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†Karlsruhe Institute of Technology, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany; ‡Instituto de
Ciencia Molecular, Universidad de Valencia, 46980 Paterna (Valencia), Spain; §Departamento de Bioquı́mica y Biologı́a Molecular, Universidad
de Valencia, 46100 Burjassot (Valencia), Spain; and {Institute of Organic Chemistry, University of Karlsruhe, 76131 Karlsruhe, Germany

ABSTRACT Solid-state 2H-NMR is routinely used to determine the alignment of membrane-bound peptides. Here we demon-
strate that it can also provide a quantitative measure of the fluctuations around the distinct molecular axes. Using several
dynamic models with increasing complexity, we reanalyzed published 2H-NMR data on two representative a-helical peptides:
1), the amphiphilic antimicrobial peptide PGLa, which permeabilizes membranes by going from a monomeric surface-bound
to a dimeric tilted state and finally inserting as an oligomeric pore; and 2), the hydrophobic WALP23, which is a typical transmem-
brane segment, although previous analysis had yielded helix tilt angles much smaller than expected from hydrophobic mismatch
and molecular dynamics simulations. Their 2H-NMR data were deconvoluted in terms of the two main helix orientation angles
(representing the time-averaged peptide tilt and azimuthal rotation), as well as the amplitudes of fluctuation about the corre-
sponding molecular axes (providing the dynamic picture). The mobility of PGLa is found to be moderate and to correlate well
with the respective oligomeric states. WALP23 fluctuates more vigorously, now in better agreement with the molecular dynamics
simulations and mismatch predictions. The analysis demonstrates that when 2H-NMR data are fitted to extract peptide orientation
angles, an explicit representation of the peptide rigid-body angular fluctuations should be included.
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INTRODUCTION

The orientation of membrane-bound peptides in lipid bilayers

can be routinely determined by solid-state NMR (SSNMR)

(1,2). For a simple a-helix, this orientation is defined by the

tilt angle of its long axis with respect to the membrane normal,

plus an azimuthal angle giving the rotation of the helix around

its axis. This alignment is typically calculated from a number

of local orientational constraints acquired from 2H- 19F- or
15N-labeled peptides (3–15). However, such analysis of the

NMR data normally ignores, or oversimplifies, the molecular

motions of the peptide, which are clearly nonnegligible in

a fluid lipid bilayer. Other spectroscopic methods for esti-

mating peptide orientation in membranes, such as oriented

circular dichroism (16,17) or attenuated total reflection Four-

ier-transform infrared spectroscopy (18), are not able to

provide this dynamic information either.

As relatively small molecules, peptides are expected to be

highly mobile in liquid crystalline membranes. For instance,

internal peptide-plane librations occur on the timescale of

10�9 s, whereas whole-body axial diffusion and off-axial

reorientations may take place on the 10�8–10�7 s and

10�6–10�5 s timescales, respectively (19,20). Because these

molecular motions are much faster than the SSNMR acquisi-

tion timescale of up to a second, peptide dynamics will lead

to a partial averaging of the anisotropic NMR signals. The

amplitudes of fluctuation can thus have a direct effect on

the apparent peptide orientation angles, especially when

these are calculated on the usual assumption of a simple
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static model. This problem was recently demonstrated by

molecular dynamics (MD) simulations on the model peptides

WLP23, KLP23, and WALP23 (21,22). The authors showed

that large deviations can exist between the actual time-aver-

aged helix tilt and rotation angles as deduced directly from

the MD traces and the calculated values that were either eval-

uated indirectly from the simulated 2H-NMR splittings or

obtained directly by experiment. In fact, these and other

MD studies (23,24) have systematically yielded much larger

tilt angles of the peptides (30–40�) than determined from
2H-NMR experiments of the same systems (4–10�).

It is therefore essential to account for motional averaging

when calculating the peptide orientation from SSNMR data.

However, so far, peptide mobility has been ignored or, at

most, has been considered by introducing a fixed or adjust-

able order parameter S (3,5,7,8,10–12,14). Here, we present

a detailed analysis of the influence of peptide dynamics on

the interpretation of 2H-NMR data, where the anisotropic

fluctuations of the peptide motions of and around its helix

axis are modeled explicitly. By reanalyzing the published
2H-NMR data from several peptide/lipid systems, using

a number of alternative models of increasing complexity to

account for peptide mobility, we obtain what we believe is

a new view of peptide dynamics in membranes. In an accom-

panying article (25) we do a similar analysis of the influence

of dynamics on the interpretation of 15N-NMR data from

polarization inversion spin exchange at the magic angle

(PISEMA) experiments.

Our systems of choice are the amphipathic antimicrobial

peptide PGLa and the hydrophobic model peptide

WALP23. Each of these has been selectively labeled with
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Ala-d3 in at least eight different positions, and 2H quadrupolar

splittings have been systematically collected in different

model membranes and under different conditions (7,10–12).

The selected examples thus represent the various orientations

that are typically encountered for helical peptides in liquid

crystalline membranes, as illustrated in Fig. 1, which should

be of general interest for many other systems too. Specifically,

we consider here the amphiphilic PGLa helix in DMPC,

bound flat to the membrane surface in the so-called ‘‘S-state’’

as a monomer (Fig. 1 A), embedded in the bilayer in a tilted

‘‘T-state’’ as a putative dimer (Fig. 1 B), and immersed in

the membrane in the ‘‘I-state’’ in an almost upright alignment

(Fig. 1 C). Unlike PGLa, the fully hydrophobic WALP23 is

always expected to assume a transmembrane alignment,

e.g., in DMPC (Fig. 1 D), although in a DLPC bilayer, the

mismatch in hydrophobic thickness is expected to induce

a more significant tilting (Fig. 1 E) (3,7,26).

For each of these five cases we have calculated the best-fit

helix tilt and azimuthal rotation angles by an rmsd analysis of

the NMR data, using for these analyses several different

dynamic models. We find that the inclusion of dynamics

improves the quality of the fits, and the applicability versus

complexity of the models is discussed in terms of the

multiple-parameter fits. Obviously, the apparent deviations

of the calculated structures depend primarily on the extent

of motion, but more remarkably, the reliability of the anal-

ysis depends also very much on the actual orientation of

the peptide. Altogether, the most appropriate model, which

assumes explicit fluctuations of and around the helix axis,

appears to be most realistic and allows for the first time, to

our knowledge, to estimate the amplitudes of peptide

whole-body motions in the membrane.

METHODS

Structural model for the conformation
and orientation of membrane peptides

The peptides studied here are known to be a-helical in lipid environments

from circular dichroism and NMR analysis (6,27–30) Hence, they are

A B C D E

FIGURE 1 Representative orientational states of membrane-bound

peptides in the different peptide-lipid systems studied. (A) Surface-aligned

amphiphilic peptide (S-state), PGLa/DMPC 1:200. (B) Tilted dimer (T-state),

PGLa/DMPC 1:50. (C) Membrane-inserted oligomer (I-state) in a putative

pore, PGLa/MAG/DMPC/DMPG 1:1:75:25. (D) Transmembrane state of

a monomeric hydrophobic peptide, WALP23/DMPC 1:100. (E) Mismatched

transmembrane state of a monomeric hydrophobic peptide, WALP23/DLPC

1:100. In all panels the hydrophobicity of peptides and lipids is indicated by

a gray scale, where the more polar parts are shaded darker.
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modeled as an ideal polyalanine helix, with the same backbone conforma-

tion for all residues (6,8). The geometric analysis of labeled alanines

(GALA method) utilizes Ala-d3 residues as selective labels (8,11), for which

the orientation of the Ca–CbD3 vector is fixed by the backbone structure.

This molecular geometry is described by a pair of angles, a and b. The first

one is defined within the plane normal to the helix axis through the Ca atom,

and it is the angle formed between the projection of the Ca–Cb bond onto

that plane and a radial vector from the peptide axis to the Ca. In turn, b is

the angle between the Ca–Cb bond and the helix axis. In an a-helical poly-

alanine model constructed using SYBYL (Tripos, St. Louis, MO) with back-

bone angles 4¼ –58� and j¼ –47� and a pitch between contiguous residues

of g ¼ 100�, the values of a and b are 53.2� and 121.1�, respectively (6).

The definitions of the angles are shown in Fig. S1 in the Supporting Material.

The orientation of the peptide helix in the lipid membrane is defined by

the tilt angle t between the helix axis and the membrane normal and by

the azimuthal rotation angle r about the helix axis (Fig. 2). The reference

for the zero value of r can be set according to different conventions.

Here, in all cases, we will use the same convention as in our publications

on PGLa (5,8,10–12,27), for which r ¼ 0 when the radial vector pointing

through Ca of residue number 12 lies in a plane parallel to the membrane

surface. However, whenever a different convention was used in previous

experimental work, as for WALP23 peptides, to avoid confusion, we also

state the r-values according to those original publications (3,7).

Theoretical splittings in static and dynamic
models

Calculations were performed on a PC using FORTRAN programs. The basic

formula connecting the deuterium quadrupolar splittings to the structure and

orientation of a helical peptide is (7)

Dnq ¼ Dn0
q 1=2

�
3cos2bðcost� sint cosd tanbÞ2�1

�
; (1)

where Dnq is the measured quadrupolar splitting, and Dnq
0 is the maximum

splitting that is related to the quadrupolar coupling constant e2qQ/h. The

angles t (the helix tilt) and b are defined above, and d is the local azimuthal

rotation angle of the C-CD3 bond vector of an Ala-d3 residue, which in turn

is related to the helix azimuthal rotation, r, by d ¼ r þ a þ q. Here, q is

the angle around the peptide axis between the reference residue (see definition

above) and the CD3-labeled Ala residue. For a regular helix q ¼ ng, with n
being the number of residues between the reference and the labeled residue,

and g is defined above (7,10). Together with g, the bond angles a and b define

the rigid helical peptide conformation (see above and Fig. S1).

Equation 1 represents a static model that can be fit to a set of experimental
2H-NMR splittings. To account for motional averaging in the most simplistic

way, this expression can be multiplied by an order parameter 0 % S % 1,

which has the effect of scaling down all couplings (4,5,8,10–12). In

a more advanced model of peptide dynamics, we can also describe the oscil-

latory fluctuations of the peptide around its helix axis by assuming

a Gaussian distribution of r angles, centered at r0, and with a standard

deviation of sr (21);

A B

FIGURE 2 Definition of the helix tilt angle t and its azimuthal rotation r,

illustrated here for PGLa in the S-state (for details see text).
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dðrÞ ¼ N exp
h
� ðr0 � rÞ2=

�
2s2

r

�i
; (2)

where N is a normalization constant, N¼ (sr O(2p))�1. The splittings calcu-

lated for all different r-angles are weighted by the probability distribution

and integrated to give the averaged effective splitting Dnq. An analogous

calculation can be done to account for a distribution of t-angles, correspond-

ing to a wagging of the helix axis, using a Gaussian distribution centered at

t0 and with a width of st. Ultimately, both t- and r-fluctuations can be

considered simultaneously by using Gaussian distributions of the two angles

and performing a two-dimensional integration.

When analyzing the 2H-NMR data using any of these models, the calcu-

lated quadrupole splittings for each CD3-labeled position are compared with

the experimental value of the splitting, and the root mean-square deviation

(rmsd) is minimized using a multidimensional grid search of the free param-

eters. Because the signs of the experimental splittings are unknown, the

fits and rmsd calculations are performed using the absolute values of the

calculated splittings.

RESULTS AND DISCUSSION

Peptide-lipid systems used in the study

To test and compare the various dynamic models, they are

applied here to several different peptide/lipid systems

covering a wide range of orientations, oligomerization, and

binding modes. Each case chosen has been studied in depth

by solid-state 2H-NMR using peptides labeled with Ala-d3 in

at least eight different positions, which gives sufficiently

large data sets to allow reliable fits with up to five free param-

eters. All the data have been published previously, and for

experimental details, the reader should consult the original

articles (7,10,12). See also comments on the data in the

Supporting Material.

The antimicrobial peptide PGLa (GMASKAGAIAG

KIAKVALKAL-amide) forms an amphipathic a-helix in

lipid environments. For a peptide/lipid molar ratio (P/L) of

1:200, the helix was found to lie almost parallel to the

membrane surface (8,10). This so-called ‘‘S-state’’ (see

Fig. 1 A) is proposed to be the preferred state for most amphi-

pathic peptides at low concentration. At a higher concentra-

tion of PGLa in DMPC (P/L¼1:50), an oblique tilt of the helix

was observed (see Fig. 1 B), and this so-called ‘‘T-state’’ has

been proposed to consist of peptide dimers (8,10). A similar

T-state has been found for other amphipathic peptides and

might be common (14,28). A third orientational state was de-

tected for PGLa in 1:1 mixtures with magainin-2 (MAG),

another antimicrobial peptide found in the same frog skin,

which is known to have a synergistic effect on PGLa (33).

In the PGLa/MAG system, PGLa was found to have a small

tilt angle (12). This transmembrane ‘‘I-state’’ indicates the

existence of a transmembrane pore (see Fig. 1 C). Such

a pore has been suggested to be the physical cause of bacterial

death, and it is biologically relevant to study this state for

antimicrobial peptides in general (17,29,30).

Transmembrane model peptides were first introduced by

Davis (31). As a representative case, we chose here

WALP23 (acetyl-GWW(LA)8LWWA-amide) from the

WALP family of peptides, which has been studied systemat-
ically by Killian et al. (for a recent review see Killian and

Nyholm (32)). The orientation of the peptide was determined

with 2H-NMR in different lipid systems to examine the effect

of hydrophobic mismatch (7). We here use data from

WALP23 in DMPC (almost matching, see Fig. 1 D), and in

DLPC (where the peptide is too long and is expected to tilt,

see Fig. 1 E). The calculated tilt angles increased slightly

with decreasing membrane thickness, but they covered only

a small range (5� to 8� for WALP23, from thicker toward

thinner membranes), which appears insufficient to provide

much mismatch relief (7). Moreover, several MD simulations

performed on WALP and related peptides in different lipid

systems have generally shown much larger tilt angles (21–23,

27,33–37). It is therefore interesting to understand the

discrepancy between the NMR and MD analysis, which has

been recently attributed to the question of whether and how

peptide dynamics is considered in the NMR analysis (21,22).

Evaluation of alternative models of peptide
orientation and dynamics

Model 1: Static splitting (fit of t and r)

In the simplest approach, the experimental data are fitted to

Eq. 1 with the tilt angle t and the azimuthal rotation r as

the only free parameters. The maximum quadrupolar split-

ting Dnq
0 is reported in the literature with a value of Qcc ¼

168 kHz for a completely immobile aliphatic 2H-C bond,

which corresponds to a maximum splitting for a rotating

CD3-group of Dnq
0 ¼ 84 kHz (38). We use this value in

Model 1 to evaluate the peptide orientation (see below) under

the assumption of completely static conditions.

Model 2: Scaled splitting (fit of t and r)

In dry peptide powders at room temperature, we experimen-

tally obtain a maximum splitting of only ~74 kHz (P. Trem-

ouilhac, E. Strandberg, P. Wadhwani, and A. S. Ulrich,

unpublished results for Ala-d3-labeled PGLa), which is indic-

ative of some intrinsic internal motions of the peptide. Similar

values are also observed for other Ala-d3-labeled peptides. In

Model 2 we therefore use this value of Dnq
0¼74 kHz instead of

the static splitting of Model 1, as the membrane-bound

peptides are likely to be at least as mobile as in a dry powder.

This choice is equivalent to introducing a scaling factor (order

parameter) Si ¼ 0.88, accounting for some intrinsic internal

mobility of the peptide that would reduce the maximum value

of the splitting down to the dry-powder value (3,7).

The best-fit values of t and r are listed in Table 1 for the

different peptide-lipid systems, using either Dnq
0 ¼ 84 kHz

(Model 1) or Dnq
0¼ 74 kHz (Model 2). Generally, for a given

peptide/lipid system, it is seen that the values of t and r are

almost the same, irrespective of the Dnq
0 value (except for r

in the S-state of PGLa). Yet, Model 2 gives better solutions

with lower rmsd values compared to Model 1. This finding

confirms that the peptides experience some motional aver-

aging, which can be advantageously accounted for by using

Biophysical Journal 96(8) 3223–3232
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TABLE 1 Best-fit parameters using Models 1, 2, and 3

Peptide/lipid system

Model 1 Dnq
0 ¼ 84 kHz (Si ¼ 1) Model 2 Dnq

0 ¼ 74 kHz (Si ¼ 0.88) Model 3 variable S (0 % S % 1)

t/� r/� rmsd/kHz t/� r/� rmsd /kHz t/� r/� S rmsd /kHz

PGLa in the S-state* 97 34 8.0 97 117 5.7 98 115 0.70 2.1

PGLa in the T-state* 121 113 8.0 124 112 3.9 126 111 0.78 1.2

PGLa in the I-statey 162 97 2.2 158 98 1.2 157 98 0.84 1.1

WALP23 in DMPCz 4 293 (167) 2.2 6 300 (160) 1.5 7 302 (158) 0.72 1.0

WALP23 in DLPCz 3 266 (194) 3.4 7 285 (175) 4.0 15 318 (142) 0.51 2.3

*From Strandberg et al. (10).
yFrom Tremouilhac et al. (12).
zFrom Strandberg et al. (7). The r-values calculated according to the conventions of the original WALP23 publication are given in parentheses to allow

comparison with the previous analysis.
a scaled quadrupolar coupling constant, as previously used

(3,7). Nevertheless, the errors are still rather large in some

cases (intrinsic experimental errors are ~1 kHz); hence

even Model 2 with a scaled splitting does not appear to

describe these systems appropriately.

Model 3: Variable S (fit of t, r, and S)

We now consider additional peptide dynamics, other than

that included via the initial Si ¼ 0.88. For clarity, we intro-

duce a second order parameter, Sr, to account for the motions

not captured by Si, such as additional internal vibrations and

especially partial rotations and wobbling of the whole mole-

cule, which are expected to occur in the bilayer environment.

The global order parameter S, which corresponds to the total

dynamic averaging, is a product of the two order parameters

(S ¼ Si � Sr, 0 % S % 1) and will be used as a fitting param-

eter together with t and r. The adjustable order parameter S
acts as a scaling factor to reduce the nominal Dnq

0 ¼ 84 kHz

coupling constant. Thus, Models 1 and 2 are special cases of

the more general Model 3. This variable S model has been

introduced and successfully used by our group as a rough

measure of dynamics in the analysis of PGLa and many other

peptides (2,4,8,10–12,14,39).

Table 1 contains the best-fit values of t, r, and S for the

different peptide-lipid systems. The variable S model

produces better fits than the static models used above, with

all rmsd values between 1 kHz and 2 kHz. The biggest

improvements in rmsd within each peptide system are seen

for the small S values, namely for PGLa in the S-state and

for WALP23. The model dependence is not so pronounced

for PGLa in the I-state, which has a high S value and is the

least mobile system. It is also seen that the angles t and r

are similar to those obtained with Model 2 except for

WALP23 in DLPC, which has a particularly small S (and

for which t goes from 7� to 15�). The data are often analyzed

by rmsd plots and helical wave plots, as described in the

Supporting Material.

Model 4: Explicit azimuthal fluctuations (fitted t, r0, and sr)

In the next models we still perform a three-parameter fit, but

instead of using a variable order parameter S, we describe the

Biophysical Journal 96(8) 3223–3232
peptide dynamics in a more explicit manner. First, let us

consider specific whole-body peptide dynamics, which

consists of rotational oscillations around the helix axis.

These fluctuations can be modeled with a Gaussian (normal)

frequency distribution of the r-angle, which assigns

maximum probability to the mean value r0 and is character-

ized by a certain standard deviation of sr (there is 68% prob-

ability that r is within the interval r0 � sr). The choice of

a Gaussian distribution is motivated mainly by our previous

MD simulations (21). A uniform distribution, with equal

probability over a specified range of angles, although easy

to implement, would disagree with the MD results

(21,22,35). On the other hand, more complex distributions,

such as a bimodal distribution centered on two preferred

angles, would introduce additional parameters and be

much too complex to allow finding a solution with the

amount of data usually available. We assume that the fluctu-

ations are fast compared to the NMR timescale, so that the

distribution will lead to an averaging of the quadrupolar

splittings in an anisotropic way, thus modifying the shape

of the helical wave curve. We use the dry powder value

Dnq
0 ¼ 74 kHz from Model 2 as the quadrupolar splitting

constant, assuming that the internal dynamics in the peptide

powder will be present to a similar extent for peptides in

a hydrated membrane (Si ¼ 0.88).

Fits were systematically performed for the peptide/lipid

systems over a range of sr-values. The results are presented

in Fig. 3, where the best-fit values of t, r0, and the correspond-

ing rmsd are shown as a function of the standard deviation sr.

The best-fit values for the different systems are given in

Table 2. The results for PGLa in the S-state are presented in

Fig. 3 A. It is seen that there is a clear minimum in the rmsd

curve at sr ¼ 19�. However, for sr in the range of up to 35�

the best-fit t and r0 values are almost constant and within

2� of the best values of Model 3 (variable S). We conclude

that rotation about the helix axis with a distribution width

sr of 19� can give a good fit and that t and r0 are quite well

defined for this surface-bound monomeric peptide. For the

putative PGLa dimers in the T-state, we observe a similar

behavior (Fig. 3 B), with a best fit again for sr ¼ 20�, and

corresponding t and r0 very similar compared to those from

Model 3, although with slightly larger rmsd (see Table 2).
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A B C D 

FIGURE 3 Finding the best-fit value for the azimuthal fluctuation sr and visualization of the corresponding variations in t and r0 (Model 4). The dashed line

in each column indicates the best fit. (A) PGLa in the S-state, giving sr¼ 19�, r0¼ 117�. (B) PGLa in the T-state, giving sr¼ 20�, r0¼ 111�. (C) PGLa in the

I-state, giving sr in the range of 0–25�, r0 ¼ 97�. (D) WALP23 in DMPC, giving sr ¼ 89�, r0 ¼ 302�. WALP23 in DLPC has a similar appearance as in

DMPC (data not shown).
For the oligomeric assembly of PGLa in the transmem-

brane I-state, the situation is quite different (Fig. 3 C). We

see no clear minimum, and for sr in the range of 0� to 25�

the rmsd remains very low, between 1.2 and 1.3 kHz.

However, the tilt angle is here more sensitive to the r-distri-

bution, going from 158� down to 145� with increasing sr

(from 0� to 40�), whereas the average azimuthal rotation r0

changes only by a few degrees. It seems in this case that

including averaging motions around the helix axis does not
improve the fits but introduces ambiguity of the tilt because

there are many different combinations of t and sr giving the

same, or very similar, rmsd.

The most striking effect is seen for the transmembrane

WALP peptides. For WALP23 in DMPC (Fig. 3 D), the

best fit is obtained for a very broad distribution of r (sr ¼
89�). Clearly, there is a considerable probability for all

azimuthal angles, meaning that the peptide can exhibit virtu-

ally complete rotation about its helix axis, although still with
TABLE 2 Best-fit parameters using Gaussian distributions of either r (Model 4) or t (Model 5) or both simultaneously (Model 6), in all

cases with Dnq
0 ¼ 74 kHz (Si ¼ 0.88)

Peptide/lipid system

Model 4 Model 5 Model 6

t/� r0/� sr/� rmsd /kHz t0/� st/
� r/� rmsd /kHz t0/� st/

� r0/� sr/� rmsd/kHz

PGLa in the S-state* 96 117 19 2.2 100 26 115 2.3 98 17 115 15 2.0

PGLa in the T-state* 122 111 20 1.3 129 16 112 1.4 125 11 111 15 1.2

PGLa in the I-statey 157 97 1-25 1.2 157 8 99 1.1 155 8 98 20 1.1

WALP23 in DMPCz 18 302 (158) 89 0.9 6 8 299 (161) 1.4 14 15 302 (158) 71 0.9

WALP23 in DLPCz 34 317 (143) 91 2.3 8 15 285 (175) 3.6 29 26 317 (143) 66 2.2

*From Strandberg et al. (10).
yFrom Tremouilhac et al. (12).
zFrom Strandberg et al. (7). The r-values calculated according to the conventions of the original WALP23 publication are given in parentheses to allow

comparison with the previous analysis.
Biophysical Journal 96(8) 3223–3232
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a most probable azimuthal angle that is almost the same for

all sr-values (r0 varies <10� when sr changes from 0� to

140�). However, and most notably, the calculated tilt angle

increases with sr, from 6� for sr ¼ 0� to 19� at sr ¼ 89�.
For WALP in DLPC, a similar behavior is obtained (result

shown in Table 2 but not in Fig. 3).

Fig. S3 visualizes the effect of rotation around the helix

axis on the helical waves, and illustrates why this type of

dynamics has a larger effect on the fit of peptides in a trans-

membrane orientation.

Model 5: Explicit wagging fluctuations (fit of t0, st, and r)

As an alternative to Model 4, we may also consider

a Gaussian distribution of tilt angles for a helix with its

azimuthal rotation fixed. Such a peptide can waggle in the

membrane around a most probable, averaged tilt, t0, accord-

ing to a normal probability distribution of width st. This

motion will also lead to an averaging of splittings and will

modify the helical wave curves in a different way compared

to the r distribution Model 4. Fits were performed for all the

peptide/lipid systems using a range of values of st (with Dnq
0

¼ 74 kHz, see above), and the results are presented in Table

2. For PGLa, almost the same orientation is found as for

Models 3 and 4. For PGLa in the I-state, no clear minimum

was found. For WALP23, very small tilt angles are found,

and the rmsd is larger than that for Models 3 and 4. In this

case, the fit is more similar to that of Model 2. A detailed

analysis of Model 5 is given in the Supporting Material,

where fits are also shown in Fig. S6. The small allowed

st-values for the transmembrane (small tilt) peptides can

be understood from the effect of st on helical curves. This

is shown in Fig. S5.
Model 6: Explicit t- and r-fluctuations (fit of t0, st, r0, and sr)

It is instructive now to introduce another free parameter in

the fit, to be able to consider two separate distributions of

both t and r. We will treat their respective contributions indi-

vidually, even though these two types of motion are of

course present simultaneously and may partly compensate

each another. Thus, in Model 6, we assume that the t- and

r-fluctuations are independent, and we use Dnq
0 ¼ 74 kHz

(Si ¼ 0.88) to account for nonspecific internal motions.

A two-dimensional map of (st, sr) pairs taken from the

best fits is shown in Fig. 4 A for the case of PGLa in the

S-state, with color-coded rmsd values. Pairs with similar

rmsd cluster together giving banana-shaped regions, indi-

cating that the effects of st and sr are indeed not completely

independent from each other. The preferred region has

rmsd < 2.5 kHz, and a shallow minimum is found for st

¼ 17�, sr ¼ 15�. Both of these values are smaller than those

found using individual distributions, and they correspond to

the best-fit case of t0 ¼ 98� and r0 ¼ 115�. All these values,

together with other results derived from Model 6, are

summarized in Table 2. We note that t0 and r0 represent the

same orientation as the one found above with the variable S
(Model 3) but with a slightly lower rmsd (2.0 kHz). It is also

worth correlating the (st, sr) plot with a (t0, r0) plot with

pairs of best-fit orientation angles mapped to their correspond-

ing color-coded rmsd (Fig. 4 D). In this case, we see that the

banana-shaped region with rmsd < 2.5 kHz in Fig. 4 A
corresponds to a very small area in the (t0, r0) plot, and

only a small range of the angles map to rmsd < 5 kHz.

An analogous analysis for PGLa in the T-state gives

a similar picture (Fig. 4, B and E), where the preferred region
A B C

D E F

FIGURE 4 Plot of fitting the 2H-

NMR data as a function of (st, sr) for

(A) PGLa in the S-state, (B) PGLa in

the T-state, (C) PGLa in the I-state; and

as a function of (t0, r0) for (D) PGLa

in the S-state; (E) PGLa in the T-state;

and (F) PGLa in the I-state. The rmsd

values for each point in the grid-search

are indicated by a color code, with the

same scale for the (st, sr) and (t0, r0)

plots of the same system.
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(rmsd < 2.0 kHz) is now shaped as an arc, and there is

a minimum for st ¼ 11� and sr ¼ 15� (not far from the

values of the S-state). Such a minimum corresponds to

t0¼ 125� and r0¼ 111�, which is also very close to the values

found above for a variable S (Model 3), with the same rmsd.

In the (t0, r0) plot, we see again a well-defined minimum,

with a somewhat larger good-fit area compared to PGLa in

the S-state.

The corresponding (st, sr) plot for PGLa in the I-state

(Fig. 4 C) shows an allowed region that is much larger along

the sr dimension. It is seen from the plot that for st ¼ 0�,
a large range of sr-values give similar rmsd values, which

explains why no clear minimum was found for Model 4 in

this case (see Fig. S6 C). The best-fit area has a rather narrow

range of st-values but a wide range of sr from 0� to 30�, with

a tentative minimum at st ¼ 8�, sr ¼ 20�, which is clearly

different from that of the S- or T-states of PGLa. The angular

values corresponding to this point (t0 ¼ 155� and r0 ¼ 98�)
compare well with the best fit from the variable S (Model 3),

with the same rmsd. The (t0, r0) plot (Fig. 4 F) has a unique

minimum close to these values, but the region with an rmsd

< 5.0 kHz is much larger than that for PGLa in the S- or

T-state. This means that the peptide orientation can be less

well defined in the I-state, but it is still possible to pinpoint

its alignment in terms of t0 and r0 within ~�5� accuracy.

All PGLa systems have revealed well-defined distributions

of t and r that fit the experimental 2H quadrupolar splittings

very well. In all these cases, the best-fit rmsd is the same or

slightly better compared to the analysis using the variable S
(Model 3), and the tilt and azimuthal angles are virtually iden-

tical to the previously reported values based on that model.

However, the newly introduced model of explicit whole-

body fluctuations provides additional dynamic information

on the respective amplitudes of wagging and azimuthal

fluctuations, assuming ideal Gaussian distributions.

For WALP23 the emerging picture is rather different,

presumably because this peptide is much more mobile than

PGLa (see below). For WALP23 in DMPC, the region of

the (st, sr) plot where rmsd < 2 kHz is much wider, espe-

cially along the sr dimension, as illustrated in Fig. 5 A. There

is a shallow minimum around st¼ 15� and sr¼ 71�, but the

uncertainty in the fluctuation parameters is much larger than

those for any of the PGLa cases described above. Clearly, the

uniformly hydrophobic transmembrane peptide undergoes

more extensive azimuthal fluctuations around its helix axis

than the amphiphilic PGLa, although the fluctuations in the

tilt angle are of comparable size. The best-fit orientation is

for t0 ¼ 14� and r0 ¼ 302�, and quite a large area in the

(t0, r0) plot corresponds to rmsd < 2.0 kHz (Fig. 5 C). This

solution corresponds to the same azimuthal angle but a

considerably larger helix tilt compared to the analysis above

using the variable S model (Model 3 with t¼ 7�). The calcu-

lated helix tilt is, in fact, very much larger than the previously

reported angle (3,7). The previous analysis had been based

on a model similar to our Model 2 above (see Table 1).
The divergence in t0 is even more pronounced when

WALP23 is embedded in DLPC with shorter acyl chains,

as seen in Fig. 5, B and D (see also Table 2). The best-fit

helix tilt assuming the new dynamic model is t0 ¼ 29�,
compared to t ¼ 15� for the variable S (Model 3), or t ¼ 7�

(Model 2) or 3�, for the static Model 1. Thus, the previously

examined hydrophobic mismatch effect for these types of

WALP peptides, which was found to be unexpectedly small,

has now become much clearer from our dynamic analysis,

which supports more recent interpretations (21,22).

If we assume no intrinsic motion of the peptides (Si ¼ 1),

the explicit dynamic models give, as could be expected,

wider distributions of angles but have almost no effect on

the orientation. Details are given in Table S1 and Table

S2. For a discussion of combining distributions of t and/or

r angles with a variable S, see the Supporting Material.

We thus propose that Model 6 is most appropriate to

extract the best-fit values or at least the feasible ranges of

r0 and t0 from the 2H-NMR data, provided that a sufficient

number of 2H splittings is available, such as the eight values

used here. Additionally, this dynamic analysis can give

a good estimate of the amplitudes of peptide whole-body

motions in the membrane, i.e., the azimuthal fluctuations

A B

C D

FIGURE 5 Plot of fitting the 2H-NMR data as a function of (st, sr) for (A)

WALP23 in DMPC, (B) WALP23 in DLPC; and as a function of (t0, r0)

for (C) WALP23 in DMPC, and (D) WALP23 in DLPC. The rmsd value

for each point in the grid search is indicated by a color code, with the same

scale in all graphs.
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represented by sr and the fluctuations of the helix tilt repre-

sented by st. The results for PGLa and WALP23 using

Model 6 are summarized in Table 2, where r0 and t0 describe

the classical alignment of the peptides, and sr and st may be

regarded as describing their dynamic behavior. We see that

the change in tilt angle t0 of PGLa in realigning from the

monomeric S-state to the dimeric T-state and into the oligo-

meric I-state is accompanied by a decrease in the amplitude

of wagging fluctuations. This trend of st going from 17� to

11� to 8� is in very good agreement with the proposed step-

wise oligomerization of PGLa and the ensuing decrease in

mobility (note that the values of r0 and sr, connected to

the amphiphilic character of the peptide, remain rather unaf-

fected). It is also instructive to compare the mobility of PGLa

in the I-state with that of WALP23 in DLPC, as both trans-

membrane helices have a very similar tilt angle t0 of 25� (t =

155� and r = 98� is equivalent to t = 25� and r = 278�, see

Fig. S2) (PGLa) or 29� (WALP23). Yet, PGLa undergoes

only moderate fluctuations with st ¼ 8� and sr ¼ 20�,
whereas WALP23 is vigorously mobile with st ¼ 26� and

sr ¼ 66�. These dramatic differences can certainly be attrib-

uted to the respective oligomeric and monomeric states of

these two peptides. Finally, the effect of bilayer mismatch is

nicely illustrated by the comparison of WALP23 in DMPC

and DLPC. The helix is more upright in DMPC (t0 ¼ 14�)
compared to the thinner DLPC bilayer (t0 ¼ 29�).

Choice of model for the 2H-NMR data analysis

As seen above for the examples of PGLa and WALP23,

using different dynamic models can give distinctly different

results for the calculated peptide alignment. These values are

summarized in Table 3, allowing us to compare the trends in

t0, r0, and rmsd for Models 1 to 6. It is seen that the r0 values
are hardly affected by whichever model is used (except for

WALP23 in DLPC), so one does not need to worry about

these. The rmsd values are seen to decrease significantly

on introduction of, first, the fixed scaling factor Si ¼ 0.88

(Model 2) and then the variable order parameter (Model

3). Application of the fluctuation model around a single

peptide axis (Model 4 shown here has better rmsd than

Model 5) gives slightly worse rmsd values compared to

Model 3, although the same number of free parameters are

being fitted. Therefore, we conclude that Model 3 with a vari-

able S should be generally preferable to Model 4 in cases

where only a limited number of 2H-NMR data are available

(i.e., when Model 6 cannot be applied).

Attention must be paid to the tilt angle t, as this value is

found to depend most critically on the type of dynamic

model applied. In the case of PGLa, which exhibits only

moderate mobility in any of its three alignment states, the

model dependence is not so pronounced. However, in the

case of the vigorously mobile WALP23, the observed

increase of t on introduction of better dynamic models

suggests that the helix tilt angle gets systematically underes-

timated when dynamics is not taken into account properly

(21,22). The deviations can be up to one order of magnitude

when the completely inappropriate static Model 1 is used

(giving t of 3� for WALP23 in DLPC, as opposed to 29�

using Model 6), and they are still a factor of 2 when the

reasonable Model 3 with a variable S is applied (giving t

of 15� for WALP23 in DLPC as opposed to 29�, or 7� as

opposed to 14� in DMPC).

Apart from dynamics, the assumed conformational model

also has an influence on the analysis. Using a canonical

a-helix in our previous 19F- and 2H-NMR studies of amphi-

pathic membrane-bound peptides has resulted in good fits to

the data (4,5,8,10–12,14). The hydrophobic transmembrane
TABLE 3 Comparison of dynamic models

Dynamic model

Peptide system Model 1 (S ¼ 1) Model 2 (S ¼ 0.88) Model 3 (0 % S % 1) Model 4 (Variable r) Model 6 (Variable t, r)

Tilt t (�)* 97 97 98 96 98

PGLa in the S-state Rotation r (�)* 34 117 115 117 115

Rmsd (kHz) 8.0 5.7 2.1 2.2 2.0

Tilt t (�)* 121 124 126 122 125

PGLa in the T-state Rotation r (�)* 113 112 111 111 111

Rmsd (kHz) 8.0 3.9 1.2 1.3 1.2

Tilt t (�)* 162 158 157 157 155

PGLa in the I-state Rotation r (�)* 97 98 98 98 98

Rmsd (kHz) 2.2 1.2 1.1 1.2 1.1

Tilt t (�)* 4 6 7 18 14

WALP23 in DMPC Rotation r (�)* 293 300 302 302 302

Rmsd (kHz) 2.2 1.5 1.0 0.9 0.9

Tilt t (�)* 3 7 15 34 29

WALP23 in DLPC Rotation r (�)* 266 285 318 317 317

Rmsd (kHz) 3.4 4.0 2.3 2.3 2.2

*For cases of variable tilt and rotation angles, the given values correspond to means of Gaussian distributions.
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helices, too, have been found to be highly uniform in

PISEMA studies (40–42). Especially for the latter ones, the

implicit assumption of a straight a-helix is expected to be

valid, i.e., in the center of the hydrophobic core where all

the Ala-d3 labels are placed in the case of WALP23.

Nevertheless, it is useful to consider the possible impact of

conformational deviations from this simplified input struc-

ture. One approach is to examine the rmsd values that remain

in the best fits of the different systems studied. For example,

PGLa in the S-state and WALP23 in DLPC show systemat-

ically worse rmsd values for all of the tested models, Models

1–6 (irrespective of any dynamics considered). This observa-

tion suggests that these relatively large residual errors may

be at least in part caused by the actual conformation of the

peptides.

CONCLUSIONS

We have investigated the influence of peptide mobility on

the determination of molecular alignment from 2H-NMR

data, by evaluating different dynamic models of increasing

complexity. For two representative peptides PGLa and

WALP23 in various alignment states, this comprehensive

analysis shows that good fits cannot be obtained unless

some degree of dynamic averaging is included in the model.

The explicit dynamic analysis in terms of t- and r-fluctu-

ations (Model 6) shows that the amphipathic peptide PGLa

undergoes moderate dynamics in liquid crystalline DMPC

membranes. In contrast, the hydrophobic transmembrane

peptide WALP23 undergoes vigorous fluctuations, and

here our data analysis clearly shows that dynamics must

not be ignored; otherwise, the calculated helix tilt angles

are underestimated.

In previous 2H-NMR studies of WALP23 and related

peptides, the helix tilt in different lipid systems had been

found to be very small and only weakly dependent on hydro-

phobic mismatch (3,7,9,13). These reports were not sup-

ported by the results from more recent MD simulations,

which systematically showed larger peptide tilts that were

also much more influenced by bilayer mismatch (21,22).

Our dynamic analysis also yields a larger tilt for WALP23

in DMPC and DLPC than previously published, although

the tilts from the simulations are still larger than these new

experimental values (21–23). On the other hand, the

observed difference between the two lipid systems appears

now in better agreement with the hydrophobic mismatch

predictions. To obtain yet another independent picture for

this kind of mobile transmembrane peptide, an alternative

method such as two-dimensional NMR PISEMA should be

applied, as it has been suggested that rigid-body peptide

dynamics would have only a small influence on the analysis

of polar index slant angles (PISA) wheels in 15N PISEMA

spectra (43). A use of both 2H-NMR on Ala-d3 labels and
15N PISEMA spectra has been reported recently to study

the model membrane peptide GWALP23, which is similar
to WALP23, and basically the same tilt has been obtained

from the two methods using static models to analyze the

data (15). However, this might be a particular case with

low peptide mobility. In the accompanying article we have

investigated the effects of dynamics in PISEMA spectra

for a wide range of cases (25), with the conclusion that the

PISEMA analysis of a highly mobile transmembrane peptide

is indeed less model dependent, yet it can yield the same

valuable insights on helix wagging and rotational oscilla-

tions as 2H-NMR.
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