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ABSTRACT Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene
ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alter-
native effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the
formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simu-
lations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs,
differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resor-
cinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and
make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous
solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete
rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb
or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism.
INTRODUCTION

1,3-dihydroxy-5-n-alk(en)ylbenzenes, referred to alterna-

tively as alkylo-resorcinolic lipids (ARs), resorcinols, or

RESþtail length, are a group of naturally occurring

compounds that are common components of biological

membranes. The basic element, orcinol, consists of a benzene

ring with two hydroxyl groups substituted at positions 1 and

3 and with the alkyl tail attached at position 5. The structures

of orcinol and resorcinol are shown in Fig. 1. Natural orcinol

derivatives differ in the alkyl tail and are classified according

to a combination of tail length (11–29 carbons) and the

degree of unsaturation (0–4 carbons). In nature, resorcinols

usually occur as a mixture of several homologs.

ARs occur primarily in higher plants (e.g., Anacardia-
ceae, Ginkoaceae), but also in some lower plants (algae,

mosses, fungi). Saturated homologs are found exclusively

in specific strains of bacteria (Azotobacter, Pseudomonas).

Resorcinolic lipids are not usually found in animal tissue

but have been reported in the marine sponge. In particular,

ARs are found in high concentration in the bran of certain

cereals (wheat, oats, and rye). For many years, ARs were

thought to be secondary metabolites and not to play a major

role in cellular physiology. More recently, ARs have been

shown to have a range of important biological functions

and have attracted much attention in fields such as nutrition

(1,2), agriculture (3,4), and medicine (5).

Resorcinols are amphiphilic due to the nonisoprenoid side

chain attached to the dihydroxybenzene ring. Like many
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lipids, the phase behavior of ARs can be understood in terms

of simple geometric concepts (6). Short tail ARs can be

thought of as cone-shaped and have a tendency to form

micellar type structures. The shape of ARs become more

cylindrical with longer alkyl tails and lamellar structures

become more favorable. Resorcinolic lipids have very low

critical micelle concentrations in the range of 4.5–8.5 mM

and are thus practically insoluble in water. The specific value

depends on the homolog (tail length and degree of unsatura-

tion). The preference of ARs for a hydrophobic environment

is also reflected in the high octanol/water partition coefficient

(logPo/w ¼ 12) (7).

Experimentally, resorcinolic lipids induce a range of struc-

tural changes in phospholipid membranes. Gubernator et al.

showed that resorcinolic lipids can affect phospholipid

membranes differently depending on the way they are added

to the system (8). If added before phospholipid vesicles are

formed, ARs showed a stabilizing effect on phospholipid

bilayers. The membrane becomes more resistant to the

permeation of small solutes, such as water, ions, and glucose

(9–12), and vesicles are more resistant to osmotic stress (13).

Kozubek et al., using electron spin resonance techniques,

found that biological activity depends strongly on the struc-

tural characteristics of the specific homolog and that the

inclusion of resorcinol leads to a shift in the gel-liquid crys-

talline phase transition of a DPPC bilayer to higher temper-

atures (14). In contrast, when added to a suspension of

liposomes (i.e., when the vesicles are already formed),

ARs increase the release of soluble markers from the lipo-

somes (11,15). ARs can also lead to hemolysis of blood cells

(10,12). This effect is significant at high concentrations (>15

mol %). At concentrations of 50 mol % and above, they also
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have a fusiogenic effect on yeast protoplasts (16). Longer

tails and more unsaturated bonds enhance the dual effect

of resorcinols on biological membranes.

The range of biological activities of resorcinols makes

them attractive for the pharmaceutical and nutrition indus-

tries. Resorcinols can be used as markers in the assessment

of the nutritional value of cereal products (1) or as part of

novel liposomal formulations for drug delivery (5,17). For

example, unsaturated homologs may serve as protectants

against free radicals that induce lipid oxidation (18,19).

This is especially important in cardiovascular disease. Alter-

natively, since long tail resorcinols have a stabilizing effect

on membranes similar to that of cholesterol, it has been

proposed that cardanol, a resorcinol derivative containing

only one hydroxyl group in the aromatic ring and 15 carbon

atoms, could be more effective than cholesterol in stabilizing

liposomes in certain drug formulations (20).

In this article, we describe molecular dynamics (MD)

simulations of the interaction of resorcinols with dimyris-

toyl-phosphatidylcholine (DMPC) lipid bilayers, using an

atomistic force field. Experimentally, resorcinols have only

a minor effect on phospholipid membranes below a concen-

tration of 15 mol %. Above a concentration of 50 mol %,

lamellar structures are unstable. For this reason, simulations

FIGURE 1 Structures of orcinol (left) and 1,3-dihydroxy-5-n-alkylben-

zene, known as resorcinol (right). Partial charges of the dihydroxybenzene

used in the simulations have been placed at the corresponding atoms.
of three saturated resorcinolic derivatives were performed at

a concentration of 30 mol %, close to that commonly used in

experimental studies (8,21). The chosen homologs differ

with respect to the length of the tail (11, 19, and 25 carbon

atoms). First, the spontaneous aggregation of different

mixtures is simulated to get an unbiased view of the

preferred aggregation state of the DMPC/AR mixed systems.

Subsequently we simulated preassembled bilayer systems,

either with the resorcinols preincorporated or with the resor-

cinols initially dispersed randomly in the aqueous solution.

Details of the simulations are given in the following section,

followed by a presentation of the results and a discussion of

the dual disturbing and stabilizing effects of resorcinols on

phospholipid bilayers. A short conclusion ends the article.

METHODS

Simulation details

All MD simulations were performed using the GROMACS (Ver. 3.0.5)

package (22). The parameters for the resorcinolic lipids were selected

such that they were consistent with the parameters for PC lipids (23). The

acyl chains were represented by united atoms (CH2, CH3). Polar hydrogens

such as the hydrogens of the hydroxyl groups and those attached to the

aromatic ring were treated explicitly. Within the benzene ring, 1–4 interac-

tions were excluded, as is the standard practice within the GROMOS96 force

field (24). The charges of the dihydroxy benzene ring (for details, see Fig. 1)

were obtained from the electron density calculated at the semiempirical QM

level with bond-charge corrections using the restrained electrostatic potential

method (25). The simple point charge water model was used (26). Covalent

bond lengths were constrained using the LINCS algorithm (27). Nonbonded

interactions were computed using a twin-range cutoff. Within the short-

range cutoff of 1.0 nm, van der Waals and Coulomb interactions were up-

dated every step. Coulomb interactions within the long-range cutoff of

1.4 nm were updated every 40 fs (10 time steps) together with the

neighbor-list. The temperature was controlled by weakly coupling the

system to a heat bath at 323 K using a Berendsen thermostat (28) with

a coupling time constant of 0.1 ps. The main components of the system

(DMPC, resorcinols, water) were coupled independently to the heat bath.

The pressure was maintained by coupling the system using a Berendsen

barostat (28) to an external pressure bath at 1 bar with a coupling time

constant of 1.0 ps and compressibility of 5.0 � 10�5 bar�1. The coordinates

were scaled anisotropically (x, y, and z directions were scaled independently)

or semiisotropically (x and y directions were scaled together leaving the z
direction independent) depending on the system. To correct for the trunca-

tion of the electrostatic interactions beyond the 1.4-nm long-range cutoff,

a reaction-field correction (29) with a relative dielectric constant of 54

was used (30). The integration time step was 4 fs.

Systems

To investigate how resorcinolic lipids affect the properties of a phospholipid

membrane, three different types of simulation were performed. The first

involved the spontaneous aggregation of mixtures of ARs and DMPC in

water. The second involved the simulation of equilibrated symmetric

DMPC/AR bilayers. The third involved the simulation of the interaction

of resorcinolic lipids placed in the aqueous phase next to a preformed

DMPC bilayer. Three saturated resorcinol homologs were considered,

RES11, RES19, and RES25, which differ in the length of the alkyl tail.

The concentration of the ARs is (approximately) 30 mol % in all systems.

Table 1 gives an overview of all simulations performed. For comparison,

a previous simulation for a pure DMPC bilayer (31), is also included.
Biophysical Journal 96(8) 3140–3153
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Spontaneous aggregation of mixed DMPC/AR systems

The three systems (see Table 1) used to investigate the spontaneous aggre-

gation of AR and DMPC were constructed according to the general proce-

dure outlined below. One of four different conformations of a chosen

component, i.e., ARs and DMPC was placed randomly within a cubic box

of a given size using the GROMACS tool Genbox. After the required

number of molecules had been placed in the simulation box, the box was

filled with 30–35 waters per molecule (AR or DMPC). The initial configu-

rations were then energy-minimized. An initial 20-ps simulation using a 1-fs

time step and isotropic pressure coupling at 1 bar was performed to relax the

configuration. Then the time step was increased to 4 fs, anisotropic pressure

coupling was applied, and the systems were simulated until well equili-

brated. Production runs were in the range of 15–150 ns, depending on the

time required for the system to fully stabilize. For each resorcinolic

homolog, simulations were repeated up to three times with different starting

configurations.

Preincorporated DMPC/AR bilayers

To investigate the stabilizing effect of resorcinols on a biological membrane

and how this depends on the length of an alkyl tail, three symmetric systems

were studied. Each monolayer contained an identical number of DMPC and

resorcinol molecules. Starting configurations were taken from the sponta-

neous aggregation simulations of DMPC and resorcinol described above.

To make the system symmetric, any excess of lipids in a given monolayer

were removed. This meant that the final composition differed slightly for

each of the three homologs (see Table 1). The hydration level was decreased

to 25 waters per lipid for reasons of computational efficiency. After energy

minimization and a short equilibration period of 100 ps, all systems were

simulated for 80 ns. To avoid the deformation of the box in one of the lateral

directions, semiisotropic coupling, in which the box fluctuations in the x and

y axes are coupled, was used.

Incorporation of ARs into preformed DMPC bilayers

The mechanism of incorporation of the resorcinolic lipids into a preformed

phospholipid bilayer was studied using six different systems. The first three

involved 64 DMPC and 28 resorcinol molecules solvated with 35 waters per

TABLE 1 Overview of all simulations performed

Label Nsim NDMPC/AR Nsol/lipid tsim (ns)

pureDMPC (31) 2 64/0 25 80, 80

aggRES11 2 64/22 30 40, 92

1 64/21 27 40

aggRES19 2 64/28 29 40, 140

1 64/21 29 100

aggRES25 2 64/21 34 60, 160

symmRES11 1 62/18 25 80

symmRES19 1 62/18 25 80

symmRES25 1 58/16 25 80

incrpRES11-s 3 64/28 35 75, 80, 170

incrpRES19-s 3 64/28 35 42, 55, 160

incrpRES25-s 3 64/28 35 30, 30, 170

incrpRES11-l 3 256/112 35 130, 316, 360

incrpRES19-l 3 256/112 49 160, 175, 240

incrpRES25-l 2 256/112 49 90, 120

Labels correspond to the type of the simulation and the homolog of the resor-

cinol. Systems with labels agg- and pure- correspond to the aggregation of

mixed or pure systems, respectively. Labels incrp- correspond to the incor-

poration and the symm- correspond to the simulation of the preincorporated

resorcinols into the DMPC bilayer. Nsim denotes the number of simulations

performed; NDMPC/AR corresponds to the number of DMPC or AR in the

system; Nsol/lipid corresponds to the number of water molecules per lipid;

tsim corresponds to the time of the simulation.
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lipid. These small systems are labeled incrpRes11-s, incrpRes19-s, and in-

crpRes25-s, respectively. To check whether the size of the box affected

the mechanism of incorporation, two sets of simulation systems four times

larger than the original one were also constructed. These systems consisted

of 256 DMPC and 112 resorcinols with the same hydration as the original

system (35 waters per DMPC or AR molecule). In the case of the long

tail homologs (RES19, RES25) preliminary simulations showed the interac-

tion of resorcinol micelles with their periodic images. For this reason, the

level of hydration was increased to 49 waters per DMPC or AR molecule.

The large systems are labeled incrpRes11-l, incrpRes19-l, and in-

crpRes25-l, respectively (see Table 1). The starting structures of the small

systems were prepared using the pure DMPC bilayer (64 DMPC). All

solvent was removed and 28 resorcinolic lipids were placed randomly in

the space available. To accommodate all resorcinols and maintain a constant

level of hydration, the size of the box was increased in the z direction by

2.5–9.0 nm. It was also checked that individual resorcinol molecules were

not in direct contact with the surface of the membrane. If a resorcinol mole-

cule was in direct contact with the membrane, it was removed and a new posi-

tion was randomly chosen. This was done to avoid the rapid insertion of

resorcinol molecules into the membrane. The larger systems were constructed

by replicating the initial box in the x and y directions before solvating with

either 35 or 49 water molecules per DMPC or AR molecule. An initial series

of 10-ns simulations were performed. Only those cases in which all resor-

cinols approached the bilayer from one side were kept for further study. In

those cases, the simulations were extended to between 80 ns and 360 ns.

The details of the simulations performed are given in Table 1.

Analysis

The results from the simulations were analyzed in terms of a range of struc-

tural and dynamic properties at equilibrium, including the mass density

distribution, order parameters, headgroup hydration, and flux of water

through the membrane. The analysis was performed using standard

GROMACS tools (32). In addition, visual inspection was used to charac-

terize the nature of the intermediate states occurring during the incorporation

of resorcinols into the bilayer.

Calculation of the order parameters

As a measure of the order within the DMPC/AR bilayer, deuterium order

parameters, SCD, which will be referred to simply as order parameters, were

calculated for the DMPC acyl chains and for the alkyl tail of resorcinol homo-

logs. Because there are no explicit H-atoms in the simulations, the order

parameters were calculated from the positions of the C-atoms along the chain

(33). The standard error for SCD was obtained by considering the time aver-

aged value hSCDi for each of the 64 DMPC molecules independently.

Calculation of the mass density distribution

The lateral inhomogeneity of the system was analyzed by calculating the

mass density distribution across the bilayer. The mass density distributions

were calculated for DMPC, AR, and solvent molecules and for certain

groups of atoms, namely, the carbonyl and phosphate groups of DMPC

and hydroxyl groups of resorcinol. The distance (DP–P) between the two

peaks in the mass distribution profile of the DMPC phosphate groups was

used to determine the thickness of the bilayer. Leaflets 1 and 2 were defined

based on the z-position of the single trimethylamine group of DMPC relative

to the center of the bilayer, with the membrane oriented in the x,y plane.

Separate values for the lipids in leaflet 1 and 2 indicate the degree of asym-

metry in the final configuration.

Characterization of the hydration level

The effect of resorcinolic lipids on the level of hydration of the phospholipid

membrane was determined by calculating the number of water molecules

bound to the lipids. This was achieved by analyzing the number of

water-lipid hydrogen bonds and analyzing water-lipid radial distribution
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functions. The number of hydrogen bonds was calculated between water

molecules and specific groups of atoms of the phospholipid, such as the

carbonyl group and the phosphate group. The number of hydrogen bonds

formed between the hydroxyl groups of resorcinols and water reflects the

differences between the resorcinol homologs. Hydrogen bonds were deter-

mined based on cutoffs for the angle donor-hydrogen-acceptor of 30� and

the distance hydrogen-acceptor of 0.35 nm. The radial distribution functions

g(r) of water around the groups of atoms specified above provide informa-

tion about the hydration of various parts of the headgroups of DMPC.

Hydration numbers were determined by integrating the radial distribution

function to the first minimum.

Estimation of the water flux

The resistance of the membranes to the passage of water was estimated by

calculating the flux of water through the bilayer. A flux event was counted

as successful once a water molecule passed the central region of the bilayer.

The width of this region was taken as 1.0 nm. Flux events from the left to the

right (L / R) and from the right to the left (R / L) side of the bilayer were

distinguished. The trajectories were sampled with a frequency of 1/40 ps�1

for this analysis. Error estimates are calculated by subdividing the trajectory

into parts of 20-ns length and collecting statistics over the unidirectional flux

events taking place in that period of time.

RESULTS

Spontaneous aggregation of DMPC/AR systems

To predict the preferred aggregation state of the mixed lipid/

resorcinol systems, three sets of simulations starting from

a random spatial arrangement of all the components were

performed. The results are summarized in Table 2. In all of

these simulations, the lipids spontaneously aggregate into

a bilayer. The process of aggregation for the RES19

homolog is illustrated in Fig. 2. Within 4 ns, the initially

random mixture of phospholipid and resorcinol molecules
in water (see Fig. 2 a) separated, with the hydrophobic tails

becoming distinct from the aqueous phase (Fig. 2 b). Further

rearrangements led to the formation of a bilayer structure

with a transmembrane water pore. This metastable interme-

diate with the hydrophilic headgroups of a few lipids lining

the pore (Fig. 2 c) collapses within 50–60 ns of the simula-

tion. During the final stage, the bilayer relaxes to its equilib-

rium state (Fig. 2 d). In the system involving the RES11

homolog, a complete bilayer was formed within 20 ns. The

pore was formed mainly by DMPC molecules. None of the

RES11 molecules showed any particular preference for the

pore. In contrast, almost 80% of the long tail homologs

(RES19, RES25) stayed in the region of the pore. The

most stable water pore was found in the system containing

the RES25 homolog, which collapsed only after 80 ns.

In the final state, the lipids were uniformly distributed later-

ally, i.e., no separation between the DMPC and AR mole-

cules was observed within each monolayer. However, the

TABLE 2 A summary of the spontaneous aggregation

simulations

Label

Total Leaflet 1 Leaflet 2

DMPC/AR DMPC/AR DMPC/AR

pureDMPC (31) 2 64/0 32/0 32/0

aggRES11 1 64/22 34/6 30/16

2 64/22 32/9 32/13

3 64/21 34/12 30/9

aggRES19 1 64/28 31/17 33/11

2 64/21 29/8 35/13

3 64/28 30/11 34/17

aggRES25 1 64/21 33/9 31/12

2 64/21 30/9 34/12
FIGURE 2 Snapshots of the spontaneous aggregation of

a mixed DMPC/RES19 system. Snapshots were taken at

0 ns, 4 ns, 20 ns, and 80 ns of a 140-ns simulation. The

initial simulation box with randomly distributed DMPC

and RES19 molecules (a). A separation of the hydrophobic

tails from the aqueous phase (b). The transmembrane water

pore with a few lipids lining the pore (c). The final config-

uration of the equilibrated bilayer (d). The water is repre-

sented as light, semitransparent, diffusive shaded spheres;

resorcinol molecules as light-shaded (orange in color

version) spheres; and DMPC molecules are represented

by dark-shaded (green in color version) spheres for head-

groups, and sticks for the lipid tails.

Biophysical Journal 96(8) 3140–3153
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distribution of lipids over the two leaflets was notably asym-

metric (see Table 2). This phenomenon been observed before

in spontaneous aggregation simulations of mixtures (34), and

can be attributed to purely statistical effects. The average

difference in the number of lipids between the two mono-

layers was eight molecules. It is important to note that the

degree of asymmetry is larger for the resorcinolic lipids

than for DMPC. The average asymmetry of DMPC was ~3

out of 64 molecules compared to 5 out of 28 molecules for

resorcinol. The mixed DMPC/AR bilayers obtained by spon-

taneous aggregation are clearly not fully equilibrated.

Further relaxation would require lipid flip flopping, a slow

process not observable on the nanosecond timescale of the

simulations. The asymmetric distribution of the components

between the two monolayer leaflets makes further analysis

problematic.

Preincorporated DMPC/AR bilayers

To study the interaction between resorcinolic and DMPC

lipids in more detail, a set of preassembled bilayers was

studied. These symmetric DMPC/AR bilayers, with the

resorcinols preincorporated, were simulated for 80 ns. Equi-

librium properties of these systems are shown in Tables 3–6,

and are discussed in more detail below.

TABLE 3 A comparison of structural properties of symmetric

membranes with resorcinol preincorporated

System

hSCDi DP–P

DMPC/AR (nm)

pureDMPC (31) 0.162/– 3.3

symmRES11 0.21/0.19 3.65

symmRES19 0.22/0.12 3.8

symmRES25 0.22/0.10 3.7

hSCDi is the order parameter averaged over all carbon atoms in the tails and

averaged over both chains. DP–P is a measure of membrane thickness, the

distance between the maxima in the phosphate density distribution along

the membrane normal. The standard errors are 0.02 for all values of hSCDi,
and 0.1 for the membrane thickness.
Tail order

Fig. 3 illustrates the order parameter profiles of the DMPC

tails (Fig. 3 a) and of the three resorcinol homologs

(Fig. 3 b) in the preincorporated DMPC/AR bilayers. The

profiles are an average over both tails of the DMPC lipids

or, in the case of resorcinols, over all resorcinol molecules

of the specific homolog. In Fig. 3 a, the plain solid curve

refers to the pure DMPC bilayer. The effect of the resorci-

nolic lipids on the order parameter profile of the DMPC lipid

tails is to shift the profile to larger values. It can be seen from

Fig. 3 a that, for DMPC, the inclusion of resorcinol into the

system results in an increase in order of the segments closest

to the headgroups and in the middle of the tail relative to that

of the pure DMPC. Thus, whereas in pure DMPC the order

parameter decreases almost linearly along the tail in the pres-

ence of resorcinols, there is a very short plateau, followed by

a rapid decrease in order. In the case of resorcinols them-

selves, there is an apparent maximum in the order between

positions 2 and 5 before a steep decrease in the order param-

eter (see Fig. 3 b). The difference in the values of the order

parameters between the first and the last atom of the tail is

larger for the resorcinols than for the tails of DMPC. This

is most likely a result of resorcinols having only one alkyl

tail and as a consequence more freedom to explore different

conformations. A direct comparison of the hSCDi between

the homologs is difficult due to the different length of their

tails. The average tail order of the DMPC lipids and resor-

cinol homologs in the membranes is given in Table 3. It is

clear from Table 3 that the average order of the DMPC tails

increases upon introduction of resorcinolic lipids in the

membrane, from 0.16 to 0.22, and that the RES homolog

does not influence the value strongly. In contrast, the average

order of the alkyl chains of the resorcinol homologs appears

to decrease with increasing length. As shown in Table 3, the

RES11 homolog, perhaps somewhat surprisingly, has the

highest order parameter: hSCDi equals 0.19. Comparing

just the average hSCDi values is, however, misleading. The

average value of the order parameter of the RES11 tail is
TABLE 4 Average number of hydrogen bonds formed between lipid and water and between lipids for pure DMPC and DMPC/AR

systems

System pureDMPC (31) symmRes11 symmRes19 symmRes25

per DMPC per DMPC per DMPC per DMPC

DMPC-SOL 7.14 � 0.02 6.68 � 0.04 6.70 � 0.03 6.72 � 0.03

C¼O-SOL 2.78 � 0.01 2.45 � 0.05 2.48 � 0.02 2.47 � 0.03

PO4
�-SOL 4.34 � 0.01 4.23 � 0.01 4.19 � 0.01 4.24 � 0.03

per RES per RES per RES

OH-C¼O 1.44 � 0.03 1.35 � 0.03 1.39 � 0.01

OH-PO4
� 0.42 � 0.02 0.49 � 0.05 0.41 � 0.05

OH-SOL 1.08 � 0.02 0.97 � 0.05 1.12 � 0.04

The table is divided in two parts. The upper part lists the average number of hydrogen bonds between DMPC and water (SOL) per DMPC lipid molecules,

subdivided into contributions from carbonyl (C¼O) and phosphate (PO4
�) groups; the lower part lists the average number of hydrogen bonds between the

hydroxyl groups (OH) of resorcinol and CO, PO4
– of DMPC and water, respectively, per RES lipid molecule.

Biophysical Journal 96(8) 3140–3153
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high because the tail is short and the average is not domi-

nated by values near zero at the end of the tail as in the

case of the RES25 homolog. In fact, close to the headgroup,

RES11 is less ordered than RES25. Away from the head-

group—carbons 5–9—the values of order parameters are

the same for all homologs. Between carbons 14 and 17,

the order parameters of RES25 fall almost to zero before

rising again. When analyzing snapshots of the simulations

of the RES19 and RES25 homologs, it is seen that the tails

of these resorcinols adopt different types of configurations

in the membrane, as illustrated in Fig. 4 for RES25. Three

characteristic configurations can be identified:

1. A straight configuration in which the resorcinol pene-

trates into the opposite monolayer.

2. A bent configuration where the tails lies at the center of

the bilayer.

3. A hairpin configuration where the tails fold back into the

same monolayer.

Thus, the increase seen in the order parameter profile for the

last six carbons of RES25 is due to the tail either folding back

into the same leaflet or becoming embedded in the opposite

leaflet.

Mass density distribution

Fig. 5 illustrates the mass density distribution of the DMPC

bilayers. Fig. 5 a corresponds to the pure DMPC system.

Fig. 5, b–d, corresponds to the bilayers in which RES11,

RES19, and RES25 homologs have been preincorporated,

respectively. The distributions of the DMPC, resorcinols,

water, carbonyl groups (CO), phosphate groups (PO4
–),

and hydroxyl groups of resorcinols (OH) are plotted. The

distribution of the OH groups correlates closely with the

distribution of the carbonyl groups (light-shaded areas).

This implies that the dihydroxybenzene rings have a high

TABLE 5 Number of water molecules in the first hydration

shell of the DMPC headgroup (PO4
–, C¼O)–water (OW), and of

one of the AR hydroxyl groups (OH)

System pureDMPC symmRes11 symmRes19 symmRes25

PO4
– 5.00 4.9 4.5 4.7

C¼O 2.00 1.6 1.8 1.8

OH 0.8 0.8 0.8

TABLE 6 Total number of water molecules permeating

through pure DMPC and DMPC/AR bilayers, and permeability

coefficient of the membranes for water

System Flux events Permeability

L / R R / L P (cm s�1)

pureDMPC 12 7 0.020 � 0.005

symmRES11 4 6 0.009 � 0.003

symmRES19 2 5 0.007 � 0.002

symmRES25 5 3 0.008 � 0.003

L corresponds to the water that enters the membrane from the left side of the

bilayer, R from the right side.
affinity for the region of the glycerol of the DMPC (see

also Fig. 4). The distribution of the resorcinol molecules

(solid light-shaded area) changes with the length of the tails

(Fig. 5, b–d). The characteristic peak at the center of the

bilayer represents the accumulation of the tails of the resor-

cinols. The longer the tail, the higher the peak. At the same

time, the density of DMPC at the center of the bilayer

decreases. The maximum drop is reached when the RES25

homolog is present with the density of DMPC dropping to

250 kg/m3 (see Fig. 5 d). The accumulation of the tails of

the resorcinols increases the thickness of the bilayer, as

judged from the phosphate-phosphate peak distance, which

is reported in Table 3. The smallest effect is observed for

the RES11 homolog, the thickness increasing from 3.3 nm

to 3.65 nm while the RES19 homolog increases the thickness

to 3.8 nm. Surprisingly, in the case of the symmRES25

system, the thickness is 0.1-nm less than in the symmRES19

FIGURE 3 Deuterium order parameters profiles of the acyl chains of the

DMPC (a) and of the resorcinol homologs (b). (Solid line) Order parameter

profile of the pure DMPC; (solid triangles) RES11; (open circles) RES19;

and (crosses) RES25.

FIGURE 4 Possible configurations of resorcinolic tails in the membrane:

penetration into opposite monolayer, accumulation in the center of the

bilayer or back-folding. The oxygens (darker spheres) of the carbonyl

groups have been emphasized to show that the dihydroxybenzene rings of

resorcinols bind in this region. For clarity, the water has been removed.
Biophysical Journal 96(8) 3140–3153
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FIGURE 5 Mass density distribution of the DMPC

bilayer along the z axis (normal to the bilayer). The distri-

bution of the pure DMPC bilayer and its components (a). In

b–d, the systems with the RES11, RES19, and RES25,

respectively, are presented. The DMPC lipids (unshaded

area below the curve), resorcinolic lipids (solid light-

shaded area), water (striped area), carbonyl groups (dotted

shaded areas), phosphate groups (checkered areas), and

hydroxyl groups of resorcinols (solid areas) are shown

separately.
system, even though the tails of this homolog are six carbons

longer than that of the RES19 homolog. The reason for this

apparent discrepancy is found in the increased backfolding

of the tails of the longer homolog. In the systems containing

resorcinols, the distribution of the phosphate groups and

carbonyl groups is also narrower in comparison with the

pure DMPC system. The distribution of water (striped areas)

also changes. In the presence of the resorcinols, water pene-

trates less deeply into the interface, leaving the carbonyl

groups less hydrated (this is not visible in Fig. 5 but will

become clear from the analysis below).

Hydration properties

The number of hydrogen bonds between the phospholipids,

resorcinols and water is given in Table 4. The total number of

hydrogen bonds formed between DMPC and water in the

pure DMPC system is ~7.1 per DMPC molecule. After add-

ing resorcinol, this number decreases to 6.7 per DMPC. The

number of hydrogen bonds between DMPC and water in

the presence of various resorcinolic homologs is the same.

The number of hydrogen bonds between the particular

groups (i.e., phosphate groups, carbonyl groups) of the

DMPC and water reflects the contribution of these groups

to the binding of water and the change in the penetration

of water after the addition of the resorcinols (see Table 4).

The high affinity of resorcinolic OH groups for the ester

oxygens of the lipid carbonyl groups affects the interaction

of the carbonyl groups with water more than that of the phos-

phate groups. In the pure DMPC system, the carbonyl groups

(CO) formed 2.8 bonds with water per DMPC, while in the

mixed systems this number changes to 2.5 bonds per DMPC.

The hydration of the phosphate groups is reduced only
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slightly, from 4.3 to 4.2 bonds per DMPC lipid. These

differences are statistically significant, as the estimated error

is <0.05. On average, the resorcinolic lipids form ~1.0

hydrogen bonds with water and ~1.8 with DMPC per AR

molecule. The loss of hydrogen bonds between CO–SOL

is more than compensated for by the increase of the bonds

OH–CO by 1.4, and by OH–PO4
– by 0.3–0.5 bonds per

AR molecule.

Another measure of the numbers of water molecules

bound to a particular group is the radial distribution function

g(r). The results of this analysis are presented in Table 5. In

the pure DMPC system, five water molecules are present in

the first hydration shell of the phosphate groups of the

DMPC and two in the first hydration shell of the carbonyl

groups. The hydration of the carbonyl groups reflects the

penetration of the solvent into the membrane. In the presence

of RES11, the number of waters bound to the DMPC is

reduced by ~20%. Of all homologs, the short homolog

(RES11) has the strongest effect on the penetration of water

at the carbonyl level, but the weakest on the phosphate

groups. The size of the hydration shell of the resorcinol

molecules is the same for all three homologs.

Permeation of water through the bilayer

Table 6 illustrates the unidirectional flux of water molecules

through an equilibrated bilayer with or without resorcinols.

(Note that there is no net flux expected, as there is no driving

force. The differences observed between the left-to-right and

right-to-left fluxes reflect the stochastic nature of the perme-

ation process.) The largest total number of permeation events

is observed (19 waters over a period of 80 ns) for the pure

DMPC system. For the systems with resorcinols, the flux
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decreases significantly. The largest number of permeation

events is observed with the RES11 homolog (10 waters

over a period of 80 ns), compared to seven for RES19, and

eight for RES25. The differences between homologs are,

however, within the estimated error and therefore not signif-

icant. It is interesting to compare the flux obtained for pure

DMPC to the permeation rate predicted previously by

nonequilibrium MD simulations (35). The permeability coef-

ficient can be obtained from the flux events reported in Table

6, by dividing the number of observed flux events per unit of

time by the effective driving concentration and multiplying

by the area. The effective driving concentration for the unidi-

rectional flux is simply the bulk concentration of water (55

mol/Liter). The area is the lateral area of the DMPC bilayer

(20 nm2). Calculation leads to a resulting permeability coef-

ficient of 0.02 cm s�1, similar to that estimated from the

nonequilibrium simulations (0.07 cm s�1 at 350 K) (35).

Given the difference in system details, the agreement is

good. Experimental permeability coefficients for water

across lipid bilayers are also ~10�3–10�2 cm s�1.

Incorporation of resorcinolic lipids into preformed
DMPC bilayers

The question of whether the effect of postincorporation is

different from that of preincorporation on the properties of

a membrane is addressed next. The process of incorporation

of the three resorcinol homologs into a preformed DMPC

bilayer was studied using two different system sizes (see

Table 1). In the starting configuration, the resorcinols were

randomly distributed in the aqueous phase. In the next

sections we first describe the final state of the system.

Then the details of the incorporation pathways are discussed,

followed by an analysis of the structural characteristics of the

membranes after the incorporation process.

Phase changes upon incorporation

The final phases that were obtained after the incorporation of

the resorcinols differed between the homologs and between

the small and large systems. Three alternative final phases

could be distinguished:

1. A lamellar, liquid-crystalline phase (La).

2. A hexagonal phase (HI).

3. A lamellar phase with a gel phase domain (La þ Lb).

In the incrpRES11-s and incrpRES11-l systems (small and

large, respectively), the membrane adopted the La phase.

In the case of incrpRES19-s and incrpRES19-l, the behavior

differed between the small and large systems. The small

systems eventually adopted the La phase in all three trials.

For the large systems, the La phase was formed in only

one case. The other simulations led to the formation of the

HI phase. In the incrpRES25-l system, the resorcinolic lipids

formed a gel-phase domain within the membrane (La þ Lb).

The simulations of the incrpRES25-s system were not

continued because the micelle formed by the resorcinol
molecules began to interact with its periodic image. The

same problem was observed in the incrpRES25-l system at

low levels of hydration.

Two pathways of incorporation

Fig. 6 presents a schematic diagram of the various interme-

diates observed during the process of incorporation. The

associated time constants are listed in Table 7. The incorpo-

ration of the resorcinolic lipids into the DMPC bilayer

occurred via either of two major pathways. Pathway I

involved a direct incorporation of the resorcinols into one

monolayer of the bilayer, whereas, in pathway II, the system

passed through an intermediate state in which a water pore

was formed in the bilayer (denoted LP
a). The final phase of

the systems that passed through pathway I was always

lamellar (La), although in the case of incrpRES25-l system,

a gel-phase domain coexisting with a liquid domain was

formed (La þ Lb). The pore-forming pathway II finished in

either the lamellar (La) or the hexagonal phase (HI). For

small systems of the RES11 and RES19 homolog, pathway

I was identified in two simulations, and pathway II only in

one simulation. The large RES11 and RES19 systems all fol-

lowed pathway II, but the lamellar phase was formed only in

one of the three trials. In the other two, the bilayer was solu-

bilized and the nonlamellar hexagonal phase structure (HI)

was formed.

As shown in Fig. 6, the first three intermediates are

common for both pathways. Initially, resorcinolic lipids

were distributed randomly in the water phase (La þ R).

The resorcinols rapidly aggregated, forming a micellar struc-

ture (LaþM). The time t1 of the micelle formation was ~1–2

ns for the small systems and 3–6 ns for the large systems.

This micellar aggregate gradually migrated to the DMPC

bilayer, where it interacted progressively with the surface

of the bilayer. The micelle-bound state is denoted LM
a . The

time required for the micelle to migrate to the surface is

FIGURE 6 Diagram showing the evolution of the systems according to

the two pathways (I and II). A detailed description of the diagram can be

found in the text.
Biophysical Journal 96(8) 3140–3153
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TABLE 7 Intermediate stages and the corresponding times of transitions (t1–t7) presented in Fig. 6

System Pathway La þ M La
M La

P La HI La La þ Lb

Time [ns] t1 t2 t3 t4 t5 t6 t7 tinc ttot tsim

incrpRES11-s I 2 10 — — — 47 — 47 59 170

incrpRES11-s I 1 26 — — — 50 — 50 77 80

incrpRES11-s II 1 10 10 22 — — — 32 43 75

incrpRES11-l II 4 1 220 100 — — — 320 325 340

incrpRES11-l II 1 1 316 — — — — — — 318

incrpRES19-s I 1 9 — — — 30 — 30 40 60

incrpRES19-s I 1 8 — — — 33 — 33 42 42

incrpRES19-s II 1 4 45 45 — — — 90 95 160

incrpRES19-l II 2 8 14 — — 54 — 68 78 175

incrpRES19-l II 3 10 77 — 70 — — 147 160 160

incrpRES19-l II 3 4 130 — 35 — — 165 172 240

incrpRES25-l I 6 4 — — — — 40 40 50 80

incrpRES25-l I 6 4 — — — — 30 30 40 90

The term tinc corresponds to the total time of the insertion of the micelle into the bilayer, ttot is the total time of the process of incorporation, and tsim is the length

of simulation.
indicated by time t2, which is in the range of 1–26 ns. While

the micelle stayed on the surface of the bilayer, the interac-

tions between the resorcinol and DMPC increased. The

phospholipids from the closest leaflet were forced to the

center of the membrane, causing a strong deformation of

the bilayer. The pathway that the system subsequently fol-

lowed was influenced by the structure of the micelle. If the

micelle formed by the resorcinols during the process of

incorporation remained compact, an intermediate state with

a water pore was favored (LP
a). The phospholipids gradually

surrounded the micelle, which was eventually fully incorpo-

rated within the closest leaflet (pathway II). Time t3 reflects

the time required to form the water pore once the micelle has

absorbed into the membrane, and was found to vary between

10 and >300 ns. Times t4 and t5 indicate how long the water

pore remained stable, either before closing (t4) or until

rupture (t5). Pores remained stable on timescales between

20 and 100 ns. Alternatively, if the micelle did not become

surrounded by phospholipids, but instead lost its integrity,

resorcinols formed a layer on the surface of the membrane

and insertion occurred without the formation of a pore

(pathway I). In this case, a full disruption of the bilayer

did not occur. Only one leaflet was disordered and resor-

cinols were inserted into that leaflet. This insertion occurred

by the progressive incorporation of single lipids. Times t6
and t7 measure the complete insertion by pathway I by

~30–50 ns. The times associated with these successive

stages suggest that if the pore is formed, the process of incor-

poration takes significantly longer (see tinc, ttot). After the

complete incorporation of the resorcinols, the simulations

were continued for at least 30 ns. However, none of the

systems reached an equilibrium state during this time,

mainly due to limitations in the rate of flip-flops between

the two monolayers. In Fig. 7, pathway II is illustrated

leading to a lamellar phase. The major intermediates during

the incorporation of the RES19 homolog into a large DMPC

bilayer are depicted.
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Nonlamellar phase formation

Only for one system was complete disruption of the lamellar

structure observed. The incrpRES19-l system formed a non-

lamellar HI structure, illustrated in Fig. 8. Initially, the resor-

cinolic micelle passed through a pore intermediate. Due to

the strong interactions between the dihydroxybenzenes and

choline groups, the micelle at the surface of the bilayer

remained intact (Fig. 8 b). This prevented the insertion of

the alkyl tails of resorcinols into the membrane. The whole

micelle became gradually surrounded by phospholipids and

was finally enclosed by the monolayer (Fig. 8, c and d),

leading to the development of extreme curvature and overall

distortion of the bilayer structure. Disruption of the bilayer

was subsequently triggered by the formation of a water

pore, coalescing with its periodic image in one of the lateral

dimensions (Fig. 8 e). This led to the formation of tube-shape

micelles stacked on top of each other (Fig. 8 f). This structure

has the same topology as the hexagonal phase.

Gel phase domain formation

As noted above, the RES25 homolog formed a gel phase

domain within the DMPC membrane (La þ Lb). The incor-

poration of the resorcinols in the incrpRES25-l system fol-

lowed pathway I: formation of the micelle, migration to

the bilayer, and gradual dissolution of the micelle inside

the bilayer. However, due to the long tails of the RES25

homolog the aggregate remained compact and inserted as

a single unit, as shown in Fig. 9. Within the bilayer, the

resorcinols formed a domain where the tails of resorcinols

gradually became more ordered, forming a gel phase. Inter-

estingly, the part of the tail that extended beyond that of

DMPC tails remained in the liquid-crystalline phase.

Approximately the first 16 out of 25 carbons of the resorcinol

tail became ordered. A few resorcinols, which did not incor-

porate into the gel phase domain, mixed freely with the

phospholipids and remained disordered. The process of
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FIGURE 7 The incorporation of RES19 into a DMPC membrane. For clarity, tails of phospholipids were removed in snapshots b–i in a large system

(RES19:DMPC 112:256). Snapshots were taken every 20 ns. The resorcinolic micelle forms from a random dispersion (a) and interacts with the surface

of the bilayer (b). Increasing interactions of the resorcinols with the closest leaflet forced the phospholipids into the center of the bilayer (c and d). Conse-

quently, the membrane lost its continuity. First the leaflet exposed to the resorcinols ruptured and later the second leaflet as well. A transient pore, through

which water could diffuse, was formed (d and e). Resorcinol molecules then began inserting into the bilayer (e–i). This insertion occurred by the absorption

of the whole aggregate. While the water pore existed, DMPC or AR molecules were able to diffuse into the center of the pore or even into the opposite mono-

layer. Lipids that moved to the center of the pore maintained the interaction of their headgroups with the water, thus stabilizing the pore.
incorporation of the RES25 homolog required ~70 ns of

simulation (time t7). After all resorcinols were in the bilayer,

the simulation was continued for another 30 or 50 ns. Within

this time, the phase separation remained.

Incorporation leads to large asymmetry within the membrane

The asymmetric incorporation of resorcinols into the DMPC

bilayer leads to strongly asymmetric membrane properties.

Fig. 10 illustrates the asymmetry in order parameter profiles

of the tails of the DMPC in the two leaflets after the insertion

of the resorcinols. The upper curve corresponds to the order

parameter profile of tails in the monolayer enriched with

RES11 and the lower curve corresponds to that of the mono-

layer with only one resorcinol molecule. The excess of

DMPC and AR molecules in the one monolayer led to an

increase in packing density. This was reflected in the order

parameters of the tails of the DMPC in this monolayer. As

can be seen in Fig. 10, the degree of order in the monolayer

without RES11 decreases almost linearly along the alkyl tail

and is much lower than the monolayer with more RES11. In
the profile corresponding to the monolayer containing

RES11, the largest increase in the order parameters is in

the central segments of the alkyl tail. The shape of the profile

is similar to the profiles of the preincorporated symmetrical

systems (see Fig. 3).

The membrane asymmetry after incorporation of resor-

cinols is further reflected by the nonhomogeneous mass

distribution. Fig. 11 compares the mass density distributions

of the main components of the DMPC/RES11 system (at

the initial and at the intermediate pore-forming stage) and

the distribution of the pure DMPC bilayer (dashed lines
in the figure). Although the presence of resorcinol increased

the order of the alkyl tails, the thickness of the bilayer did not

change (overlapping dashed and solid lines). Only the shape

of the distribution of the DMPC lipids in the monolayer

where the resorcinols were inserted changed. Resorcinols

clearly accumulate in one monolayer only. Their hydroxyl

groups reside at the level of the glycerol of the DMPC similar

to the distribution in the preincorporated simulations (see

Fig. 5).
Biophysical Journal 96(8) 3140–3153
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FIGURE 8 Snapshots illustrating the formation of a nonlamellar phase in the system including the RES19 homolog. Randomly distributed resorcinols (a)

aggregate, forming an intact micelle (b). The strong affinity of resorcinols for the bilayer effects its disruption (c and d). This disruption leads to the formation of

a water pore in the bilayer and a transition into a nonlamellar structure (e and f). For clarity, the phospholipid tails and solvent are removed. Light-shaded

(orange in color version) lines represent resorcinolic lipids and dark-shaded (blue-pink in color version) spheres the headgroups of DMPC.
DISCUSSION

Resorcinols prefer a lamellar phase

To determine the preferred aggregation state of the resorci-

nolic lipids used in our studies, a series of spontaneous

aggregation simulations were performed. The method of

spontaneous aggregation provides an unbiased way to assess

the preferred phase of the system. In each of the DMPC/AR

systems, a bilayer was observed to form via an intermediate

metastable state characterized by a water pore across the

bilayer. These observations are in line with the mechanism

of the bilayer formation proposed earlier by Marrink et al.

(36) for DPPC lipids, and seen also in the aggregation of

mixed PC/PE lipids (34) and pure DMPC (31). From our

simulations, it can be concluded that the preferred aggrega-

FIGURE 9 The gel domain formed by the RES25 homolog after incorpo-

ration in the DMPC bilayer. Resorcinols are represented as sticks, DMPC

headgroups and their tails as spheres. The long tails of resorcinols are clearly

ordered, especially the first part of the alkyl tail.
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tion state of mixtures of DMPC lipids and resorcinols is

also lamellar. Additional simulations (not shown) reveal

that the aggregation state of pure resorcinols at a comparable

hydration level of 25–30 waters per molecule is also

lamellar. Interestingly, the long tail (RES19 and RES25)

homologs in the pure resorcinolic systems form a gel phase

at physiological temperatures in agreement with experi-

mental data (37,38). In mixtures, their behavior is rather

different. The DMPC bilayers with preincorporated RES19

or RES25 remain homogeneously mixed in the liquid-

crystalline phase. It cannot be excluded, however, that

phase separation into a fluid DMPC-enriched and

FIGURE 10 Deuterium order parameter profiles of DMPC lipid tails after

asymmetric incorporation of the RES11 homolog. (Solid line) Leaflet with

only one resorcinol. (Dashed line) Leaflet enriched with 28 resorcinol

molecules.
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FIGURE 11 An illustration of the mass density distribu-

tion of the components in the mixed DMPC/RES11 bilayer

of the incrpRES11-s system that followed pathway II,

before the incorporation of resorcinols into DMPC

membrane (a) and at the later stage where resorcinols are

incorporated and a water pore is present (b). The striped

area reflects the distribution of resorcinolic lipids, shaded

fields correspond to the distribution of water, and solid

areas represent hydroxyl groups of resorcinols. For

comparison, the distribution of pure bilayer (DMPC and

water) is represented by dashed lines.
a resorcinol-enriched gel domain might take place on longer

timescales. In the case of the RES25 homolog, a gel phase

domain is observed to be stable on the timescale of the

simulation when incorporated as a micelle from the aqueous

solution. Which of these two states is the true equilibrium

state is not clear.

Cholesterol-like condensing effect of
preincorporated resorcinols

A major question we aimed to address was how resorcinolic

lipids affect the properties of the phospholipid membrane.

The MD simulations show that the presence of resorcinolic

lipids in the membrane strongly increases the degree of order

in the membrane. This follows from the significant increase

of the order parameter of the alkyl tails of DMPC (see Fig. 3

and Table 3). The values of the DMPC order parameters

between homologs are comparable, suggesting that the

ordering effect originates mainly from the presence of the re-

sorcinolic headgroups. The increase in thickness, however,

shows a clear dependence on the homolog. Especially in

the case of RES25, the tail occupies space in between the

monolayers, pushing them apart. Significant kinking and

folding back of the tails in the case of RES25 is also

observed (see Fig. 4). This packing effect of resorcinols is

similar to the effect of cholesterol on membranes (14). By

placing a rigid structure between the alkyl tails, cholesterol

promotes the condensation of the tails and, at high concentra-

tion, induces a phase separation into a cholesterol-enriched

liquid-ordered phase and a cholesterol-depleted liquid-crys-

talline phase (39,40). Although the structure of resorcinols

is different from cholesterol, it has been claimed that the

long tail homologs could induce the formation of separate

resorcinol rich domains via a similar mechanism (41). The

poor mixing of the RES25 homolog observed in our simula-

tions, together with clear evidence of a cholesterol-like

condensing effect, support this idea.

As a result of the condensation effect, the number of water

molecules found around the carbonyl groups of DMPC

decreases in the presence of resorcinol. The hydrogen bonds

of DMPC with water are replaced in part by hydroxyl groups

of resorcinol. In addition, water forms H-bonds with the
resorcinolic headgroups. The most significant difference is

observed between the pure DMPC system and the systems

enriched with resorcinols. In this case, ~6% of hydrogen

bonds were replaced by interactions with resorcinols. No

preference for any specific homolog was observed (see

Table 4), in agreement with the other results. Both the prein-

corporation and the incorporation simulations show that the

dihydroxybenzene groups prefer to bind to the ester groups

of the phospholipids. The length of the tail does not appear

to influence the position of the resorcinol molecules. Due

to the strong interactions between the hydroxyl groups of

resorcinol and the glycerol oxygens, the membrane becomes

dehydrated, limiting the penetration of water. The decreased

hydration of the membrane is in agreement with experi-

mental measurements of the kinetics of water in the head-

group region (42) and FT-IR experiments (43–45). In line

with the decreased level of hydration, the number of water

flux events is significantly decreased in the bilayers enriched

in resorcinols compared to those in a pure DMPC bilayer.

Again, this effect does not appear to depend strongly on

the length of the tail.

Incorporation leads to leakiness

In strong contrast to the behavior of premixed DMPC/AR

systems, the incorporation of resorcinols from the aqueous

solution may lead to leakage of the membranes. After

binding of the resorcinol micelle to the bilayer, a transient

water pore may form which either collapses or leads to

rupture of the bilayer. These results are in line with the exper-

imental data where, after addition of the resorcinolic lipids

into a suspension of DPPC liposomes, leakage of the lipo-

somes is observed (11,12,21). The extreme consequence of

the leakage is the transition to nonlamellar structures (43)

or lysis of the membrane (10). The simulations show that

the binding of the resorcinol to the lipid headgroup is a crit-

ical moment, which determines whether the system will

evolve to local membrane rupture (i.e., pathway II) or

smooth resorcinol insertion (i.e., pathway I). Due to the

limited set of simulations performed, it is not possible to

conclude which pathway is preferred by the specific resor-

cinols investigated. Both mechanisms are observed for the
Biophysical Journal 96(8) 3140–3153
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FIGURE 12 An illustration of the conditions under

which the distribution of the resorcinols on the surface of

the bilayer did not favor a pore formation (a) and the intact

micelle, which creates sufficient stress to lead to the forma-

tion of the water pore (b).
same system, indicating that the direction along which the

system evolves is governed by stochastic factors. Neverthe-

less, two important conditions must be fulfilled for poration

to be observed: a strong deformation of the bilayer and

a compact structure of the resorcinol aggregate, as illustrated

in Fig. 12. A strong deformation in this context means that

the structure of the monolayer is disrupted and the lipids start

to surround the micelle. A compact micellar structure is char-

acterized by a micelle that retains its spherical shape upon

binding. Both conditions are likely coupled, i.e., a compact

micelle triggers a strong deformation of the lipid bilayer

and vice versa. The reason for pore formation is presumably

the large stress created by an intact micelle absorbed onto

one of the leaflets. The incorporation of the resorcinol means

that there is almost a doubling of the number of molecules

within this leaflet. This local stress induces the other mono-

layer to rupture. This is similar to what recently has been

observed in simulations of pore formation by antimicrobial

peptides (46,47), by dendrimers (48), and by surfactants

(49). Despite the variety in chemical details of the adsorbing

molecules, the underlying mechanisms of pore formation

may have basic features in common.

CONCLUSION

In response to the question posed in the title of this article,

we conclude that resorcinolic lipids have a dual effect on

lipid membranes, i.e., they can both disturb and stabilize

lipid membranes. Stabilization is observed when resorcinol

is preincorporated into the membrane, in which case they

increase the order of the lipid tails. As a consequence, the

membrane thickens, the interface dehydrates, and the

membrane becomes less permeable to water. In this regard,

the effect of resorcinols is not dissimilar to the condensing

effect of cholesterol. The disturbing effect takes place

when the resorcinols are incorporated from the aqueous solu-

tion. In that case, an increase in leakiness is observed, caused

by formation of transient water pores. Extrapolating to

macroscopic systems, our results explain the experimentally

observed transient leakage of liposomes due to the incorpo-

ration of resorcinols.
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