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Model Studies of the Dynamics of Bacterial Flagellar Motors
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ABSTRACT The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming
bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and
switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-
speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model
predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest exper-
iments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed
on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor
even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors
with two stators is discussed, and we suggest future experimental procedures for verification.
INTRODUCTION

Flagellar rotation is one of the major mechanisms for bacte-

rial motility. Using the transmembrane electrochemical Hþ

(or Naþ) gradient to power rotation of the flagellar motor,

free-swimming bacteria can propel their cell body at a speed

of 15–100 mm/s, or up to 100 cell body lengths/s (1,2). The

proton motive force (PMF) is a sum of enthalpic and entropic

terms:

D~mhPMF ¼ Dj|{z}
membrane

potential

þ 2:303
kBT

e
DpH|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Transmembrane ion

concentration gradient

: (1)

In the case of a sodium driven motor, DpH is replaced by

the sodium ion concentration term DpNa ¼�log10 ([Naþ]in/

[[Naþ]out]). The bacterial flagellar motor (BFM) consists of

a rotary motor embedded in the cell envelope that is con-

nected to an extracellular helical propeller (see Fig. 1 a)

(1,3,4). The motor is the first natural object proposed and

demonstrated to be a rotary machine (5). It is ~45 nm in

diameter and contains ~11 torque-generating units attached

to the cell wall around the periphery of the rotor (6). The

stator is believed to deliver torque to the rotor by converting

the free energy of the inward flow of ions down an electro-

chemical gradient across the cytoplasmic membrane into

the cell.

A schematic plot of the key components of the Escheri-
chia coli bacterial flagellar motor (Fig. 1 a) has been derived

from collected research of electron microscopy, sequencing,

and mutational studies (reviewed in (7,8)). More recently,
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crystal structures of some of the rotor proteins have become

available (7). The basal body comprises a rod connecting

four protein rings, the L-ring, P-ring, MS-ring, and cyto-

plasmic C-ring (9). Functionally, the basal body is the rotor

of the BFM. The rotor complex is homologous to the type III

secretion system of Gram-negative bacteria (9,10). Around

the periphery of the MS-ring, there is a circular array of stator

complexes. They comprise the MotA and MotB proteins in

a 4A2B stoichiometry. The MotA/MotB complex is homol-

ogous to the TonB-ExbB-ExbD and the TolA-TolQ-TolR

complexes of outer membrane transport energizers (11,12).

Both MotA and MotB span the cytoplasmic membrane. It

is suggested that MotB anchors MotA to the rigid framework

of the peptidoglycan through some 7- to 8-nm-long a-helices

(the so-called stator springs in later discussions). MotA has

four transmembrane a-helices and a large cytoplasmic

loop. Mutational studies have found that several critical

charged residues on this cytoplasmic loop interact electro-

statically with charged residues on the C-terminus of FliG

on the C-ring (13). This interaction is important for the tor-

que generation mechanism of the BFM. FliG, FliM, and

FliN constitute the C-ring and are also referred to as the

‘‘switch complex’’, since mutations in this region often

lead to defects in the switching function. The structure of

the Naþ motor is similar to that of the Hþ motor. The

MotA/MotB complex correspondence is the PomA/PomB

complex in the Naþ motor (14). The Naþ and Hþ motors

probably have the same mechanism. This idea is supported

by the experimental observation that chimeric motors that

mix components from both types of motor can still function

(15). In the rest of this article, we will refer to one particular

Naþ-driven chimeric motor that uses a Naþ-type stator and

an E. coli BFM rotor (15). Since it is easier to change the

Naþ concentration and sodium motive force (SMF) than
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FIGURE 1 Schematic illustration of (a) the flagellar motor structure and (b) the mathematical model. There are three essential components in the model

to reproduce the observed motor torque-speed relations: 1), a potential barrier to reduce futile backward slipping after a power stroke and to ensure tight

coupling; 2), an elastic linkage between the motor and the bead; and 3), localized chemical transitions (reproduced from (25). with permission). (c) Definition

of the angular variables qS, qR, and qL used in our simulations.
the PMF and pH value in the medium without interfering

with other cellular processes, this chimeric motor has

become a favorable target in recent BFM studies (16–18).

To clarify the working mechanism of the flagellar motor,

we need to understand the mechanochemical cycle of torque

generation and how it is coupled to ion flux. In the past

three decades, various experimental techniques have been

implemented in the study of BFM. Before direct step

measurement, the torque-speed relationship was the major

biophysical probe to study the mechanism. By attaching

a polystyrene bead onto the flagellum, or by applying

rotating electric field, Berg and co-workers, followed by

other researchers, measured how the motor torque (output

of the motor) varies with speed (16,18–24). Those studies

can be viewed as early experimental efforts of biophysics

studies at single-protein/protein-complex levels. They give

a full picture of the motor’s output under external loads,
and an indication of the energy conversion efficiency. The

observed motor torque-speed relations, which show sharp

transitions (the ‘‘knee’’) between a plateau region at low

speed and a steep concave-down region at high speed,

remained unexplained for a long time (1).

In our previous article, we constructed a mathematical

model to explain the observed motor torque-speed relation-

ship (25). We showed that the flat plateau and knee are

mainly due to 1), rotation being observed through a soft elastic

linkage between the motor and the viscous load; and 2), the

diffusion dynamics of the load and internal kinetics of the

motor being on different timescales. Our model suggested

that motor dynamics in the plateau region and in the

concave-down region is controlled by thermodynamics and

internal motor kinetics, respectively. Consequently, we sug-

gested that the two components of the ion motive force, the

membrane potential and the transmembrane ion gradient, are
Biophysical Journal 96(8) 3154–3167
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equivalent in controlling motor speed in the plateau region

but may be nonequivalent in the concave-down region.

The latest experiment by Lo et al. confirmed that individual

components of the SMF show nonequivalent influence on

the chimera motor function in the low load regime (26).

Our model also predicted that the motor speed at vanish-

ing load (the zero-load speed) decreases with the number

of stators. However, a recent experiment by Yuan and

Berg showed that the zero-load speed is independent of the

stator number (27). They performed numerical simulations

with our model, and stated that the experimental result can

be recovered if the stator springs, neglected in our original

work, are explicitly treated and are sufficiently soft.

However, this raises another concern about the model. One

expects that a motor with soft stator springs will not show

clear steps (28), yet Sowa et al. clearly observed 26 steps/

revolution in a slow-rotating chimera motor. In this work,

we examine whether our model is compatible with both

the zero-load speed experiment and the stepping experiment.

We focus on the dynamics of the flagellar motor. We first

improve the modeling of ion hopping on/off rates in the

model by explicitly considering extracellular/intracellular

ion concentration. This modification allows separate treat-

ment of the membrane potential and the ion gradient. We

present results that can fit E. coli and chimera motor data,

respectively. Models of the two types of motor are derived

from the same framework but differ in the values of some

parameters (e.g., ion hopping rates). Next, we show that

the model predicts that the flagellar motor is a stepping

motor, and we discuss the corresponding dwell-time distri-

bution. After we introduce a soft stator spring in the model,

the model reproduces both the stepping behavior and the

correct zero-load speed dependence on the stator number.
negatively charged D32 residue on the MotB helices (D24 on

PomB for the Naþ motor). This motion is transmitted to the

rotor via interactions at the rotor-stator interfaces (see (1,7)

and references therein). Details of these interactions will remain

vague until the atomic structure of the stator has been deter-

mined; currently the structures of but a few portions of the rotor

are available (29–31).

Our coarse-grained model integrates available information

from various experimental observations (25). To generate

sufficient torque, we assume that one torque generation cycle

of the stator is driven by the free energy derived from

transporting two periplasmic protons to the two negatively

charged D32 residues on the two MotB helices, then to the

cytoplasm. On binding and releasing the ions, two cyto-

plasmic MotA loops alternate in contacting successive FliGs

on the rotor, like two alternating ‘‘pistons’’. The MotA loop

motions result in a downward stroke followed by a recovery

stroke, each of which pushes the rotor to rotate. During the

cycle, the stator is always engaged with the rotor; i.e., the

duty ratio is 1. The binding energy of the protons to MotB

is converted into a ‘‘flashing’’ electric field in the stator

that triggers a pair of conformational transitions (Fig. 1 b).

The torque thus generated is transmitted to the rotor when

the MotA loops are in contact with the FliGs. The interaction

between MotA and FliG is most likely (but not necessarily)

dominated by electrostatic and steric interactions (13,25).

Detailed modeling of these interactions has to wait for

more structural information.

The above process can be described mathematically by

a set of stochastic equations. The dynamics of the single

stator motor pulling a viscous load via an elastic linkage

can be described by the Langevin equation

where the angles qS,qR, and qL are defined in Fig. 1 c, and qS
Rotor : zR

dqR

dt|fflffl{zfflffl}
Viscous drag torque

on the rotor

¼ � v

vqR

VRSðs; qR � qSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rotor-Stator

interaction force

� kðqR � qLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Elastic coupling

force

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTzR

p
fRðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Brownian torque

on the rotor

; (2)
We further discuss the stepping behavior when two stators

are engaged in the system. A series of testable predictions

are made, which will become the starting point of a new

generation of experiments.

MODEL FORMATION AND COMPUTATIONAL
DETAILS

Detailed information about the motor has been accumulated via

extensive biochemical, cryoelectron microscopy, crystallog-

raphy, and mutational studies. Current biochemical and struc-

tural studies imply that the motor torque is generated by stator

conformational changes upon ion binding/unbinding to the

Biophysical Journal 96(8) 3154–3167
is set to zero except in simulations that consider stator spring

explicitly. zR is the effective drag coefficient of the rotor. The

viscous load (e.g., the polystyrene bead) is coupled to the

rotor via an elastic linkage, which is modeled by a harmonic

potential, VRL ¼ 1/2k(qR � qL)2. The last term is the

stochastic Brownian force acting on the rotor, where fR(t)
is uncorrelated white noise with normal Gaussian distribu-

tion (32,33). VRS is the potential of mean force of the

rotor-stator interaction, and s is a binary variable referring

to the stator conformational state: right or left piston down.

The potentials VRS are chosen as identical periodic free

energy profiles, each offset by a half-period, as shown in

Fig. 1 b. The choices of the potential shapes and the exact
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half-period offset here are for simplicity, and can be

improved when more structural and dynamic information

is available. Our numerical studies have shown that our

conclusion does not depend upon the exact shape of the

potentials. The slope of VRS determines the force profile

the stator exerts on the rotor. The high peak at the top of

each potential ensures tight coupling between the rotor and

stator by preventing a thermal fluctuation from carrying the

system to the left (backward slipping) and ‘‘wasting’’

a pair of translocated protons. The structural correspondence

of the barrier needs further study. We suggest that steric

interactions between FliGs and the cytoplasmic loop of

MotA may contribute to the barrier. In parallel to the motor

spatial motion, a stator can switch between the two stator

chemical states, which correspond to the two potential curves

shown in Fig. 1 b. The switching is described by Kramers

jump processes between the two potential curves. The

Kramers rates are directly related to the ion motive force

(IMF). In our original model, the effect of IMF was

described by a composite factor. To study the effect of the

two components (ion concentration gradient and transmem-

brane potential) separately, in this work we model the jump

rates for the exchange of two ions between the periplasm and

stator binding sites as

kperi
on ¼ f ðqR � qS;a1; b1Þ

�
Cperi

�2
k0

� expð0:5ðV1 � V2 þ 2geDjÞ=kBTÞ ð3Þ
and

kperi
off ¼ f ðqR � qS;a1; b1Þexpð � 2pKaÞk0

� expð � 0:5ðV1 � V2 þ 2geDjÞ=kBT
�
; ð4Þ

and those between the cytoplasm and a stator binding site

as

kcyto
off ¼ f ðqR � qS;a2; b2Þexpð � 2pKaÞk0

� expð0:5ðV2 � V1 þ 2ð1� gÞeDjÞ=kBTÞ ð5Þ
and

kcyto
on ¼ f ðqR � qS;a2; b2Þ

�
Ccyto

�2
k0

� expð� 0:5ðV2� V1 þ 2ð1� gÞeDjÞ=kBTÞ; ð6Þ

where the functions V1 and V2 refer to the potentials VRS for

the two stator states (empty and occupied, respectively); Cperi

and Ccyto are the ion concentrations at the periplasmic and

cytoplasmic sides, respectively, in mM; pKa is the intrinsic

dissociation constant of the ion binding site along the stator

channel; and k0 is a prefactor of the transition rates. The func-

tion f (q, a, b) is the transition window accounting for the

requirement that chemical transitions and the rotor position

are coupled (see (25) for details). Here, we use a triangle

shape:
f ðq;a; bÞ ¼

q� a
1
2
ðb� aÞ; for a < q <

1

2
ða þ bÞ

1�
q� 1

2
ða þ bÞ

1
2
ðb� aÞ ; for

1

2
ða þ bÞ < q < b

0; otherwise

8>>>>>><
>>>>>>:

(7)

or a uniform function

f ðq;a; bÞ ¼ 1; for a < q < b

0; otherwise
:

�
(8)

In each torque generation cycle, two ions from the periplasm

jump onto a stator and are later released to the cytoplasm. The

rotor rotates an average angle of 2p/26, and the free energy of

the overall systems drops�kBTlnðk
peri
on

kperi

off

kcyto

off

kcyto
on

Þ ¼ �2eD~m:There-

fore, in the above rate expressions, detailed balance is auto-

matically satisfied. For simplicity, we assume that ion binding

is cooperative and not saturated. Notice that the two compo-

nents of the ion motive force affect the jump rates differently.

The ion concentrations affect only the on rates. The effect of

the membrane potential is more complicated, either occurring

indirectly, through increasing local ion concentrations at the

membrane surface, or directly, via the transition dynamics.

Here, for simplicity, we assume that the on and off rates for

a particular jump are equally affected by the membrane poten-

tial. The parameter g specifies the partition of membrane

potential for the two half steps of the torque generation cycle.

We found a g-value of ~0.6 gives the best fit to the results of

Lo et al. (26). This result is consistent with the structural fact

that the residue D32 resides close to the cytoplasmic end of

the membrane, and thus one expects a larger effect of the

membrane potential on the ion hopping rates from the

periplasmic side.

The next step in our model is to include the load, e.g., the

latex bead attached to the flagellum. Simultaneously, the

motion of the load is described by the Langevin equation

Load : zL

dqL

dt|fflffl{zfflffl}
Viscous drag

force on the Load

¼ kðqR � qLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Elastic coupling

force

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTzL

p
fLðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Brownian force

on the load

: ð9Þ

Here, the elastic coupling term appears with a sign opposite

that in Eq. 2, and zL is the drag coefficient of the load. The

last term is the Brownian force on the load. The characteristic

timescale for the motion of the load is tL ¼ zL/k.

In the case with rigid connection between the stator and

the peptidoglycan, the model equations (Eqs. 2 and 9) can

be replaced by the equivalent coupled Fokker-Planck equa-

tions with qS ¼ 0, describing the probability density,

rj (qL, qR, t) of the rotor and load being at position (qL, qR)

and chemical state j at time t while driven by a single stator:
Biophysical Journal 96(8) 3154–3167
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vrj

vt
¼ 1

DR

v

vqR

�
1

kBT

�
kðqL � qRÞ þ

v

vqR

Vj

	
rj

	
þ 1

DL

v

vqL

�
1

kBT
kðqR � qLÞrj

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Motion due to the potential

and the load force

þ DR

v2rj

vq2
R

þ DL

v2rj

vq2
L|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Brownian motion

þ
X

i

kjiðqÞri|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Chemical

transitions

; j ¼ 1; 2:

ð10Þ

Bai et al.
Here, DR and DL are the diffusion constants of the rotor and

the bead, respectively, related to the drag coefficients by the

Einstein relation z ¼ kBT/D. We solved the steady state of

the Fokker-Planck equations with the algorithm developed

by Xing et al. (34). The algorithm discretizes the conforma-

tional coordinates and transforms the partial differential

equations into a jumping process over many discrete states

with their normalized populations, p (defined as the proba-

bility density integrated over the discrete regions) described

in the form Kp ¼ 0. The composite K matrix contains transi-

tions along both the conformational and reaction coordinates

(see (35) for details). The steady-state motor rotation rate is

obtained by calculating the spatial flux (summing over all the

chemical states) at one spatial point. We also performed Lan-

gevin dynamics simulations with one or two stators engaged

to obtain single-motor trajectories.

More degrees of freedom need to be included if we

consider the stator fluctuations. Structural studies show that

the stators are fixed to the peptidoglycan through elastic link-

ages (2,36). In our previous study, we neglected the stator

fluctuations for mathematical simplicity. Recent experiments

by the Berg group revealed that stator fluctuations give rise

to some new dynamic behaviors in the low-load region

(27). Their results contradict a prediction of our original

model (25). These researchers showed that the experimental

results can be reproduced if the stator springs are included in

our model. In some results presented here, we modeled the

stator linkages by harmonic springs and allowed the stators

to fluctuate around their equilibrium position. The movement

of each stator can be described by an additional Langevin

equation similar to Eqs. 2 and 9:
urnal 96(8) 3154–3167
rotor is a sum of the interaction potentials induced by each

individual stator at a different position and with different

ion binding status. In a corresponding way, the rotor-stator

interaction term in Eq. 2 becomes:

Rotor-Stator interaction force

¼ � v

vqR

 XN

i¼ 1

VRSiðsi; qR � qSiÞ
!
: (12)

The complete BFM model with stator springs explicitly

treated is solved by the Langevin simulation approach. In

these simulations, we implemented parallel Monte Carlo

processes, to simulate the motion of the rotor, stators, and

bead driven by model potentials and to determine the ion

hopping on/off in each stator. The motor speed is obtained

by running a very long time simulation and dividing the final

displacement by the total simulation time. In our current

model, stators interact indirectly with each other by working

against a common rotor. Langevin simulations are also used

to study the stepping behavior of the motor. The stepping

statistics (e.g., step size and dwell-time distribution) are

collected by a step-finder program, described previously

(37). The same program was used earlier to analyze the

BFM stepping data (17).

RESULTS

Torque-speed relationship and effects of different
energy components

First, we reproduce the E. coli BFM torque-speed curve with

the new jumping rate formulation. Under normal living
Stator : zSi

dqSi

dt|fflfflffl{zfflfflffl}
Viscous drag torque

on the stator

¼ v

vqSi

VRSiðs; qR � qSiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rotor-Stator

interaction force

� kSðqSi � q0iÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Elastic coupling

force

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTzS

p
fSiðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Brownian torque

on the stator

; (11)
where qSi, q0i, and Si are the position, equilibrium position,

and ion occupation state of the ith stator. When there are N
stators functioning in the system, the torque applied to the
conditions, the E. coli BFM functions at intracellular

pH 7.6, external pH 7, and membrane potential 120 mV.

Without modifying the potential profiles, the E. coli BFM



FIGURE 2 Experimental (triangles)

and calculated (solid lines) torque-speed

curves for (a) the E. coli Hþ and (b) the

chimera BFM motors. Normalized

torque is used in both figures. In b, we

show two model predictions, where

the solid line describes the same transi-

tion-assisting window as used in E. coli

fitting, and the dashed line describes

a uniform transition window.
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torque-speed curve can be easily reproduced by inputting

these realistic values into our new formulation (Fig. 2 a).

Model parameters are given in Table 1.

The chimera motor uses a Naþ type BFM stator and Hþ

type BFM rotor. The torque-speed relationship of the

chimera motor has been reported by Inoue et al. (18). It is

highly similar to that of the E. coli BFM except for a higher

‘‘knee’’ speed and zero-load speed. Without changing the

driving potential profiles, we substitute the experimental

values of the chimera-motor living condition into our model

and fit the chimera torque-speed curve. In Fig. 2 b, we

present two model results, one with the same chemical tran-

sition window as that of the E. coli motor and the other with

a uniform window. Because the torque-speed curves can be

reproduced (on both E. coli and chimera) with the same
model framework, there is likely no fundamental distinction

in the energy transduction mechanism between E. coli and

chimera motors. The difference in the detailed shapes of

the motor torque-speed relations may reflect subtle structural

differences. We model the difference by the transition

window shape, which reflects the coupling between stator

ion transduction and the relative positions of rotor and

stator.

Our model gives an explicit answer to the mysterious

BFM torque-speed relationship. At high load, the bead

response time is much longer than the motor internal (ion

hopping on/off and rotor motion) dynamics. The motor

dynamics is near equilibrium under external constraint

(from the load). The motor torque is determined by thermo-

dynamics (25,38–40).
TABLE 1 Model parameters

Quantity Value Comments

Potential periodicity, d 2p/26 See (7,17).

Rotor drag coefficient, zR 2 � 10�3 pN$nm$s/rad2 Estimated

Bead diffusion constant, DL 0.01–100 rad2/s Calculated from Stokes’ Law

Stator diffusion constant, Ds 500 rad2/s Estimated

Load-rotor linkage spring constant, k 400–500 pN$nm/rad2 Estimated from experimental

measurements (49)

Saw-tooth potential height, U 10 kBT Ad hoc

Ratio of the two potential

branches, Lleft/Lright

1/9

Potential bumps Height 15 kBT
Width 0.2d

Centers 0.1d (State1)

0.6d (State 2)

Transition windows a1, a2 0.1d, 0.6d Fitting data

b1 b2 0.58d, (0.58 þ 0.5)d

Binding site pK value Hþ motor pKa¼ 7.3 Estimated (using the middle value of

external and internal concentrations)Chimera motor pKa¼ 31.6 mM

Binding rate prefactors (two ions) k0 Hþ motor 1.0 � 1020 s�1 Fit experimental torque-speed curve

Chimera motor 1.0 � 108 s�1 (or 6.0 �
107 s�1 with a uniform

window)

E. coli BFM living condition pHperiplasm 7.0 Experimental values

pHcytoplasm 7.6

Vmembrane 120 mV

Chimera BFM living condition [Na]periplasm 85 mM

[Na]cytoplasm 12 mM

Vmembrane 140 mV

Biophysical Journal 96(8) 3154–3167
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FIGURE 3 Different effects of the two energy compo-

nents on E. coli motor dynamics. (a) Effect with fixed

ion concentrations but varying membrane potential,

showing motor speed versus membrane voltage along

a high-load (D ¼ 0.15 rad2/s) line (upper inset) and along

a low-load (D ¼ 2.1 rad2/s) line. (b) Effect with fixed

membrane potential but varying external ion concentration,

showing motor speed versus periplasm pH along a high-

load (D ¼ 0.15 rad2/s) line (upper inset) and along

a low-load (D ¼ 2.1 rad2/s) line (lower inset). (c) Effect

with fixed IMF but different portions of membrane poten-

tial and ion concentration difference, comparing the motor

speed at high load and low load with fixed IMF. Here we

show results for the Hþ motor. Similar results are obtained

for the chimera motor.
zLuLzDG=d ¼ ðDH � TDSÞ=d; (13)

where uL is the angular velocity of the load, d¼ 2p/26 is the

angular step length (i.e., the distance between FliGs), and

DG is the free energy drop per stator cycle derived from

IMF(PMF or SMF). However, at low load, there is no time-

scale separation between the bead relaxation and the internal

motor processes, and the motor dynamics is kinetics-

controlled. The observed transition between the plateau

and knee region is quite sharp. As discussed in our previous

article, this observation can be explained by the interplay

between localized transitions along qR and stator mutual

interference. To make a transition from one potential curve

to another (corresponding to ion hopping on and off within

one stator), the rotor needs to rotate into the transition

Biophysical Journal 96(8) 3154–3167
window. However, other stators may push the rotator to

move out of the transition window before the chemical tran-

sition takes place. Consequently, the rotor is trapped until

thermal fluctuations bring it back into the transition window

so that the stator can switch its chemical state. A load reduces

occurrence of the trap by pulling the rotor backward. There-

fore, decreasing the load shortens the bead response time and

lengthens the motor internal dynamics at the same time. This

results in abrupt change of the system from the thermody-

namics-controlled plateau region (with timescale separation

between the bead response time and the motor internal

kinetics) to the kinetics-controlled knee region (with no time-

scale separation between them).

A direct prediction of the above discussion is that the two

components of the ion motive force, the concentration
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gradient and the transmembrane potential, are equivalent in

the high-load region, but may not necessarily be equivalent

in the low-load region. Fig. 3 a shows that the motor speed

is proportional to the membrane voltage in both directions.

This result is consistent with Berg’s experiment (22,23).

However, as shown in Fig. 3 b, the motor speed responds

to periplasmic ion concentrations asymmetrically, and

becomes saturated at high ion concentrations, consistent

with experimental observations (16).

Using our model, we can also investigate the effect of

varying the relative ion concentration and membrane poten-

tial contributions while holding the total IMF constant. Fig. 3 c
shows that the external ion concentration has a much

stronger influence on the motor output. The motor speed

decreases dramatically when the external ion concentration

is lowered, despite the total IMF being compensated by

a transmembrane voltage increase. Fig. 3 c compares our

simulations with the experimental observations of Lo et al.

(26). Therefore, our model correctly predicts that the motor

speed depends more strongly on the external ion concentra-

tion than on the membrane voltage. One obvious explanation

is that the diffusion-limited binding of ions is the rate-

limiting step at low load, but not at high load.

Zero-load speeds and the stator springs

Our original model predicted that the motor zero-load speed

(i.e., the rotation speed without external load) decreases with

the number of stators engaged, a remnant of the stator mutual

interference effect discussed above (25). Recently, Yuan and

Berg tested this prediction in a proton-driven motor (27).

Their observations show that the zero-load speeds with

different numbers of stators converge to a single value.

This result suggests that the mutual interference between

stators is not as strong as we suggested near the zero-load

regime. This can be explained by the fact that MotB in

each stator is linked to the peptidoglycan through a-helices

FIGURE 4 Zero-load speed of an eight-stator E. coli motor compared to

the zero-load speed of a one-stator motor with a different stator spring

constant (different lines are obtained with different stator diffusion

constants).
several nanometers long. The linker may introduce compli-

ance and allow lateral fluctuation of the stator. In our original

model, we neglected such stator fluctuations due to the stator

springs. Yuan and Berg performed numerical simulations

using our model, and found that a converged zero-load speed

can be obtained by introducing soft stator springs. With the

stator springs, the above-mentioned destructive interference

among stators at high speed is reduced (see Fig. 7 c). We

performed similar simulations (Fig. 4) and found that a

spring stiffness constant of ~200 pN $ nm/rad2 is sufficient

to reasonably reproduce the experimental data. The angular

spring constant corresponds to a translational spring constant

of 1 pN/nm if we assume the rotor radius is 15 nm. This

value agrees well with the estimated linker stiffness when

it is assumed to be an a-helix and with the value determined

by Yuan and Berg (27).

The motor is a stepper

As discussed above, the zero-load speed results require

lateral fluctuations of the stators. However, existence of

soft stator springs can smear the steps in a motor trajectory

(28). On the other hand, steps have been observed experi-

mentally for the chimera motor. Can our model reproduce

both sets of experiments? Below, we show some model

simulation results following experimental conditions and

the methods used to analyze the experimental data.

Similar to the experimental procedure, in our simulation

we assign Nstator ¼ 1 and lower the external sodium concen-

tration. Stepping behavior becomes obvious when the motor

speed is <10 Hz. In Fig. 5 a, we show a series of stepping

traces under various external sodium concentrations. Note

that in the experimental traces (Fig. 5 b) published by

Sowa et al., the information of the external sodium concen-

tration is lacking. By comparing the experimental traces with

our simulation, we can make an educated guess about the

external sodium concentration of the cells studied in these

experiments. For example, the central three traces running

at 0.5 ~ 2 Hz are from an environment with ~0.5 ~ 1.5 mM

external sodium concentration. If the external sodium

concentration is <0.5 mM, backward steps occur frequently,

and the motor cannot make noticeable advancement.

It remains to be confirmed whether steps can be resolved

in wild-type E. coli motors as in chimera motors. Next we

theoretically explore the conditions under which E. coli
motor stepping can be seen. The speed of the motor

decreases rapidly when the external pH value is increased.

However, in real experiments, the E. coli cells are not able

to endure a large pH change, since they cannot survive a

strongly alkaline environment. Therefore, our aim is to find

the least demanding condition under which steps can be

resolved. Fig. 6 a shows simulated results with external pH ¼
8.4 and internal pH ¼ 7.6. Two stator spring constants are

used. One is k¼ 200 pN nm/rad2, the value used above to repro-

duce the zero-load speeds; the other is k ¼ 3000 pN nm/rad2.
Biophysical Journal 96(8) 3154–3167
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FIGURE 5 Single-molecule trajecto-

ries of the chimera motor at different

external Naþ concentrations. (a) Simu-

lations. (b) Experimental data from

Sowa et al. (17). (c) Schematic illustra-

tion of the stepping behavior. The labels

in a and c are consistent: 1, local fluctu-

ation within a potential well; 2, fast

transient sliding along a potential after

chemical transition; 3, backward slip-

ping that breaks tight coupling; and 4,

backward motion with tight coupling

between motor motion and chemical

transitions. To make easy connection

between the continuous model and

other discrete kinetic models (e.g.,

(50)), we referred to the corresponding

motor mechanochemical states as

‘‘PE’’, ‘‘PO’’, ‘‘CE’’, and ‘‘CO’’, where

‘‘P’’ and ‘‘C’’ mean that the ion binding

sites are accessible from the periplasm

and cytoplasm sides, respectively, and

‘‘E’’ and ‘‘O’’ mean the binding sites

are empty and occupied, respectively.
We suggest that the spring constant could be stiffened, e.g.,

through antibody binding onto the stator linker or use of

a mutant with a shorter and thus presumably stiffer linker.

The motor runs at ~8 Hz, with detectable steps in both cases,

although the trajectory with the softer stator spring is noisier.

Fig. 6 b shows the step-size distribution obtained with the

step-finder algorithm used previously (37). The step-size

distribution is centered around 26 steps/revolution, consis-

tent with the experimental results of Sowa et al. (17) for

the chimera motor. In our model, each motor cycle has two

half-steps. However, under the experimental conditions

simulated in Fig. 6 b, only the ion binding from the periplasm

is rate-limiting: the second half-step, corresponding to

release of two ions into the cytoplasm, follows the first

half-step too rapidly to be resolved. Our model suggests

that clear substeps may be observed if the ion binding sites

(D32) have higher ion binding affinity than those of the

wild-type, and thus a lower ion off rate. Fig. 6 c shows the

Biophysical Journal 96(8) 3154–3167
corresponding dwell-time distributions. It can be fitted

with a single-exponential decay. These results are similar

to those of recent higher-resolution experiments in R. M.

Berry’s lab.

To conclude, our model reproduces the chimera motor

stepping, and predicts the conditions under which E. coli
motor stepping should be observable, and the corresponding

statistics. Experimental realization of these conditions is on

the way.

The motion of a protein motor is continuous for all biolog-

ical purposes. Why does the continuous motion of the motor

result in stepping behavior? Stepping behavior has been

observed for many protein motors (41,42). Fig. 5 c shows

schematically how the continuous motion of a protein motor

produces steps. For most of the time, the motor fluctuates

around a potential minimum, so one observes the motor

(or the indicator) to fluctuate around a fixed angular (or

spatial) position (Fig. 5 c, 1). The distribution of the motor
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FIGURE 6 Predicted E. coli BFM stepping behavior for

one stator with stator spring constants k ¼ 200 pN nm/rad2

(left panels) and k ¼ 3000 pN nm/rad2 (right panels) by

analyzing 10-s-long trajectories. Parameters are the same

as in Table 1, except for pHperiplasm ¼ 8.4. (a) A typical

trajectory (solid lines are steps found by the step-finding

algorithm); (b) The stepping size distribution. (c) The

stepping dwell-time distribution.
position reveals the local structure of the potential well. After

a chemical transition takes place, the motor slides down

a new potential until it reaches the next potential minimum.

Experimentally, one observes fast motion of the motor

(Fig. 5 c, 2) and then fluctuation around the new minimum.

The relatively fast transient motion and long time dwelling

around some positions give the stepping behavior of the

motor, and this justifies usage of discrete kinetic models

for modeling protein motors (43).

Occasionally, backward steps can be observed. Two

possible transitions can result in backward motion. The

motor, with the ion binding sites empty or occupied, may

simply slip backward over the potential barrier (Fig. 5 c,

3), in which case ions are translocated without net motor

motion, and the two motions are thus decoupled. The back-

ward step could also be the inverse of the process described

by step 2 (Fig. 5 c, 4), in which a motor rests in a state with

empty stator binding sites and angular positions such that

ions are accessible to the binding sites from the periplasmic

side (the ‘‘PE’’ state in a discrete kinetic model). Random

thermal fluctuations allow the motor to rotate to the angular

locations at which the stator binding sites are accessible from

the cytoplasmic side (the ‘‘CE’’ state). Then the motor picks up

a pair of ions (the ‘‘CO’’ state), fluctuates back (CO / PO),
and releases ions to the periplasmic side (PO / PE). In this

case, the motor motion and the chemical transition are still

tightly coupled. The BFM functions as a pump when this

type of backward step takes place. One difference between

these two mechanisms is that the loose-coupling mechanism

produces a full backward step only, but the tight coupling

mechanism can in principle produce half-steps. The back-

ward substeps, if they exist, may also be resolved if a mutant

is used in which the stators have high ion binding affinity, so

that the step of releasing the binding ions to the periplasm

can be slowed down. Decreasing the extracellular ion

concentration has less effect on the loose-coupling mecha-

nism than on the tight-coupling mechanism. For the latter,

a longer waiting time for the motor to pick up ions from

the periplasm increases the probability that the motor will

instead pick up ions from the cytoplasm, and thus a backward

step takes place. It is experimentally observed that the

number of backward steps increases when the extracellular

ion concentration is decreased. This suggests that the tight-

coupling backward mechanism contributes to the observed

backward steps. However, we cannot rule out the loose-

coupling mechanism. We want to point out that description

of backward motion is automatically included in a poten-

tial-based continuous model (35).
Biophysical Journal 96(8) 3154–3167
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FIGURE 7 Stepping behaviors with

two stators. (a) With stiff stator springs,

the motor may generate substeps that

reflect the distance between the two

stators, DqS, relative to the rotor period-

icity, d. If the ratio DqS/d is not integer,

smaller substeps may be observed. (b) If

the ratio DqS/d is integer, the stepsize

is the same as in the case of one stator,

but the dwell time is longer on average.

(c) With soft stator springs, chemical

transition within one stator is not

restricted by the other stator.
Step size versus stator number

In this section, we discuss the stepping behavior for a motor

with multiple stators engaged. Fluctuation analysis predicted

that the step size decreases to 1/n of d if there are n stators in

the system (44,45). However, a recent experiment on the

chimera motor reveals ‘‘the apparent independence of step

size on stator number’’ (17). These two results obviously

contradict each other.

In stator resurrection experiments using the chimeric

motor, one decreases the external ion concentration to disen-

gage the stators from the rotor, then waits for the stators to

resurrect, i.e., reengage one by one in random sequence

(17). Therefore, the relative distance between the two resur-

recting stators may be different in different experimental

attempts. Because our model potentials are 2p/26 periodic,

we can project all the stator positions into one period, d ¼
2p/26. The projection allows us to visualize the relative

phase of these stator positions. For simplicity here, we

discuss only Nstator ¼ 2. Taking the first stator as the

Biophysical Journal 96(8) 3154–3167
reference point, the second stator can be bound at any posi-

tion DqS ˛ (0, d) . Fig. 7 gives a qualitative picture of the

stepping behavior of a motor with two stators based on our

model framework. Fig. 7, a and b, shows two cases with stiff

stator springs but different ratios of the stator distance, DqS,

over the rotor periodicity d (2p/26). If the ratio is not integer,

one expects doubled step numbers and smaller step sizes re-

flecting DqS/d compared to the one-stator case. If the ratio is

integer, around each dwelling configuration (one local

minimum of the composite potential) the system cannot

move forward until both the stators change their chemical

states. Consequently, the step numbers and size are the

same as in the one-stator case, but with a longer dwell

time on average. With soft stator springs, the spatial mutual

coupling between the chemical transitions within the stators

is reduced (Fig. 7 c). The above discussed difference with

different DqS/d may be less clear. Fig. 8 shows the step-

size distributions calculated from simulated traces by the

step finder with different values of the stator spring stiffness

and DqS/d. With stiff stator springs, and DqS/d¼ 0.5 or 1, the
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FIGURE 8 E. coli BFM step-size distributions with two

stators predicted by analyzing 2-s-long trajectories with

a step-finding algorithm. (a) Two stators offset by 0.5d,

stator spring k ¼ 3000 pN nm/rad2. (b) Two stators offset

by d, stator spring k ¼ 3000 pN nm/rad2. (c) Two stators

offset by 0.5d, stator spring k ¼ 200 pN nm/rad2. (d)

Two stators offset by d, stator spring k ¼ 200 pN nm/rad2.
step sizes are indeed centered around 0.5d and d, respectively

(with a longer average dwell time for the latter; results not

shown). With soft stator springs, on the other hand, in both

cases, the step sizes show broad distributions centered

around d. The soft stator spring results may explain why

the observed step sizes are apparently independent of stator

number. The fluctuation analysis of Samuel and Berg (44)

counts the number of statistically independent rate-limiting

events, which is not necessarily the same as the number of

observable mechanical steps.

DISCUSSION AND CONCLUSIONS

Our model is a work in progress, which can be refined in

several aspects in response to future experimental results:

First, in our original model, the stator effect is partly ab-

sorbed in the model parameters (parameter renormalization).

With explicit treatment of the stator springs, the model needs

to be reparameterized. Our numerical studies found that the

generic behaviors of the torque-speed curves, i.e., the exis-

tence of plateau and linear ion motive force dependence of

the rotation speed at the low-speed region, and decline of

the motor torque at the high-speed region, are to a large

extent insensitive to model parameters (see also Fig. 4). As

explained in the original article, they are a general conse-

quence of the interplay of several timescales in the system.

On the other hand, detailed shapes of the torque-speed curves

do depend on some model parameters. The stator springs

greatly expand the degrees of freedom in the model. An effi-

cient numerical method is needed for fast parameter optimi-

zation in the future.

Second, the model discussed in the original article and in

this work is rather generic. Some details relevant to the

motor function may be missing. At present, we assign all
the stator-stator interactions through a common rotor. The

neighboring stators may interact directly as well as through

the rotor. A similar idea has been proposed for the F1 part of

the ATP synthase (46). For the flagellar motor, electron

microscopic images show that the arrangement of stators

is crowded (47). A stator under tension distorts the

membrane as well as the stator springs. The stators may

interact with each other through tension-dependent

membrane-mediated interactions (48). This lateral coupling

may ensure that there is sufficient destructive stator mutual

interference to produce the sharp transition of the motor tor-

que-speed curves, and that the mutual interference drops on

decreasing the load to produce the correct zero-load speed

behavior.

Third, in our model, we enforce the tight coupling

assumption by high potential barriers. This assumption

means that there is a definite coupling between rotor rotation

and the number of ions transferred: one step (~2p/26) of

forward rotation of the rotor accompanies transfer of two

ions from the periplasm to the cytoplasm; one step of back-

ward rotation of the rotor accompanies transfer of ions from

the cytoplasm to the periplasm (therefore, the BFM acts as

a pump). We made this assumption because several experi-

mental results are in agreement with the consequences

when the motor is tightly coupled. However, none of the ex-

isting experimental evidence really precludes the possibility

that the motor is not perfectly coupled (i.e., near 100%). To

clarify this problem, we require an accurate measurement of

the stall torque and the corresponding stepping statistics in

single-stator motors at both high and low load. Then, the

exact number of ions consumed in a motor step can be calcu-

lated. Furthermore, if one can measure and control the ion

flux through the stator channel, the answer to the above

‘‘coupling’’ puzzle will be straightforward.
Biophysical Journal 96(8) 3154–3167
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In summary, we analyzed the dynamics of our BFM

model in detail. The model predicts the observed nonequiv-

alence of the two components of the ion motive force at high-

speed regions. With explicit consideration of the stator

springs, the model reproduces the observed zero-load speed

dependence on stator numbers. The motor can be a stepper

even in the presence of stator springs. With two stators

engaged, however, smaller steps are difficult to resolve.

We suggest that if the stator springs can be stiffened (e.g.,

through antibody binding), more insights into the BFM

dynamical behaviors can be obtained. We also suggest that

substeps (for both forward and backward steps) may be

resolved if one uses a mutant with stator charges that have

higher affinity for the binding ions than do the stator charges

of the wild-type.
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