the thresholded objects. To

demonstrate the effectiveness of the SCT algorithm, we apply

it to real image stacks of cell nuclei immunofluorescently-

labeled for PML protein (a constituent protein of PML

NBs), nucleoli, SC35 domains and fluorescence in situ

hybridization (FISH)-labeled telomeres, simulated image

stacks (where the ground truth is known), and image stacks

of fluorescent beads (where the size and shape of the bead is

known). We also measure the size distribution of PML NBs

in 350 SCT-segmented image stacks and show that the thresh-

olded objects correlate well with the quoted size of PML NBs

found by electron microscopy (10).

In addition to describing the SCT algorithm and measuring

its performance, we have also employed formal statistical tests

based on spatial point pattern (SPP) analysis (11) to explore the

spatial interactions of SCT-segmented nuclear compartments.

We have analyzed the difficult case of the spatial association

between the punctate pattern of PML NBs with large and

irregular-shaped SC35 domains. PML NBs are multiprotein

aggregates (5–30 per cell; 0.1–1 mm diameter (10)) involved

in a number of cellular processes including transcription,

apoptosis, tumor suppression, and viral infection; for reviews

see (12,13). Disruption or reorganization of PML NBs is corre-

lated with profound cellular consequences (14,15). In patients

with acute promyelocytic leukemia, PML NBs are disrupted

into a microgranular appearance with numerous PML foci

(14). Studies suggest that PML NBs are positionally stable

over long periods during interphase and that their size and

position may be dictated by their interactions with chromatin

(16). SC35 domains are relatively large, irregularly shaped

structures that are distributed within the interchromatin region

of the nucleoplasm and are sites rich in pre-messenger RNA

(mRNA) splicing factors, including snRNPs and spliceosomal

subunits (17). SC35 itself is a non-snRNP splicing factor (18),

and is involved in pre mRNA processing (19). As well as

locating to splicing speckles, SC35 is also a diffuse component

of the nucleoplasm (20) and flux of splicing factors between

SC35 domain and nucleoplasm is controlled via phosphory-

lation events (17). Upon inhibition of transcription, SC35

domains have been shown to enlarge (21), hinting that splicing

speckles themselves are not sites of pre-mRNA modification,

but are instead the storage locations for the key components of

this process (17).

PML NBs have previously been observed juxtaposed with

SC35 domains (2,12,22–24); however, this association is

putative and no quantitative description has been established.

Both transcription foci and certain genomic regions and genes

share spatial associations with SC35 domains and PML NBs.
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Nascent RNA transcripts show a tight association with the

periphery of SC35 domains in Hep-2 cells (25), and they are

also found to associate to the periphery of PML NBs (26),

in an early G1 cell cycle phase-related manner (25). Specific

gene clusters, such as the gene-rich major histocompatibility

complex on chromosome 6, show a highly nonrandom

association with PML NBs (2), as do certain transcriptionally

active genomic regions (1), despite not being the sites of

transcription for these genes. Active genes and gene-rich chro-

mosomal R-bands have been demonstrated to contact SC35

domains (27). SC35 domains may therefore represent a focus

for local-euchromatic neighborhoods as opposed to purely

being splicing factor storage depots (27). The positioning of

both SC35 domains and PML NBs together with transcrip-

tionally active and genomic regions indicates that both

compartments play important roles in transcriptional

processes. Interestingly, PML NBs and SC35 domains have

also jointly been implicated as sites for the transcription and

replication of DNA viruses, such as human cytomegalovirus

(HCMV) (22). HCMV genomes have been shown to deposit

between PML NBs and SC35 domains and early RNA tran-

scripts are produced (22).

We have examined the spatial interaction of PML NBs with

SC35 domains in nuclei of both interphase and serum-starved

MRC5 fibroblasts to quantify any association between the two

compartments and measure whether the interaction changes

according to the cell state. We find statistically significant

but subtle differences in their association depending on cell

state, demonstrating that statistical approaches can quantify

and differentiate spatial relationships while avoiding visual

cognitive bias. Furthermore, our thresholding algorithm and

statistical methods reported are general and can be applied

to deduce the quantitative spatial interactions of other nuclear

compartments.

THEORY

SCT algorithm

CLSM image stacks consist of a series of 2D digital images

(xy axes) that span a given volume at sequential depths in the

z axis. Elements of the 3D image stack are referred to as vox-

els. We propose a novel method, the SCT algorithm, to auto-

matically determine threshold levels in CLSM image stacks.

Thresholding segments an input image voxel to an output

binary image voxel (SX, Y, Z) as

SX;Y;Z ¼ 1 for IX;Y;ZRT;

SX;Y;Z ¼ 0 for IX;Y;Z< T;

where IX, Y, Z is the grayscale voxel intensity and T is the

threshold. The SCT algorithm proceeds as follows.

Let N denote the number of voxels in the image stack with

an intensity greater than or equal to a threshold, T (see Fig. 1),
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NT ¼
XXmax

X¼ 1

XYmax

Y¼ 1

XZmax

Z¼ 1

SX;Y;Z ðT˛f0; 1; 2;.; TmaxgÞ;

where Xmax, Ymax, and Zmax are the lengths of the X, Y, and

Z axes respectively, and Tmax is the maximum intensity in

the image stack.

The principle of the SCT algorithm is to establish when

the voxel count becomes stable in T. At this intensity, we

propose that the image objects become distinguished from

the background. The SCT algorithm measures W,

WT ¼
����
NT�d � 2ðNTÞ þ NTþ d

d2

���� ðd˛f1; 2; 3;.gÞ:

W is derived from the central difference formula for the numer-

ical second derivative, based on three points (28)—NT�d, NT,

and NTþd. The SCT algorithm segments the image stack

using the smallest threshold, satisfying WT and WTþd < a.

If no thresholds satisfy a, then the value of a is increased

until one does.

We have found that d ¼ 10 and a ¼ NT

2000
return accurate

segmentations for image stacks with typical signal/noise

ratios. The segmentation that results from applying the

SCT algorithm to each color channel of the image stacks

shown in Fig. 2 A is illustrated in Fig. 2 B. The segmented

images suggest that the green compartment (PML NBs)

and the red compartments (nucleoli, SC35 domains, and telo-

meres) are thresholded accurately by the algorithm.

METHODS

Antibodies and fluorescence in situ hybridization

Primary antibodies used were as follows: PML (15–1745 bps) was bacterially

expressed (pET-15b expression system; Novagen, EMD Chemicals, Darm-

stadt, Germany), and used to raise a polyclonal antiserum (29), a monoclonal

mouse IgG1 anti-nucleophosmin (B23) clone FC-61991 of 0.5 mg/mL, which

reacts with the C terminus of B23 (cat. No. 32-5200; Zymed Laboratories,

FIGURE 1 Plot of the number of voxels with an intensity greater than or

equal to the given threshold in a typical image stack of an MRC5 cell

nucleus with immunofluorescently tagged PML NBs.
South San Francisco, CA); monoclonal mouse IgG1 anti-splicing factor

SC-35 of 4.6 mg/mL, which recognizes a phospho-epitope of the non-snRNP

(small nuclear ribonucleoprotein particle) factor SC-35 (cat. No. S4045;

Sigma-Aldrich, St. Louis, MO); and affinity purified goat polyclonal IgG

anti-Lamin B (M-20) of 0.2 mg/mL, which reacts with the C terminus of

Lamin B (sc-6217; Santa Cruz Biotechnology, Santa Cruz, CA). Secondary

antibodies used were as follows: fluorescein isothiocyanate (FITC) conjugated

donkey anti-rabbit IgG (HþL) with an antibody concentration of 1.5 mg/mL,

and a fluorophore/protein molar ratio of 3.3 (cat. No. 711-095-152; Jackson

FIGURE 2 (A) Z-projection images (consisting of all the flattened image

slices superimposed at maximum transparency) of nuclei in MRC5 primary

fibroblasts. Nucleoli (red, A1), SC35 domains (red, A2–A4), and PML NBs

(green, B1–B5) were labeled using primary antibodies directed against nucle-

olar protein B23, the splicing factor SC35 and PML protein, respectively; and

fluorescently tagged secondary antibodies were targeted to the primaries.

Telomeres (red, A5) were imaged using FISH labeling with a Cy3-conjugated

PNA probe. Each image slice captures 20.8 mm � 20.8 mm. (B) Projection

images of the segmentations produced by applying the SCT algorithm to

each color channel of the image stacks shown in panel A. Yellow regions

represent voxels that have been segmented as both PML NB (green) and

red object (nucleoli, SC35 domains, or telomeres). (C) Projection images

of the segmentations produced by applying Otsu’s algorithm to each

color channel of the image stacks shown in panel A.
Biophysical Journal 96(8) 3379–3389
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ImmunoResearch Laboratories, West Grove, PA), indocarbocyanine (Cy3)

conjugated donkey anti-mouse IgG (HþL) with an antibody concentration

of 1.4 mg/mL and a fluorophore/protein absorbance ratio (A652:A280) of

2.9 (cat. No. 715-165-151; Jackson ImmunoResearch Laboratories), and

indodicarbocyanine (Cy5) conjugated donkey anti-goat IgG (HþL) with an

antibody concentration of 1.5 mg/mL and an A652/A280 of 2.7 (cat. No.

705-175-147; Jackson ImmunoResearch Laboratories).

Fluorescence in situ hybridization of telomeres was performed using

a Cy3-conjugated peptide nucleic acid (PNA) probe (cat. No. K5326,

Dako UK, Cambridgeshire, UK).

Cell culture

MRC5 human primary fibroblast cells (CCL-171) were obtained from the

American Type Culture Collection (Manassas, VA). Cells were cultured

in Roswell Park Memorial Institute (RPMI) medium (Gibco, Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum, 2 mM L-gluta-

mine, and pen-strep (50 IU/mL penicillin, 50 g/mL streptomycin) (Gibco,

Invitrogen). MRC5 VA (SV-40 virus transformed MRC5) cells (obtained

from Cancer Research UK, London, UK) were cultured in Dulbecco’s Modi-

fied Eagle Medium (Invitrogen) supplemented with 10% fetal bovine serum,

2 mM L-glutamine, and pen-strep. Cells were incubated at 37�C in 5% CO2.

Cells were plated onto glass coverslips of 22 � 22 mm and 0.17-mm

thickness (part No. MNJ-400-030Yl; Menzel-Glaser, Braunschweig,

Germany) in Corning Costar six-well cell culture clusters (Corning Costar,

Corning, NY) and left for 48 h. For serum starvation, MRC5 cells were

plated as above, but 24 h postplating, the medium was changed to RPMI

supplemented with 0.1% fetal bovine serum and 2 mM L-glutamine only.

Cells were then left for eight days.

Before fixing, cells were rinsed in phosphate-buffered saline (PBS), then

fixed for 10 min in 4% w/v PF (1 part 16% paraformaldehyde w/v (cat. no.

F017, TAAB Laboratories, U.K.) to three parts PBS) with shaking at room

temperature. Cells were then washed in PBS, followed by permeabilization

in 0.5% v/v Triton X-100 (Sigma-Aldrich St. Louis, MO) in PBS for 20 min,

also with shaking at room temperature. They were then subjected to three

sequential 5 min PBS washes, and stored in PBS at 4�C.

Cells were concurrently incubated with the three primary antibodies diluted

in PBS as follows: rabbit anti-PML 1:200, mouse anti-nucleophosmin 1:50

or mouse anti-splicing factor SC-35 1:500, and goat anti-lamin B 1:100.

The incubation time was 30 min at 37�C. Secondary antibodies were diluted

in PBS as follows: donkey anti-rabbit FITC, donkey anti-mouse Cy3, and

donkey anti-goat, all 1:100. The incubation time was 30 min at 37�C, and cells

were also incubated with all three secondary antibodies concurrently.

Controls omitting primary antibodies were performed.

For FISH of telomeres using a Cy3-conjugated PNA probe, cells were

cultured, plated, and fixed and permeabilized as above. They were then

washed in 0.1 M HCl for 10 min at room temperature, followed by simulta-

neous denaturation with the PNA probe at 80�C for 5 min. Hybridization of

probe and telomeric DNA took place overnight in a humid chamber at 37�C.

Cells were then subjected to three sequential 5 min 2� saline sodium citrate

(SSC) buffer washes at 37�C, followed by a 30-min incubation of the

primary antibodies in 4� SSCT (4� SSC, 0.1% Tween-20; Sigma-Aldrich)

at 37�C. Subsequent washes and the secondary antibody incubation also

took place in 4� SSCT at 37�C.

Fluorescent beads

Slides containing FluoSpheres sulfate microspheres of 4 mm diameter

(Gibco, Invitrogen) with red fluorescent dye (580:605) were prepared and

imaged according to the manufacturer’s protocol.

Microscopy

In our experiments with real image stacks, MRC5 human primary fibroblast

cells were captured using a Zeiss LSM 510 (Carl Zeiss, Hertfordshire, UK)

confocal microscope with a Zeiss Plan Apochromat 63�oil immersion objec-
Biophysical Journal 96(8) 3379–3389
tive with numerical aperture of 1.4. Z stacks were obtained by capturing slices

taken at 0.4 mm intervals through each nucleus, and consisted of ~20 slices

collected sequentially. The pixel resolution was 0.283 mm/pixel, with a digital

zoom of 3.4 � being used to achieve a resolution of 0.083 mm/pixel.

Excitation of dyes was achieved as follows. FITC was excited using the

488-nm line of an Argon laser, and Cy3 and Cy5 were excited by the 543-nm

and 633-nm lines, respectively, of an HeNe laser. The emission fluorescence

was first split using an NFT 635 VIS dichroic mirror. For FITC and Cy3 detec-

tion, the resulting fluorescence of wavelengths <635nm was split with

a NFT 545, and then a 505–530 bandpass filter used to collect FITC, and

a bandpass 585–615 filter used to collect Cy3, with detection by a photomul-

tiplier tube (PMT). For Cy5 detection, the resulting fluorescence (>635 nm)

was passed through a plate followed by a longpass 650 filter before collection

by a PMT. PMT voltages were adjusted so that images showed no saturation.

Cell nuclei to be imaged were chosen at random by the operator.

However, cells with nuclei that did not fit the field-of view (FOV), a region

of interest covering an area of 250 � 250 pixels, were excluded. To ensure

that both the upper and lower boundaries of the nucleus were not excluded

from the imaging, the fluorescence-free regions directly above and below the

nucleus were included in the Z stack. The region of interest was delineated,

and the Z stack boundaries were defined, using the manufacturer’s acquisi-

tion software. Image stacks were exported as 8-bit (gray values from 0 to

255) 250 � 250 tiff image sequences.

Simulated images

Our objective is to assess the performance of the SCT algorithm. Quantita-

tive assessment requires access to ground truth, and as such, we appeal to

simulation. Here, we describe methodology for generating artificial images

consistent with real cell images obtained by the microscopy procedure

described above. All the computational work, including image simulations,

and automatic thresholding calculations, was performed using custom-

written R (30) code running on a personal computer equipped with a dual

1.83 GHz processor and 2 GB of RAM.

Images were simulated to replicate the major noise contributions that are

intrinsically present in real CLSM images of immunofluorescently labeled

PML nuclear bodies, including Poisson noise (also known as shot or count-

ing noise), nonspecific staining (NSS), background noise, and the point

spread function (PSF).

Simulated images: nuclear volume and PML
bodies

Real MRC5 fibroblast cell nuclei are shaped like a flattened ellipsoid spanning

approximately half the slices in an image stack. Thus, nuclei were simulated

as the middle section of an ellipsoid with the centroid in the center of the FOV,

XC¼ 125, YC¼ 125, ZC¼ 10 and simulated semiaxis lengths, XR, YR, and

ZR. The nuclear volume was then derived for Z ˛ {5, 6, ., 15} using

ðX � XCÞ2

XR2
þ ðY � YCÞ2

YR2
þ ðZ � ZCÞ2

ZR2
¼ 1;

where XR ~ N(85,102), YR ~ N(100,82), and ZR ¼ 60; N(a,b) denotes the

normal distribution with mean, a and variance, b. These semiaxis lengths

were derived from measurements of real MRC5 cell nuclei shapes. Next,

the simulated nucleus was rotated in the XY plane to represent the random

positioning of a real nucleus in the microscope’s FOV.

As noted above, the nucleus usually contains roughly 5–30 PML NBs,

ranging in diameter from 0.2 to 1 mm (equivalent to 2.4–12 pixels). The total

number of PML NBs, NP, and the diameter of each PML NB, Vi, were simu-

lated accordingly,

NP � Uð5; 6;.; 30Þ

Vi � Nð5; 1:08Þ; i˛f1; 2;.;NPg;
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where U denotes the discrete uniform distribution. The latter values were

selected such that P(2.4 < Vi < 12) z 0.99. The location of the geometric

center of each PML NB was simulated uniformly within the volume of the

nucleus and the volume of the ith PML NB was constructed by marking the

Vi
3 nearest voxels. The PML NB voxels were given an intensity, IPML ~

N(150,202) to reflect a typical intensity range of fluorescent PML NBs in

real image stacks. If IPML > 255, IPML was set to 255, representing intensity

saturation. The next step in the simulation procedure was to degrade the ideal

image stack generated above in a manner analogous to the corruption imposed

by the real system.

Simulated images: NSS

One of the most prominent features of real image stacks is the accumulation

of fluorescent signal in the nucleoplasm, which we define as NSS. The

observed signal is most likely caused by immunofluorescent labeling of

non-SUMO-modified PML protein in the nucleoplasm (31); we choose to

define it as NSS since the signal is not specific to PML NBs. We assume

that NSS occurs uniformly within the nuclear volume with an intensity

proportional to the intensity of object voxels. In real image stacks, the inten-

sity of NSS/Object was approximated as 0.07:1; NSS was negligible outside

the nucleus. Thus, in the simulations NSS was generated within the nuclear

volume with an intensity equal to IPML � 0.07. The intensity of the image

stack after modeling NSS is denoted as AX, Y, Z.

Simulated images: PSF

Any image obtained from a microscope is actually the convolution (denoted 5)

of the intensity in the specimen (AX, Y, Z) with the PSF (FX, Y, Z). The value

FX, Y, Z is reasonably approximated by a 3D Gaussian blur (8). To model the

PSF, simulated image stacks were convolved with a 3D Gaussian smoothing

kernel with a standard deviation of 1 and a radius of three voxels (voxels further

away effectively have zero effect on the blurring). The intensity of the image

stack after modeling the PSF is denoted as BX, Y, Z,

BX;Y;Z ¼ AX;Y;Z5FX;Y;Z:

Simulated images: Poisson noise

Poisson noise affects the measurement of the intensity in each voxel inde-

pendently and can produce small bright features in an image that are only

one voxel large (32). Poisson noise is considered the most significant type

of degradation in CLSM. Following the approach in Comeau et al. (33),

we simulate the effects of Poisson noise with the noise matrix, UX, Y, Z.

The value UX, Y, Z was generated and applied to each voxel in BX, Y, Z as

UX;Y;Z � Nð0; 1Þ

CX;Y;Z ¼ BX;Y;Z þ WF
ffiffiffiffiffiffiffiffiffiffiffiffi
BX;Y;Z

p
UX;Y;Z;

where CX, Y, Z is the intensity of the voxel after adding Poisson noise and

WF is a scaling coefficient known as the width factor. Varying WF allows

us to explore how Poisson noise affects the performance of the SCT algorithm.

Simulated images: background noise

Finally, background noise was modeled using the approach in Comeau et al.

(33). The noise matrix, HX, Y, Z, was added to CX, Y, Z to generate the simu-

lated image stack, DX, Y, Z,

HX;Y;Z � Nð0; 1Þ

DX;Y;Z ¼ CX;Y;Z þ HX;Y;Z:

DX, Y, Z models the overall result of capturing real CLSM image stacks of

fluorescently tagged PML nuclear bodies in MRC5 fibroblast cell nuclei.
Quantitative analysis of nuclear architecture

As noted above, the spatial configuration of certain nuclear compartments can

be represented as an SPP. Locations are referred to as events to differentiate

them from other points in the region of space. Processes that generate SPPs

can be categorized as producing locations that are: completely random (points

lie uniformly and independently of each other), or aggregated (points are clus-

tered together) or regular (points are arranged in a uniform fashion) (11).

Statistical reasoning about these processes begins with reference to the null

model of complete spatial randomness (CSR), which corresponds to an homo-

geneous spatial Poisson process (34). CSR states that events are distributed

independently and are equally likely to occupy any part of the region, and

represents the divide between regular and aggregated patterns (11).

One approach to the analysis of SPPs is based on nearest-neighbor

distances (NNDs) (11). Distance is a fundamental concept in the analysis of

SPPs; inter-event distances are often used to construct test statistics under

the assumption of CSR. These distances can be used to test hypotheses about

spatial relationships between different types of nuclear body (including irreg-

ularly shaped compartments). In comparing compartments of two different

types, let uij denote the NND from the ith Type 1 object to the jth Type 2 object.

One test for CSR, that also serves as a summary description for SPPs, uses

Ĝ(u) (11), the empirical distribution function (EDF) of the uij.

As is usual in the study of SPPs, test functions are generally calibrated

using Monte Carlo simulation. We have employed this approach to study

the SPPs of PML NBs (Type 1 events) with respect to SC35 domains

(Type 2 events). NNDs were measured from the geometric centers of the

segmented PML NB objects to the nearest segmented voxel of SC35

domain. To implement Monte Carlo simulation it was necessary to delineate

the nuclear volume. This was achieved using immunofluorescent staining

directed against lamin B, a protein component of the filamentous lamina

network that lies beneath the nuclear envelope. For the sth Monte Carlo real-

ization, PML NB locations were randomly positioned within the nuclear

volume according to CSR and Ĝ(u) was recorded. Finally, the observed

Ĝ(u) was compared with a large number, M of simulated Ĝ(u) realizations,

s ¼ 1, 2, ., M.

RESULTS AND DISCUSSION

Simulation results

Five sets of 100 image stacks were simulated, each set with

a different degree of Poisson noise. The expression C� noise
indicates WF ¼ C with the exception of 1 � noise, which is

denoted as standard (STD) noise. The PSF, NSS and back-

ground noise were kept constant.

Simulated images were segmented using the SCT algorithm

and, for comparison, Otsu’s thresholding method (35,36), the

Isodata thresholding algorithm (37,38), and mixture modeling

thresholding (MMT) (39,40). These alternative thresholding

methods are all implemented in the public domain image

processing program, ImageJ (41). These popular thresholding

procedures have been widely implemented in the segmenta-

tion of fluorescent microscopy images (7,8,42–45). The

methods examine the image intensity histogram; for example,

Otsu’s method selects the threshold that minimizes the overlap

between the two components in the histogram.

To quantify the results of the automated segmentation

methods versus ground-truth, we assess performance using

a number of measures, beginning with the probability of

error (see Table 1), also known as the misclassification error

(46). For an object-background image, this is defined as

Biophysical Journal 96(8) 3379–3389
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TABLE 1 TP and FP rates and P(error) of the SCT algorithm versus Otsu’s method, the Isodata algorithm and MMT

Noise Method FP rate TP rate P(error)

STD SCT 4.62 � 10�4 (5.44 � 10�4) 9.56 � 10�1 (7.09 � 10�2) 5.52 � 10�4 (4.89 � 10�4)

Otsu 1.55 � 10�1 (5.64 � 10�2) 9.96 � 10�1 (1.88 � 10�3) 1.55 � 10�1 (5.64 � 10�2)

MMT 4.99 � 10�1 (3.55 � 10�2) 1.00 (0.00) 4.98 � 10�1 (3.55 � 10�2)

Isodata 2.43 � 10�1 (3.66 � 10�2) 9.99 � 10�1 (1.08 � 10�3) 2.43 � 10�1 (3.66 � 10�2)

2 � SCT 3.30 � 10�4 (2.51 � 10�4) 9.46 � 10�1 (1.71 � 10�1) 4.39 � 10�4 (4.41 � 10�4)

Otsu 1.54 � 10�1 (4.72 � 10�2) 9.79 � 10�1 (1.00 � 10�2) 1.54 � 10�1 (4.72 � 10�2)

MMT 4.63 � 10�1 (3.26 � 10�2) 1.00 (7.03 � 10�5) 4.62 � 10�1 (3.62 � 10�2)

Isodata 1.73 � 10�1 (3.07 � 10�2) 9.94 � 10�1 (7.90 � 10�3) 1.73 � 10�1 (3.07 � 10�2)

3 � SCT 3.59 � 10�4 (2.33 � 10�4) 8.94 � 10�1 (2.15 � 10�1) 5.41 � 10�4 (3.96 � 10�4)

Otsu 1.64 � 10�1 (3.83 � 10�2) 9.64 � 10�1 (2.52 � 10�2) 1.64 � 10�1 (3.83 � 10�2)

MMT 4.20 � 10�1 (3.08 � 10�2) 1.00 (5.80 � 10�4) 4.20 � 10�1 (3.08 � 10�2)

Isodata 1.51 � 10�1 (2.36 � 10�2) 9.88 � 10�1 (1.77 � 10�2) 1.50 � 10�1 (2.36 � 10�2)

5 � SCT 1.69 � 10�4 (1.44 � 10�4) 6.98 � 10�1 (1.79 � 10�1) 6.85 � 10�4 (4.09 � 10�4)

Otsu 1.79 � 10�1 (1.78 � 10�2) 9.61 � 10�1 (1.97 � 10�2) 1.79 � 10�1 (1.77 � 10�2)

MMT 3.89 � 10�1 (2.75 � 10�2) 9.82 � 10�1 (6.46 � 10�3) 3.88 � 10�1 (2.75 � 10�2)

Isodata 1.41 � 10�1 (1.52 � 10�2) 9.58 � 10�1 (2.03 � 10�2) 1.40 � 10�1 (1.52 � 10�2)

10 � SCT 2.81 � 10�3 (6.54 � 10�3) 4.68 � 10�1 (1.40 � 10�1) 3.75 � 10�3 (6.39 � 10�3)

Otsu 1.70 � 10�1 (1.25 � 10�2) 8.05 � 10�1 (2.53 � 10�2) 1.69 � 10�1 (1.25 � 10�2)

MMT 3.55 � 10�1 (2.30 � 10�2) 8.57 � 10�1 (2.03 � 10�2) 3.55 � 10�1 (2.30 � 10�2)

Isodata 1.32 � 10�1 (9.57 � 10�3) 7.92 � 10�1 (2.59 � 10�2) 1.32 � 10�1 (9.52 � 10�3)

The FP rate is defined as the proportion of voxels in the image stack erroneously labeled as PML NB voxels when they are in fact background voxels. The TP

rate is defined as the fraction of actual PML NB voxels correctly labeled as object. Standard deviations are shown within parentheses.
PðerrorÞ ¼ PðObjÞPðBackgndcjObjÞ
þ PðBackgndÞPðObjcjBackgndÞ;

where P(BackgndcjObj) is the probability of classifying

object as background, and P(Backgnd) is the a priori proba-

bility of class background. This measure is often used in the

evaluation of thresholding techniques (47). In general, Table

1 shows that the misclassification error for the SCT algo-

rithm increases as WF is increased; however, the probability

of error for Otsu’s method, the Isodata algorithm, and the

MMT procedure are roughly three-orders-of-magnitude

larger than the SCT algorithm.

The misclassification error does not capture all areas of

performance so to further evaluate the segmentation methods,

we have examined the false-positive (FP) and true-positive

(TP) rates of the procedures. The FP rate is defined as P(Back-
gnd)P(ObjcjBackgnd), which is the proportion of voxels in

the image stack erroneously labeled as object (PML NB) vox-

els when they are in fact background voxels. The TP rate is

defined as P(Obj)P(ObjcjObj), which is the proportion of

actual object voxels correctly labeled as object. It is clear

from Table 1 that the alternative segmentation methods
have much higher FP rates than the SCT algorithm. With

STD noise: Otsu’s method drastically undersegments the

simulated images, incorrectly thresholding over 15% of the

image stack as object, the Isodata algorithm incorrectly

assigns over 24% of the voxels as object, MMT erroneously

segments almost 50% of the voxels as object. The high FP

rate of these methods drives their high misclassification error.

Fig. 3 shows a typical image simulation with STD noise

that has been segmented using Otsu’s method and the SCT

algorithm. Otsu’s method is regarded as the best and most

commonly employed global thresholding technique (48).

Otsu’s method considerably outperformed the Isodata algo-

rithm and MMT with STD noise. The SCT algorithm

segments all of the PML NB voxels in Fig. 3 but also segments

a number of background voxels adjacent to object voxels.

This is caused by the PSF, which blurs the image and as a result

increases the intensity of background voxels that are close to

object voxels. Deconvolution could be used to try to gain

a more accurate segmentation; however, deconvolution is

inadvisable when the purpose of the segmentation is to

resolve object geometric centers (49). Otsu’s method drasti-

cally undersegments the simulated image. A major reason

for this is that Otsu’s method (like the Isodata thresholding
FIGURE 3 Projection images of a simulated image stack

(A) segmented using the SCT algorithm (B) and Otsu’s

method (C). The misclassification error for Otsu’s method

is roughly three-orders-of-magnitude larger than the SCT

algorithm. This error is driven by the high false positive

rate of Otsu’s method.

Biophysical Journal 96(8) 3379–3389
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algorithm and MMT) thresholds each slice of the stack sepa-

rately, and therefore it loses important information about the

3D image. Slices of the image stack that do not contain object

voxels are assumed to have a bimodal intensity histogram and

are thresholded at relatively very low intensity. In slices where

object voxels do exist, Otsu’s method appears to delineate

the NSS. This result is also pertinent when Otsu’s method is

applied to real image stacks (see Fig. 2 C).

User-defined thresholding

Currently, user-defined thresholding is considered the gold

standard method for segmenting fluorescence microscopy

images of nuclear compartments. However, manual thresh-

olding is subjective and is prone to inter- and intraoperator

variability (4). We have generated synthetic image stacks

and so can directly compare the SCT algorithm with user-

defined thresholding.

Ten image stacks with STD noise and 10 image stacks

with 10� noise were segmented using the SCT algorithm,

and manually thresholded by a trained expert. The FP and

TP rates as well as the misclassification error for the two

methods are summarized in Table 2. With STD noise, the

SCT algorithm has a higher TP rate than user-defined thresh-

olding although it also has a higher FP rate. Overall, the SCT

algorithm performs as well as manual thresholding for image

stacks with STD noise. Furthermore, manual thresholding of

the simulated image stacks was very time-consuming, taking

~5 min per image stack. The SCT algorithm, on the other

hand, calculated a threshold in seconds. When there is very

high noise, manual thresholding proved slightly better than

the SCT algorithm for all measures. However, we would

not expect to encounter real image stacks with such high

levels of noise.

Segmentation of fluorescent beads

An image stack of a 4 mm fluorescent bead (see Fig. 4) was

captured to further assess the performance of the SCT algo-

rithm. For comparison, the same image stack was segmented

using Otsu’s method. The SCT algorithm accurately delin-

eates the bead. Otsu’s method, however, greatly overesti-

mates the size of the bead; giving further support to the
argument that the method has a high FP rate. In particular,

Otsu’s method has a very high FP rate in slices where no

bead is present.

Segmentation of asymmetric nuclear
compartments

The task of thresholding PML NBs may be eased because they

are geometrically well-defined, roughly spherical objects.

The efficacy of the SCT algorithm is more completely demon-

strated when segmenting nucleoli, SC35 domains, and FISH-

labeled telomeres (for examples, see Fig. 2 B). Unlike PML

NBs, nucleoli and SC35 domains are relatively large struc-

tures that are irregularly shaped. SC35 domains are especially

diffuse compartments (see Fig. 2, A2–A4). FISH-labeled telo-

meres are also imaged and segmented using the SCT algo-

rithm, showing that this type of fluorescent labeling can also

be handled by the algorithm (see Fig. 2, B5). For comparison,

the image stacks are also segmented using Otsu’s threshold-

ing algorithm in Fig. 2 C. Otsu’s method struggles to segment

the objects of interest and instead roughly delineates the

nucleoplasm in both color channels.

Specimen preparation and microscopy procedures for

successful automated image analysis are stricter than for

manual methods since computers are easily misled by arti-

facts, variability, confounding objects, and clutter (4). Thus,

it is important to ensure that the objects of interest are delin-

eated with a high degree of contrast against the background.

We have successfully used the SCT algorithm to segment

almost 1000 image stacks of nuclear compartments including

SC35 domains, nucleoli, FISH-labeled telomeres, centro-

meres, RNA polymerase II sites, and PML NBs.

Size distribution of segmented PML NBs

We have applied the SCT algorithm to real image stacks of

PML NBs in populations of interphase, serum-starved, and

SV40 virus-transformed MRC5 cells to investigate the size

distribution of SCT-segmented PML NBs in these nuclei.

Measuring the dimensions associated with each NB and

scaling, and assuming PML NBs are spherical, provides

the means to estimate NB diameter. Fig. 5 illustrates the

diameters (in microns) and counts of 4039 PML NBs from
TABLE 2 Evaluation of the SCT algorithm versus manual thresholding

Measure Noise SCT Manual

Accuracy STD 1.00 (3.91 � 10�4) 1.00 (2.54 � 10�4)

10 � 9.97 � 10�1 (6.45 � 10�3) 9.99 � 10�1 (5.87 � 10�4)

FP rate STD 3.19 � 10�4 (4.22 � 10�4) 4.15 � 10�5 (7.14 � 10�5)

10 � 2.20 � 10�3 (6.63 � 10�3) 1.52 � 10�4 (5.21 � 10�5)

TP rate STD 9.67 � 10�1 (6.18 � 10�2) 9.16 � 10�1 (1.40 � 10�1)

10 � 4.49 � 10�1 (1.38 � 10�1) 4.64 � 10�1 (5.96 � 10�2)

P(error) STD 4.00 � 10�5 (3.90 � 10�4) 2.17 � 10�5 (2.54 � 10�4)

10 � 3.41 � 10�4 (6.43 � 10�3) 1.37 � 10�4 (5.87 � 10�4)

Ten image stacks were simulated for each noise level and the average accuracy, TP and FP rates, and P(error) of each thresholding technique across the simu-

lations is summarized. Standard deviations are shown within parentheses.

Biophysical Journal 96(8) 3379–3389
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FIGURE 4 Projection images of a 4 mm fluorescent bead

(A) segmented using the SCT algorithm (B) and Otsu’s

method (C). Since the object is known to be 4 mm in diam-

eter and sphere-shaped, it is clear that the SCT algorithm

selects a suitable threshold to delineate the bead. Otsu’s

method vastly undersegments the bead.
348 segmented image stacks. PML NB diameter ranges from

0.189 mm to 1.64 mm with a mean diameter of 0.623 mm. The

number of PML NBs per nucleus ranges from 2 to 35 with

a mean of 11.6. These size and count distributions corre-

spond remarkably well with fluorescence and electron

microscopy estimates, which suggest that the number of

PML NBs in the mammalian cell nucleus typically varies

between 5 and 30, ranging in diameter from 0.1 or 0.2–1 mm

(10,50); >95% of SCT-segmented PML NBs fall in the

range 0.189–1 mm.

One clear problem with such analysis is that the output

image from CLSM is not a perfect representation of the real

objects. For instance, the efficiency of the primary and

secondary fluorescent antibodies that label the nuclear

compartments is affected by several factors such as avidity,

suitability, and titer, which can greatly influence the fluores-

cence intensity profile and therefore the overall size of the

nuclear compartment stained and later visualized (4).

Compartments also tend to have indistinct borders, with the

fluorescence intensity profile tailing off gradually (4). These

problems as well as the PSF can cause significant downstream

errors with the quantitative volumetric analysis of the image

objects and can only be reduced with careful experimental

procedures and accurate image analysis. Additionally, the

typical lateral resolution of the CLSM is only 0.2 mm (32),

which is roughly the size of the smallest PML NB that we

record (0.189 mm). Our estimate of PML NB size, however,

fits well with the quoted range of the compartment by electron

FIGURE 5 Boxplots describing the sizes (left) and counts (right) of

>4000 PML NBs in 348 segmented image stacks. PML NB diameter ranges

from 0.189 mm to 1.64 mm with a mean diameter of 0.623 mm. The number

of PML NBs per nucleus ranges from 2 to 35 with a mean count of 11.6.

Biophysical Journal 96(8) 3379–3389
microscopists (10), which suggests that the SCT algorithm

delivers accurate segmentations of PML NB volume.

SPP analysis of PML NBs and SC35 domains

The SCT algorithm was developed to facilitate the analysis of

SPPs within 3D images. Nuclear architecture has traditionally

been studied via fluorescence microscopy and subsequent

observational interpretation of the images, usually as 2D

projections of 3D image stacks (4,51–53). Visual inspection

is inadequate, however, to evaluate complex spatial point

patterns within the nucleus, especially when the patterns are

highly punctate. Statistical tools can help to quantitatively

decode the complex spatial relationships that underlie nuclear

architecture.

We have investigated the spatial relationship of PML NBs

with SC35 domains (for examples, see Fig. 2, A2–A4). The

NND from each PML NB centroid was measured to the near-

est segmented SC35 domain voxel. To assess whether the

observed PML NB SPP rejects the null hypothesis of CSR

with relation to SC35 domains, we calibrated Ĝ(u), using

M ¼ 5000 simulated Ĝ(u) realizations to define upper and

lower limits of a 99% simulation envelope (11). If the

observed Ĝ(u) is not completely contained inside the simula-

tion envelope, then we have evidence to reject the null

hypothesis of CSR. Fig. 6 illustrates the results of applying

this procedure to the segmented image stacks shown in

Fig. 2, A2–A4. Putatively examining the projection images

or image stacks in question may have compelled an unwary

observer to infer that, in all three cell nuclei, PML NBs were

closer to SC35 domains than a random distribution would

suggest. However, at the 1% significance level, quantitative

analysis provides no reason to doubt that the SPP of PML

NBs is CSR with respect to SC35 domains in the nuclei

shown in Fig. 2, A2 and A4, but we do have evidence to

reject CSR for the nucleus shown in Fig. 2 A3. These results

suggest that complex SPPs such as those displayed in Fig. 2

are extremely difficult to interpret visually.

The analysis above was carried out on a total of 50 inter-

phase MRC5 cells and 50 serum-starved MRC5 cells. In

both populations, 42 out of 50 cells had evidence to reject

CSR. Moreover, in these 84 cells, the observed Ĝ(u) EDFs

penetrated the lower limit of the simulation envelope and

therefore we infer that the observed PML NBs are situated

closer to SC35 domains than one would expect under CSR.



Automated Image Analysis 3387
Thus, we have formal, quantitative evidence to suggest that

PML NBs are associated with SC35 domains in both inter-

phase and serum-starved MRC5 human primary fibroblast

nuclei. To our knowledge this association has been observed,

but never quantified until now. The functional consequences

of this interaction are unclear. Both PML NBs and SC35

FIGURE 6 Plot of the empirical distribution function of the distances

from each PML NB centroid to the nearest segmented SC35 domain voxel.

The observed distribution of PML NB NNDs is shown by the solid line,

while the simulation envelope (from Monte Carlo testing) is shown with

the dotted lines. The top, middle, and bottom EDFs correspond to the nuclei

in Fig. 2, A2, A3 and A4, respectively.
domains have been shown to associate closely with sites of

nascent RNA transcription (25,26), and nascent transcripts

are often found at the edges of either compartment, but not

typically within. The HCMV viral genome is also found to

locate between PML NBs and SC35 domains upon entry to

the nucleus (22), and this bears relevance to its transcription.

Certain genomic regions and genes are spatially associated

with PML NBs and SC35 domains (1,2,27). Hence, both

PML NBs and SC35 domains are implicated in transcription,

albeit potentially in distinct processes (with PML NBs most

likely to be involved in the events preceding and during

production of nascent transcripts, whereas SC35 domains

play a role in posttranscriptional pre-mRNA processing).

Alternatively PML NBs may themselves also show involve-

ment in pre-mRNA processing (54), which could account

for their neighboring of SC35 domains. The juxtaposition of

PML NBs and SC35 domains, facilitated by their sharing of

the interchromatin space, may therefore allow their organiza-

tion into a transcriptional processing hub that is able to

respond to the requirements of the cell as appropriate. Thus,

the significantly close configuration of PML NBs and SC35

domains is consistent with such a proposal.

Furthermore, we have investigated the degree of the spatial

interaction in both cell populations using the NND from each

PML NB to SC35 domain voxel. Fig. 7 illustrates these

distances (in microns) in the interphase and serum-starved

MRC5 cell nuclei. The mean NND was 0.605 mm in the inter-

phase nuclei and 0.811 mm in the serum-starved nuclei. Per-

forming a Mann-Whitney-Wilcoxon test using all the NNDs

from the two samples rejected the null hypothesis that the

two samples were drawn from a single population (p <
10�15). Thus, we have evidence to suggest that the distance

between the SC35 domain and PML NBs is significantly

smaller in the interphase nuclei. The closer spatial interaction

in these cells suggests that subtle changes in spatial posi-

tioning at the local compartment level, in response to changes

in cellular requirements, are possible without large-scale

FIGURE 7 Boxplots describing the inter-event distances from PML NB to

SC35 domain voxel in 50 interphase MRC5 nuclei (left) and 50 serum-starved

nuclei (right). Inter-event distance ranges from 0.057 mm to 2.33 mm with

a mean distance of 0.604 mm in the interphase nuclei and from 0.076 mm to

4.38 mm with a mean distance of 0.811 mm in the serum-starved nuclei.
Biophysical Journal 96(8) 3379–3389
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disruption of nuclear organization. In the case of serum-

starved cells, which show low levels of transcriptional activity

compared to interphase cells, PML NBs and SC35 domains

are found to be further apart than in interphase cell nuclei,

suggesting that the degree of spatial association is indicative

of cellular activity.

CONCLUSION

Here we present a novel method to segment CLSM image

stacks of nuclear compartments. Image segmentation is

a core problem in microscopy and the importance of threshold

selection cannot be overemphasized since further processing

and analysis of the segmented objects entirely depends on the

quality of the segmentation. User-defined thresholding is

a common approach for segmenting fluorescence microscopy

images. Although such thresholding may be accurate, it is

also subjective and time-consuming. Automated segmenta-

tion methods are objective and generally much faster than

manual thresholding. The SCT algorithm is fully automated

and yields an accurate 3D segmentation of nuclear compart-

ments that may also be applicable to fluorescent microscopy

techniques other than CLSM, such as wide-field fluorescence

microscopy.

The SCT algorithm was evaluated by processing real image

stacks of PML NBs, simulated image stacks and image stacks

of fluorescent beads. In all three cases, the SCT algorithm was

shown to replicate the accuracy of manual thresholding by an

experienced operator, and to outperform the popular and well-

established Otsu method, the Isodata thresholding algorithm,

and MMT. Additionally, the SCT algorithm is deterministic,

i.e., it will always choose the same threshold for any given

image stack. This is an advantage over user-defined threshold-

ing (with inter- and intraoperator variability), because any

subsequent analysis of the segmented image stacks will give

consistent conclusions. We have applied the SCT algorithm

to almost 1000 real image stacks of nuclear compartments

with great success. The algorithm is general and flexible,

and can be applied to any similarly structured data. Moreover,

it is not subject to user bias and arguably subsumes the human

operator; at the very least, it serves as a powerful tool to assist

segmentation of complex cell biology images.

The SCT algorithm directly lends itself to quantitative

spatial analysis of the thresholded objects. Spatial relation-

ships between nuclear compartments may give significant

clues to the function of the compartments. However, to date

many spatial associations have been defined as significant

by subjective visual assessment. Such observations can be

misleading. Currently we have high-resolution imaging tech-

nology to visualize the cell nucleus and a wide range of statis-

tical approaches with which to study the derived data. The key

question in attempting to understand spatial configurations is

whether non-CSR SPPs are the cause or consequence of func-

tion. We show that PML NBs are significantly closer to SC35

domains than expected under CSR in both interphase and
Biophysical Journal 96(8) 3379–3389
serum-starved MRC5 human primary fibroblast nuclei. Since

both PML NBs and SC35 domains are implicated with

transcriptional functions their juxtaposition may create a

transcriptional processing hub set up to respond to the tran-

scriptional requirements of the cell as appropriate. In serum-

starved nuclei (where transcription levels are lower than in

interphase cells), the NND between PML NBs and SC35

domains is significantly greater. This small-scale rearrange-

ment may be a reflection of the change in cellular state.

Furthermore, such a change in the spatial relationship would

be extremely difficult to interpret by eye. Therefore, the statis-

tical methods employed here are an extremely useful tool and

an appropriate choice to reveal subtle but significant changes

in spatial relationships.

We are grateful to the anonymous reviewers, whose comments led to a much

improved manuscript.

Richard A. Russell and Elizabeth Batty were recipients of Medical Research

Council and Biotechnology and Biological Science Research Council stra-

tegic studentships, respectively.

REFERENCES

1. Wang, J., C. Shiels, P. Sasieni, P. Wu, S. Islam, et al. 2004. Promyelo-
cytic leukemia nuclear bodies associate with transcriptionally active
genomic regions. J. Cell Biol. 164:515–526.

2. Shiels, C., S. Islam, R. Vatcheva, P. Sasieni, M. Sternberg, et al. 2001.
PML bodies associate specifically with the MHC gene cluster in inter-
phase nuclei. J. Cell Sci. 114:3705–3716.

3. McManus, K., D. Stephens, N. Adams, S. Islam, P. Freemont, et al.
2006. The transcriptional regulator CBP has defined spatial associations
within interphase nuclei. PLoS Comput. Biol. 2:e139.

4. Shiels, C., N. Adams, S. Islam, D. Stephens, and P. Freemont. 2007.
Quantitative analysis of cell nucleus organization. PLoS Comput.
Biol. 3:e138.

5. Glasbey, C., and G. Horgan. 1995. Image Analysis for the Biological
Sciences John Wiley & Sons, New York.

6. Kozubek, M., S. Kozubek, E. Lukásová, A. Marecková, E. Bártová,
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