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Structural Changes in the Catalytic Cycle of the Naþ,Kþ-ATPase Studied
by Infrared Spectroscopy

Michael Stolz,† Erwin Lewitzki,† Rolf Bergbauer,† Werner Mäntele,‡ Ernst Grell,† and Andreas Barth§*
†Max Planck Institute of Biophysics and ‡Institut für Biophysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany;
and §Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden

ABSTRACT Pig kidney Naþ,Kþ-ATPase was studied by means of reaction-induced infrared difference spectroscopy. The
reaction from E1Na3

þ to an E2P state was initiated by photolysis of P3-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) in samples
that contained 3 mM free Mg2þ and 130 mM NaCl at pH 7.5. Release of ATP from caged ATP produced highly detailed infrared
difference spectra indicating structural changes of the Naþ,Kþ-ATPase. The observed transient state of the enzyme accumulated
within seconds after ATP release and decayed on a timescale of minutes at 15�C. Several controls ensured that the observed
difference signals were due to structural changes of the Naþ,Kþ-ATPase. Samples that additionally contained 20 mM KCl
showed similar spectra but less intense difference bands. The absorbance changes observed in the amide I region, reflecting
conformational changes of the protein backbone, corresponded to only 0.3% of the maximum absorbance. Thus the net change
of secondary structure was concluded to be very small, which is in line with movement of rigid protein segments during the cata-
lytic cycle. Despite their small amplitude, the amide I signals unambiguously reveal the involvement of several secondary struc-
ture elements in the conformational change. Similarities and dissimilarities to corresponding spectra of the Ca2þ-ATPase and
Hþ,Kþ-ATPase are discussed, and suggest characteristic bands for the E1 and E2 conformations at 1641 and 1661 cm�1,
respectively, for ab heterodimeric ATPases. The spectra further indicate the participation of protonated carboxyl groups or lipid
carbonyl groups in the reaction from E1Na3

þ to an E2P state. A negative band at 1730 cm�1 is in line with the presence of
a protonated Asp or Glu residue that coordinates Naþ in E1Na3

þ. Infrared signals were also detected in the absorption regions
of ionized carboxyl groups.
INTRODUCTION

The Naþ,Kþ-ATPase (EC 3.6.3.9) (1) actively transports

Naþ and Kþ in opposite directions across the plasma

membrane of animal cells, thereby maintaining ion concen-

tration gradients that are essential for nerve conduction and

secondary transport processes. The transport of three Naþ

out of the cell and two Kþ into it is coupled to the hydrolysis

of one ATP molecule, and this process accounts for 20–30%

of the total ATP consumption in resting mammalian cells (2).

The Naþ,Kþ-ATPase belongs to the family of P-type

ATPases (3), which are characterized by an aspartylphos-

phate phosphoenzyme that transiently forms in the transport

process.

The Naþ,Kþ-ATPase consists of three subunits denoted as

a, b, and g, with molecular masses of 113, 35, and 7 kDa,

respectively. The a-subunit contains the catalytic machinery

(nucleotide-binding site, phosphorylation site, and ion-

binding sites) and is homologous to single subunit P-type

ATPases such as the Ca2þ-ATPase (4). The glycosylated

b-subunit is important for correct insertion of the a-subunit

into the membrane (5). The g-subunit belongs to the FXYD

protein family and regulates the activity of the ATPase (6,7).

The reaction cycle of the Naþ,Kþ-ATPase is commonly

described according to the Albers-Post model (8,9) and has

been reviewed extensively (10–12). The E2 form of the

Submitted October 17, 2008, and accepted for publication January 2, 2009.

*Correspondence: Andreas.Barth@dbb.su.se

Editor: David D. Hackney.

� 2009 by the Biophysical Society

0006-3495/09/04/3433/10 $2.00
enzyme occludes two Kþ (E2[K2
þ]). Low-affinity ATP

binding promotes the transition to the E1 form and the

release of Kþ to the cytoplasm (E2[K2
þ] þ ATP /

E1ATP þ 2 Kþ). E1 binds three Naþ from the cytosol

(E1ATP / E1ATP Na3
þ). ATP phosphorylates Asp-369

of the a-subunit, which occludes the three sodium ions in

the ADP-sensitive phosphoenzyme intermediate E1P

[Na3
þ]. Isomerization to the ADP-insensitive phosphoen-

zyme E2P leads to dissociation of Naþ to the extracellular

space. The E2P phosphoenzyme binds two Kþ with high

affinity, which induces its rapid dephosphorylation and the

occlusion of Kþ (E2[K2
þ]).

The atomic structure of the Naþ,Kþ-ATPase in an E2 state

with two rubidium ions bound was recently solved by x-ray

crystallography (13). The structural organization of the

a-subunit is similar to that of the Ca2þ-ATPase of the sarco-

plasmic reticulum membrane (SERCA1a) (14), with 10

transmembrane helices and three cytoplasmic domains (the

actuator, nucleotide-binding, and phosphorylation domains).

However, there are distinct differences: the Naþ,Kþ-ATPase

has a smaller N domain, a protrusion in the P domain, a kink

in transmembrane helix M7, and a strongly positive

C-terminus that may convey sensitivity to the membrane

potential.

The b-subunit consists of a small cytosolic N-terminal

segment, one transmembrane helix that is in contact with

transmembrane helices M7 and M10 of the a-subunit, and
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an extracellular domain. The g-subunit consists of a trans-

membrane helix close to M9 of the a-subunit.

To characterize structural changes of the active Naþ,Kþ-

ATPase, we used infrared spectroscopy, which has yielded

inconsistent results in previous studies. Studies that analyzed

absorption spectra of the Naþ and Kþ forms detected no

significant change (15) or changes of 3% in a-helix content

that were observed only in H2O (and not in D2O) and were

close to the error margin (16). Similarly, secondary structure

changes involving <3% of the residues—again close to

experimental error—were concluded from the analysis of

a larger number of states (17). On the other hand, this

approach of analyzing absorption spectra revealed clear

changes upon binding of metal-ATP analogs to E1Na3

(18). Analysis of the infrared dichroism indicated a reorienta-

tion of NH bonds and carboxylate groups between the Naþ,

Kþ, and Tris forms, and it was estimated that 13% of the resi-

dues undergo a conformational change from the Tris form to

the Kþ form (19). Unexpectedly large absorbance changes

(on the order of 10% of the maximum absorbance) were

recently observed with the use of reaction-induced difference

spectroscopy (20).

To clarify the situation, we present our results obtained

with reaction-induced difference spectroscopy. We use the

photolytic release of ATP from caged ATP to trigger the

catalytic reactions of Naþ,Kþ-ATPase as was done in

previous work by our group (21) and others (20) on

Naþ,Kþ-ATPase, as well as on Ca2þ-ATPase (22,23) and

gastric Hþ,Kþ-ATPase (24). The absorbance spectrum

before release of ATP is then subtracted from the absorbance

spectrum after ATP release. Only groups that change their

absorption upon ATP release show in the difference spec-

trum, i.e., only those protein groups are detected that actively

participate in the induced reactions. The absorption of

passive groups, inactive protein, or impurities cancels.

Therefore, this approach is sensitive enough to detect single

bonds in large proteins (25,26). We find only small changes

in infrared absorption, which, however, provide detailed and

informative difference spectra. Several control experiments

ensured that the absorption changes were due to the catalytic

activity of the Naþ,Kþ-ATPase.

MATERIALS AND METHODS

Sample preparation

Na,K-ATPase was isolated according to the slightly modified procedure of

Jørgensen (27,28) and Grell et al. (29) with tissues obtained from pig kidney,

rectal salt gland of Squalus acanthias, and nasal salt gland of duck. All activ-

ities were higher than 28 mmol mg�1 min�1 in 30 mM histidine/HCl,

130 mM NaCl, 20 mM KCl, 3 mM MgCl2, and 3 mM ATP, at pH 7.5

and 37�C. Details of the analytical characterizations (29) and the preparation

of P3-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) and its [15N]nitro-iso-

topomer (30,31) were described previously.

For a typical experiment, 150 mg (~23 mL) of Na,K-ATPase in 5 mM 4-(2-

hydroxyethyl)-piperazine-1-ethane-sulfonic acid (HEPES)/Tris pH 7.5 and

1 mL each of other solutions were pipetted onto a CaF2 window with a trough
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of 5 mm depth and vacuum-concentrated within 15 min to a volume of ~1 mL

at 10�C. Approximate final concentrations were 1 mM Naþ,Kþ-ATPase,

150 mM HEPES/Tris pH 7.5, 20% glycerol, 5 mM dithiothreitol I (DTT),

5 mM NPE caged ATP, 2 mM EDTA, 8 mM MgCl2 (3 mM free Mg2þ),

and 130 mM NaCl in H2O solution. Some samples additionally contained

20 mM KCl. The infrared cuvette was closed with a second CaF2 window

and placed in the purged spectrometer, where it was thermostated at 5�C
or 15�C. The time between sample preparation and infrared measurement

varied typically between 30 and 90 min.

Infrared experiments

Infrared transmission measurements were performed with a modified Bruker

IFS 66 spectrometer at 4 cm�1 spectral resolution. After the measured

absorption became stable, a reference spectrum of 300 interferometer scans

was recorded. Then, NPE caged ATP was photolyzed with one or two subse-

quent light flashes from a Radiant Dyes (Wermelskirchen, Germany) excimer

laser RD-EXC-200, which released ~3 mM ATP under the chosen condi-

tions. After the flash, rapid scan spectra were recorded with an initial time

resolution of 65 ms for the first 10 spectra after the flash. The interferograms

were zero-filled using a factor of 2 and apodized with a Blackman-Harris-4-

term function. All spectra were normalized to an equal protein concentration

as previously described (32). They are therefore directly comparable with

our spectra of the Ca2þ-ATPase (23,33,34).

Infrared sample changer with temperature control

To significantly improve the efficiency of the infrared measurements,

a sample changer was developed. It consisted of a round aluminum disc

and was designed to hold up to five infrared cuvettes. The disc-shaped

cuvette holder was equipped with a platinum resistance thermometer PT

100 for temperature control and connected with a RE 204 thermostat (Lauda,

Lauda-Königshofen, Germany), containing a water/ethylene glycol mixture.

The complete unit was mounted on a mechanical XZ positioner to position

one of the cells into the focus of the infrared beam. For selection and

variation of the cuvette positions, the disc was rotated with a freely program-

mable step motor driven by a separate microprocessor control unit employ-

ing the program system BASIC-Tiger (Wilke, Aachen, Germany). For elec-

tronic control of the cuvette positions, an angle encoder was used in

combination with two inductive sensors, mounted on the XZ positioner, to

mark the start/end positions of disc rotation.

Subtraction of photolysis bands

The photolysis of NPE caged ATP produced changes in infrared absorption

that were subtracted from the difference spectra of the Naþ,Kþ-ATPase

samples. For this a difference spectrum of NPE caged ATP photolysis in

the same medium but without Naþ,Kþ-ATPase, recorded at the same

temperature and in the same time interval, was used. The correct subtraction

factor was determined in the spectral regions of the photolysis bands at 1526

and 1346 cm�1 by comparison with a spectrum obtained with [15N]NPE

caged ATP, for which these regions are clear of overlap by photolysis bands

(35,36) as shown in Fig. 1. Unless mentioned otherwise, the spectra shown

have been corrected for photolysis bands.

Activity estimation in infrared samples

Hydrolysis of ATP leads to changes in the infrared absorption that can be

used to measure the hydrolytic activity of ATPases directly in infrared

samples (22,37). The protein concentrations used in these studies ranged

from 7.5 to 150 mg/mL. In accordance with a previous study (37), we eval-

uated the negative ATP band at 1246 cm�1, which was integrated between

1260 and 1224 cm�1 with respect to a baseline drawn between 1296 and

1168 cm�1 using integration method C of the program OPUS (Bruker

Optics). The concentration of released ATP was 2.8 mM, corresponding

to a photolysis yield of 56%. This was determined using a sample without
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protein but with otherwise identical composition. This sample was flashed

20 times to photolyze the caged ATP completely. The photolysis yield is

the signal after the first flash divided by the total signal after 20 flashes.

The evaluation of ATPase activity assumed that all ATP was hydrolyzed

at the end of the time-resolved experiment, i.e., that the difference between

the initial and final band areas of the 1246 cm�1 band corresponded to

2.8 mM. With this knowledge, ATPase activity can be calculated from the

initial velocity of the reaction (37). This was calculated from the integrated

band area of the 1246 cm�1 band of two early spectra: the first spectrum was

averaged in the first 660 ms (at 15�C) or 2 s (at 5�C) after the flash, and the

second spectrum was averaged 0.66–3.24 s (15�C) or 2–5 s (5�C) after the

flash.

Calculation of the COBSI index

The change of backbone structure and interaction (COBSI) index was calcu-

lated as described previously (38). In short, the band area of positive and

negative bands between 1700 and 1610 cm�1 in the difference spectrum

were added and then divided by two and by the band area of the absorption

spectrum in the same spectral region. The absorption spectrum was recorded

for dry samples containing 150 mg protein to avoid inaccuracies due to

subtraction of a water spectrum. Thirteen samples from three different

preparations were averaged.

RESULTS

Subtraction of photolysis bands

Fig. 1 shows difference spectra obtained 0.66–3.24 s after the

photolysis flash and illustrates the subtraction of photolysis

FIGURE 1 Comparison of uncorrected Naþ,Kþ-ATPase spectra (solid

lines) and normalized photolysis spectra (dashed lines) in the presence of

130 mM NaCl and 3 mM free Mg2þ, recorded 0.66–3.24 s after the photol-

ysis flash at 15�C. (a) Unlabeled caged ATP. (b) [15N] Caged ATP. The

spectra are an average of three experiments performed with different

samples.
bands. Negative and positive bands are characteristic of the

sample before and after ATP release, respectively. The full

lines show spectra of Naþ,Kþ-ATPase samples, whereas

the dashed lines are the respective spectra in the absence

of protein (termed ‘‘photolysis spectra’’). It is evident that

caged ATP photolysis contributes little to the spectra, partic-

ularly above 1530 cm�1, where protein conformational

changes and several side chains contribute to the spectra.

The spectra in Fig. 1 a were obtained with unlabeled caged

ATP, and those in Fig. 1 b were obtained with [15N]caged

ATP. Labeling of the nitro group shifts the photolysis bands

at 1526 and 1346 cm�1 to 1499 and 1325 cm�1. These bands

have been assigned to the antisymmetric and symmetric

stretching vibrations of the nitro group, respectively (22).

The photolysis spectrum of unlabeled caged ATP was

normalized such that its subtraction from the protein spec-

trum produced a corrected spectrum that was similar to the

uncorrected spectrum obtained with [15N]caged ATP

(Fig. 1 b) in the region of the nitro bands. The corrected spec-

trum is shown in Fig. 2 a. Comparison with the [15N]caged

ATP protein spectrum is important for correct subtraction of

the photolysis spectrum. It reveals, for example, that there is

a small negative protein band at 1526 cm�1 that overlaps

with the larger photolysis band of unlabeled caged ATP

(Fig. 1 a) but is free from overlap in Fig. 1 b. This band

should not vanish in the subtraction.

The photolysis spectrum of [15N]caged ATP was normal-

ized accordingly in Fig. 1 b. In addition, a small protein band

at 1500 cm�1 overlaps with the photolysis band at 1499 cm�1

and is revealed without overlap in Fig. 1 a.

FIGURE 2 Photolysis-corrected spectra of Naþ,Kþ-ATPase in the pres-

ence of 130 mM NaCl and 3 mM free Mg2þ, recorded at 15�C. (a) The

full-line and dashed-line spectra were recorded 0.66–3.24 s and 400 s after

the photolysis flash, respectively. (b) Control spectrum with FITC-labeled

ATP recorded 0.66–3.24 s after the photolysis flash.
Biophysical Journal 96(8) 3433–3442
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Naþ,Kþ-ATPase spectra and control spectra

Fig. 2 shows photolysis-corrected Naþ,Kþ-ATPase spectra in

Fig. 2 a and a control spectrum in Fig. 2 b. The full line spec-

trum in Fig. 2 a was obtained 0.66–3.24 s after the photolysis

flash under the same conditions as those shown in Fig. 1 a.

Different sets of three independent experiments were averaged

in the two figures. The full line spectra in Figs. 1, a and b, and

2 a are virtually identical, apart from the isotope shifts. This

demonstrates the excellent reproducibility of our experiments.

The dashed line shows a later spectrum, recorded 400 s

after the flash. This spectrum exhibits comparably small

absorbance changes indicating that the enzyme state after

400 s is similar to that before photolysis. The full line spec-

trum therefore characterizes the formation of a transient

enzyme state within 2 s that returns to the initial state at

longer times, when the released ATP has been hydrolyzed.

Spectra similar to that shown in Fig. 2 a with reduced band

amplitude in the amide I region were obtained at 20 mM Naþ

(21). Similar spectra were also obtained for the shark rectal

gland and the duck salt gland enzymes at 130 mM Naþ

(data not shown). The similarity holds for band positions

and overall band amplitudes. The main difference between

the shark and duck enzyme spectra on the one hand and

the pig enzyme spectrum on the other was a relatively

enhanced amplitude of the 1661 cm�1 band.

Fig. 2 b shows a spectrum obtained with fluorescein iso-

thiocyanate (FITC)-labeled ATPase in the same time interval

as those in panel a and in Fig. 1. Since FITC blocks the ATP-

binding site (39), this modification abolished the infrared

signals.

Fig. 2 demonstrates several important findings. The kinetic

behavior of the difference signals is as expected, i.e., a tran-

sient state is adopted shortly after ATP release and decays at

later times due to the hydrolytic activity of the Naþ,Kþ-

ATPase. The spectrum recorded at 400 s indicates that

possible baseline instabilities are much smaller than the

signals obtained after 2 s. Indeed, the independent baseline

control runs conducted before the flash photolysis experi-

ments revealed absorbance changes of <2 � 10�4 after 2 s

(data not shown), an order of magnitude smaller than the

signals observed in Fig. 2 a. The FITC sample demonstrates

that the infrared signals are only observed when the ATP-

binding site is accessible. The remaining small signals with

a blocked ATP site are likely due to baseline instability.

Fig. 3 presents further controls. The spectra were recorded

in the additional presence of 20 mM KCl at 5�C under other-

wise identical conditions. Fig. 3 a shows photolysis-cor-

rected spectra obtained 0.66–3.24 s after ATP release that

are nearly identical in shape to the full line spectrum in

Fig. 2 a. However, the band amplitudes are considerably

smaller. Fig. 3 b shows a spectrum after 320 s. The protein

bands above 1530 cm�1 have largely decayed in this

spectrum. In contrast, relatively large bands at 1246 and

1076 cm�1 appear. They can be attributed to the hydrolysis
Biophysical Journal 96(8) 3433–3442
of ATP (22,37) and demonstrate therefore that the Naþ,Kþ-

ATPase in our infrared samples is catalytically active. A

control with 4 mM vanadate did not produce difference

bands as shown in Fig. 3 c for a spectrum obtained 16 s after

the photolysis flash. Spectra acquired at earlier times were

similar but had more noise because of the shorter acquisition

time. Hydrolysis bands have also been observed for shark

and duck enzymes (40) (although only within the first 5 s

for the shark enzyme). This is in line with our previous

observation that concentration of the shark enzyme leads to

inactivation (41). On the other hand, phosphate production

of the shark enzyme has been found to be linear at least up

to a concentration of 1 mg/mL, indicating full activity at

this concentration (Mikael Esmann, University of Aarhus,

personal communication, 2009).

Taken together, Figs. 2 and 3 demonstrate that the full line

spectrum in Fig. 2 a must be due to structural changes of the

active ATPase induced by ATP release. Further controls re-

corded in the absence of Naþ and Mg2þ or in the presence of

1200 mM NaCl and 20 mM EDTA showed no infrared

bands (40).

Hydrolytic activity

Fig. 4 shows a measurement of the hydrolytic activity in

infrared samples, with the 1246 cm�1 band used to monitor

FIGURE 3 Photolysis-corrected spectra of Naþ,Kþ-ATPase in the pres-

ence of 130 mM NaCl, 3 mM free Mg2þ, and 20 mM KCl recorded at

5�C, (a) 0.66–3.24 s and (b) 320 s after the photolysis flash. (c) Control

sample containing 4 mM vanadate. Spectrum recorded 16 s after the photol-

ysis flash. The spectra are an average over three experiments performed with

different samples.
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the progress of the reaction. We obtained specific activity

values of ~50 nmol mg�1min�1 at 5�C and ~170 nmol

mg�1min�1 at 15�C. For comparison, the activity in the

diluted suspension was measured by determining the

produced phosphate (42) as a function of time. The conditions

were 40 nM ATPase in 150 mM HEPES/Tris pH 7.5, 1 mM

DTT, 20% glycerol, 20 mM KCl, 3 mM MgCl2, and 130 mM

NaCl. The specific activities were 0.3 and 2 mmol mg�1min�1

at 5�C and 15�C, respectively. Thus the ATPase in concen-

trated infrared samples and in the presence of unphotolyzed

caged ATP retained 9–17% of the specific activity of control

samples in diluted suspensions. We previously found

a retained activity of 23% at 37�C (41). We conclude that

the activity in our infrared samples is reduced to 10–20% of

the reference value in diluted suspension and attribute this to

inhibition by caged ATP (43–45), to the high viscosity of

the concentrated infrared samples (40), and to their different

hydration state as compared with diluted suspensions (46).

Of importance, however, our sample preparation does not

lead to irreversible inhibition of the Naþ,Kþ-ATPase (41).

DISCUSSION

Nature of the initial and transient states

NPE caged ATP binds to the Naþ,Kþ-ATPase with an affinity

in the 10–50 mM range (43–45). Thus, the E1Na3
þ complex

with NPE caged ATP is the initial state in our samples in

the presence of Naþ and the absence of Kþ. Upon ATP release

in a low Naþ and no Kþmedium, the ADP-insensitive phos-

phoenzyme E2P accumulates (44,47–49). A spectrum similar

to the full line spectrum in Fig. 2 a but with reduced band

amplitude has also been obtained in the presence of only

20 mM Naþ (21). We conclude that an E2P-type state accu-

mulates in our experiments at 130 mM Naþ in the absence

of Kþ. Thus we infer that the full line spectrum in Fig. 2 a
reflects the reaction from E1Na3

þ to an E2P state.

FIGURE 4 Measurement of hydrolytic activity in infrared samples at 5�C.

The integrated 1246 cm�1 band is plotted against time. Selected spectra of

this experiment are shown in Fig. 3. Full circles: Naþ,Kþ-ATPase in the

presence of 130 mM NaCl, 3 mM free Mg2þ, and 20 mM KCl. Open circles:

Control sample containing 4 mM vanadate.
We note that the spectrum in the presence of Kþ (Fig. 3 a)

is virtually the same as in its absence (Fig. 2 a), apart from

smaller band amplitudes, and conclude that the same or

very similar states accumulate transiently under both condi-

tions. The state that is expected to accumulate in the presence

of Kþ is E2[K2
þ] (50). There are two possible explanations

for the observation of similar spectra in different expected

states: 1), E2[K2
þ] and the E2P state observed here may

have very similar backbone structures and side-chain interac-

tions, which seems plausible only if our E2P state retains

some of the Naþ ions. If not, one would expect differences

in cation coordination that reflect in the spectral regions of

protonated carboxyl groups (1800–1700 cm�1) and carbox-

ylate groups (1600–1520 cm�1 and ~1400 cm�1). 2), The

state accumulating in the presence of Kþ may not be exclu-

sively E2[K2
þ] but may be at least partially E2P under our

conditions. It is possible that the rate-limiting step of the

catalytic cycle in our high-viscosity samples is different

from that in the low-viscosity samples used in most other

studies. In this case, E2[K2
þ] could have a similar absorption

as our initial state E1Na3
þ, which would explain the reduced

signal amplitude in the presence of Kþ. However, we

consider a similar absorption of E2[K2
þ] and E1Na3

þ as

unlikely since marker bands for the E1-E2 transition have

also been observed for the Hþ,Kþ-ATPase in states that

resemble the E2[K2
þ] and E1Na3

þ states of the Naþ,Kþ-

ATPase, as discussed below. Rather, we think that the

reduced signal amplitude in the presence of Kþ is due to

the partial accumulation of E1 states under steady-state

conditions. A Kþ impurity in the experiment shown in

Fig. 2 a can be excluded because experiments with the addi-

tional presence of 5 mM Kþ chelator [2,2,2]cryptand gave

the same difference spectra.

Extent of conformational change

The absorbance changes we observed are very small. The

amplitude of the largest band in the amide I region in

Fig. 2 a has only 0.3% of the maximum protein absorbance.

This region reflects the conformation of the protein backbone

and can be used to estimate the net secondary structure

change that is associated with a protein reaction. From the

spectrum shown in Fig. 2 a, we estimated the net secondary

structure change in the reaction E1Na3
þ/ E2P. We used the

COBSI index (38), which relates the band area in the differ-

ence spectrum to the band area of the absorption spectrum.

The index gives the relative band area that is redistributed

in the reaction. For a uniform secondary structure change

that involves all residues, a COBSI index of ~0.4 is expected.

The COBSI index for the full line spectrum in Fig. 2 a is

6.3 � 10�4. The COBSI index may become larger when

the observed lower hydrolytic activity in infrared samples is

taken into account. This inhibition may or may not decrease

the amide I signals, depending on its cause. For example, if

the high viscosity slows down partial reactions of the pump
Biophysical Journal 96(8) 3433–3442



3438 Stolz et al.
cycle in infrared samples without affecting the conformations

of the intermediate states, no reduction in the extent of the

observed conformational change is expected. If, however,

binding of caged ATP blocks access of released ATP to the

active site, the number of active ATPases will be reduced

and the observed signals will be smaller. In the following,

we will discuss a worst-case scenario by assuming that the

signals in the amide I region are reduced to ~15%, the average

value of our activity measurements in infrared samples.

Hydrolytic activity was measured in the presence of KCl,

and the respective spectra are shown in Fig. 3. The omission

of KCl increases the infrared signals in the amide I region

by a factor of ~2 (compare Figs. 2 and 3), implying that the

signal amplitudes in Fig. 2 are at least 30% of those theoreti-

cally expected in the case of full activity of the infrared

samples. The same band amplitudes were observed at 5�C
(40). Thus the expected COBSI index for fully active samples

in this worst-case scenario is 3.3 times the observed value, i.e.,

2� 10�3. This is 200-fold smaller than it would be for a 100%

secondary structure change, indicating that<1% of the amino

acids contribute to a net change in secondary structure. The

actual number of amino acids experiencing a change in

secondary structure may be larger if some changes are

compensated for by others.

Similar COBSI indices have been obtained for the Ca2þ-

ATPase (38), which undergoes a rearrangement of its domains

under catalysis. Most of these changes can be described as

rigid-body movements of domains or of secondary structure

elements that are connected by small, flexible hinges. The

COBSI index is not sensitive to the movement of rigid

domains itself. Thus the small COBSI indices are not in

contrast to the current structural models and give realistic

values, as discussed previously (51–53). We conclude that

our data demonstrate a largely preserved secondary structure

composition in the transition from E1Na3
þwith bound caged

ATP to an E2P state. This is consistent with the assumption of

rigid-body movements of domains and protein segments in

the catalytic cycle of the Naþ,Kþ-ATPase.

Our finding of absorbance changes of 1% of the maximum

protein absorbance (allowing for the reduced activity in our

infrared samples) are in line with several studies that

analyzed the infrared absorption spectrum and found only

small secondary structure changes (15–17). However, they

seem to be in contrast to a recent work by Pratap et al.

(20), who used the same experimental approach. They, found

absorbance changes corresponding to 10% of the maximum

absorbance with the enzyme from the salt glands of ducks

upon photolysis of dimethoxybenzoin (DMB) caged ATP

in 2H2O and in the presence of ~80 mM NaCl and

~2.5 mM EDTA. The amide I0 absorbance changes in the

study presented here increased slowly to a value of 0.1 on

a timescale of 2 h. The end point of the reaction was not

reached after 2 h. The maximum absorbance change

observed here was 0.0015, or 0.005 after correction for the

reduced activity according to the worst-case scenario. The
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difference spectrum in the previous study was attributed to

ATP binding and showed a negative band at 1659 cm�1

and a positive band at 1620 cm�1, consistent with a consider-

able conversion of a-helices to b-sheets. The authors

concluded that their absorbance changes were at least one

order of magnitude larger than those observed for other

P-type ATPases (38,54), possibly due to the use of duck

enzyme or DMB caged ATP, which has a low affinity for

the Naþ,Kþ-ATPase (55).

Our study is not directly comparable to that of Pratap et al.

(20) because we investigated the reaction from E1Na3
þ with

bound NPE caged ATP to E2P, whereas the previous study

followed the reaction from E1Na3
þ to the E1Na3

þ complex

with ATP (E1ATP Na3
þ). However, it seems unlikely that

ATP binding would produce secondary structure changes

that are more than 10 times larger than the transition from

the E1 form of the enzyme to the E2P form. Nor has this

been observed for the Ca2þ-ATPase, where the extent of

net secondary structure change upon ATP binding was re-

ported to be similar to that of phosphoenzyme conversion

from Ca2E1P to E2P (38). The enzyme source is not an

explanation for the apparent discrepancy between the two

studies, since our experiments with the duck enzyme gave

spectra that were similar in band position and band amplitude

to those of the pig kidney enzyme shown here.

A further explanation could be that NPE caged ATP (used

here) induces large structural changes when it binds to the

Naþ,Kþ-ATPase in the E1Na3
þ state, making our initial state

similar to our transient state E2P. Photolysis of caged ATP

would then lead to only relatively small changes upon forma-

tion of E2P. In that case, our initial state likely would resemble

that of E1ATP Na3
þ, again implying much larger conforma-

tional changes upon nucleotide binding than upon phosphor-

ylation and phosphoenzyme conversion to E2P.

NPE caged ATP binding to the Ca2þ-ATPase does not

explain the discrepancy between our previous finding of

small net secondary structure changes for the Ca2þ-ATPase

and that of Pratap et al. (20) of large changes on the Naþ,Kþ-

ATPase. This is because caged ATP does not bind to the

Ca2þ-ATPase under our conditions, as described for the

close ATP analog b,g-imidoadenosine 50-triphosphate

(AMPPNP) (56), because of the lower affinity of NPE

caged ATP for the Ca2þ-ATPase (45,57–59), which is

~100–150 mM in diluted suspensions (57).

At present, the discrepancy between our study and that by

Pratap et al. (20) remains unexplained in molecular terms.

However, we would like to point out that our infrared signals

show the expected kinetic behavior of a transient change, and

that our controls prove that the transient absorbance changes

are due to a structural change of the active ATPase.

Molecular interpretation

Carbonyl groups of acids, lipids, and the aspartyl phosphate

absorb between 1800 and 1700 cm�1. In this region, three
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bands are observed: positive bands at 1745 and 1715 cm�1,

and a negative band at 1730 cm�1. The band position of

carbonyl groups is sensitive to hydrogen bonding and indi-

cates no or weak hydrogen bonding for the 1745 cm�1

band, intermediate hydrogen bonding for the 1730 cm�1

band, and hydrogen bonding as strong as found in aqueous

solution for the 1716 cm�1 band (60,61). These bands may

originate from the following causes: An environmental

change around carbonyl groups of lipids or protonated

carboxyl groups may lead to a band shift in this spectral

region, giving rise to a positive and a negative band. The

negative and positive bands are characteristic of the initial

state and the state that accumulates after ATP release, respec-

tively. Alternatively, the bands may appear because carbonyl

groups are formed or disappear in the observed reaction, for

example, by protonation/deprotonation of carboxylate

groups or phosphorylation of Asp-369. Formation of

carbonyl groups causes positive bands, whereas their disap-

pearance results in negative bands.

The carbonyl group of the aspartyl phosphate is expected

to contribute to one of the positive bands. The model

compound acetyl phosphate absorbs at 1718 cm�1 in

aqueous solution (32). At a similar position, a band has

been tentatively assigned to the aspartyl phosphate of the

Ca2þ-ATPase (33). This assignment is supported by the

sensitivity of this band to the divalent cation that binds at

the catalytic site (33,62). In analogy, we tentatively assign

the 1716 cm�1 band or part of it to the carbonyl group of

the aspartyl phosphate of Naþ,Kþ-ATPase. The remaining

absorbance changes in the carbonyl region can be due either

to changes in hydrogen bonding or to protonation (positive

bands) and deprotonation (negative bands) of carboxyl

groups. At present, it is not possible to distinguish between

these possibilities. However, the involvement of carboxyl

groups in the reaction seems to be evident since signals are

also observed in the spectral regions of the antisymmetric

(1600–1520 cm�1) and symmetric (~1400 cm�1) stretching

vibrations of the carboxylate group. Again, they can be

due to protonation (negative bands), deprotonation (positive

bands), or an environmental change (e.g., a change in cation

coordination).

The amide I region (1700–1610 cm�1) is adjacent to the

carbonyl region. It is usually dominated by the absorption

of the amide I vibration, which is predominantly a vibration

of the amide carbonyl group. The amide I vibration is sensi-

tive to the three-dimensional structure of the protein back-

bone and depends in particular on the secondary structure.

One can tentatively assign the 1686 cm�1 band to turns or

b-sheets, the 1676 cm�1 band to turns, the 1661 cm�1

band to turns or a-helices, and the 1641 cm�1 band to

a-helices, irregular structure, or b-sheets. It is tempting to

speculate that the 1661 and 1641 cm�1 bands originate

from a band shift from a lower to a higher wave number.

In this case, the band pair could reflect straightening

(63,64), shortening (65), or less solvent exposure (66–68)
of an a-helix. We note that side chains such as Asn, Gln,

and Arg may also contribute in the amide I region.

Comparison with other P-type ATPases

A spectrum very similar to the one shown in Fig. 2 a was

previously obtained for the E1-E2 transition of the gastric

Hþ,Kþ-ATPase (54). The E1 and E2 forms of this enzyme

were stabilized by Naþ and Kþ, respectively, and rise to a

negative E1 band at 1640 cm�1 and a positive E2 band at

1654 cm�1. The respective bands for the E1Na3
þ to E2P

transition of the Naþ,Kþ-ATPase are found at 1661 cm�1

and 1641 cm�1. As the Naþ,Kþ-ATPase, the Hþ,Kþ-AT-

Pase contains a b-subunit. The similarity between the spectra

indicates that the main bands at 1661 cm�1 and 1641 cm�1

are characteristic of the E2 and E1 conformations, respec-

tively.

Spectra of the corresponding reaction of the Ca2þ-ATPase

(Ca2E1 / E2P) have been published (33,34,38). They show

some similarities in the carbonyl region of the spectrum

(1800–1700 cm�1). The Ca2þ-ATPase exhibits two broad

positive bands with maxima at 1758 and 1710 cm�1 that

are composed of at least four different bands (34). At similar

positions, two positive bands at 1747 and 1716 cm�1 were

observed for the Naþ,Kþ-ATPase in this study. In contrast

to the observation of a clear negative band at 1730 cm�1

for the Naþ,Kþ-ATPase, the Ca2þ-ATPase spectrum does

not show negative bands in this region. This characteristic

feature of the Naþ,Kþ-ATPase has also been observed for

duck and shark enzymes (40). This indicates that a lipid

carbonyl or a Glu or Asp residue that is protonated in

E1Na3
þ, is involved in the reaction from E1Na3

þ to E2P.

It is tempting to speculate that one or more of the Naþ coor-

dinating acidic residues of sites I and II (pig kidney sequence

according to the crystal structure: Glu-327, Glu-779, Asp-

804, Asp-808) (13,69,70) is protonated in the Naþ,Kþ-

ATPase because the two positive charges bound to these sites

in the Naþ,Kþ-ATPase require less charge compensation

than the four positive charges bound to the Ca2þ-ATPase.

The amide I spectral range of the Naþ,Kþ-ATPase spec-

trum is dissimilar to that of the Ca2þ-ATPase spectrum.

The only band common to both enzymes is the 1641 cm�1

band found at 1643 cm�1 for the Ca2þ-ATPase. Above

1641 cm�1, both spectra are mirror images of each other.

Where the Naþ,Kþ-ATPase has positive bands at 1686 and

1661 cm�1, the Ca2þ-ATPase has negative bands at 1687

and 1662 cm�1. Where the Naþ,Kþ-ATPase has a negative

band at 1676 cm�1, the Ca2þ-ATPase has a positive band

at 1671 cm�1. There are several possible explanations for

these spectral differences:

1. Opposite structural changes could occur in both enzymes.

However, this explanation seems to be unlikely since

a common reaction mechanism is usually assumed.

2. Corresponding structural elements could absorb at

different wavenumbers for the two enzymes because of
Biophysical Journal 96(8) 3433–3442
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different local structures or different strengths in

hydrogen bonding to the amide groups. In line with this

assumption, a relatively broad positive band is found at

1661 cm�1 and 1671 cm�1 for the Naþ,Kþ-ATPase and

Ca2þ-ATPase, respectively. The similar bandwidths

might indicate that the two bands are caused by corre-

sponding structural elements.

3. The b-and g-subunits could contribute to the Naþ,Kþ-

ATPase spectrum. These subunits are not present in the

Ca2þ-ATPase.

Notable is the absence of a positive band near 1630 cm�1

for the Naþ,Kþ-ATPase. This band appears prominently

upon ATP binding to the Ca2þ-ATPase and has tentatively

been assigned (52) to a conformational change of the b-sheet

in the P domain (71) that persists until dephosphorylation of

E2P (72). The absence of the 1630 cm�1 band may indicate

that the b-sheet is less perturbed upon phosphorylation of the

Naþ,Kþ-ATPase. An alternative explanation is that binding

of NPE caged ATP to E1Na3
þ already causes a structural

change in this b-sheet. It would then be altered in the initial

state of our Naþ,Kþ-ATPase samples but not in the Ca2þ-

ATPase samples because NPE caged ATP does not bind to

the Ca2þ-ATPase under our conditions, as found for the

close ATP analog AMPPNP (56).

CONCLUSIONS

We obtained infrared difference spectra of the Naþ,Kþ-

ATPase for the reaction from E1Na3
þwith bound NPE caged

ATP to E2P. The spectra show highly detailed absorbance

changes that can be attributed to structural changes of the

enzyme based on a number of control experiments. The reac-

tions studied here affect protonated carboxyl groups or lipid

carbonyl groups. The data do not support a previous finding

that the conformational changes of the Naþ,Kþ-ATPase are

exceptionally large (20).

We thank A. Schacht for enzyme preparation, and J. Reichert for construc-

tion of the sample changer.
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