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Transitions between Closed and Open Conformations of TolC:
The Effects of Ions in Simulations

Robert Schulz and Ulrich Kleinekathöfer*
Jacobs University Bremen, Bremen, Germany

ABSTRACT Bacteria, such as Escherichia coli, use multidrug efflux pumps to export toxic substrates through their cell
membranes. Upon formation of an efflux pump, the aperture of its outer membrane protein TolC opens and thereby enables
the extrusion of substrate molecules. The specialty of TolC is its ability to dock to different transporters, making it a highly versatile
export protein. Within this study, the transition between two conformations of TolC that are both available as crystal structures
was investigated using all-atom molecular dynamics simulations. To create a partially open conformation from a closed one, the
stability of the periplasmic aperture was weakened by a double point mutation at the constricting ring, which removes some salt
bridges and hydrogen bonds. These mutants, which showed partial opening in previous experiments, did not spontaneously
open during a 20-ns equilibration at physiological values of the KCl solution. Detailed analysis of the constricting ring revealed
that the cations of the solvent were able to constitute ionic bonds in place of the removed salt bridges, which inhibited the opening
of the aperture in simulations. To remove the ions from these binding positions within the available simulation time, an extra force
was applied onto the ions. To keep the effect of this additional force rather flexible, it was applied in form of an artificial external
electric field perpendicular to the membrane. Depending on the field direction and the ion concentration, these simulations led to
a partial opening. In experiments, this energy barrier for the ions can be overcome by thermal fluctuations on a longer timescale.
INTRODUCTION

During the last few decades, the problem of antibiotic resis-

tance rose to a serious problem within the field of antibacterial

treatment (1). One reason is the evolutionary overexpression

of multidrug efflux pumps within the bacteria’s cell envelope

(2,3). In Gram-negative bacteria, e.g., Escherichia coli
(E. coli) or Pseudomonas aeruginosa (P. aeruginosa), the

cell envelope consists of two lipid bilayers, so-called

membranes, with the periplasm in between. A large number

of proteins have been found to be embedded in both the inner

and the outer membrane of E. coli (4–6). There are also

systems of proteins that span over the whole cell envelope,

creating a pathway from the cytoplasm or the inner

membrane’s outer leaflet to the extracellular space (7). One

important transport class therein is the multidrug efflux

pumps. These efflux systems are employed to export antibac-

terial drugs such as antibiotics as well as protein toxins out of

the cell. This mechanism can diminish the effect of certain

classes of antibiotics. Hence, new antibiotics have to be found

which are able to overcome this mechanism (8–10).

Embedded within the outer membrane, proteins belonging

to the outer membrane factor family (11), like the channel-

tunnel protein TolC (12), act as exit ducts for different efflux

pumps. It is believed that TolC is closed (13) as long as it is

not connected to any compatible inner-membrane transporter

(14), e.g., HlyB (15) or AcrB (16–18) of E. coli. These exam-

ples describe the versatility, because in contrast to AcrB

which is a RND transporter driven by proton-motive forces,

HlyB is an ABC transporter which uses ATP to export its
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substrates. The closed structure of TolC shall ensure that

no substrate is able to flow from the extracellular space

into the periplasm. Furthermore, a membrane fusion protein

(19) is required to stabilize the fusion of transporter and

tunnel; in the two cases above, these are HlyD and AcrA

(20), respectively. The number of membrane fusion proteins

needed to form a functioning efflux pump of, e.g., AcrB and

TolC, is so far not well known, but in Zgurskaya and Nikaido

(21), AcrA was proposed to be a trimer. While connecting to

a transporter, the periplasmic aperture of TolC shall open

iris-like (22), but the final aperture radius might depend on

the corresponding transporter. Additionally, it was shown

that, under certain circumstances, the antibiotic vancomycin

is able to use the TolC-HlyB complex as entrance into the

periplasm (23,24).

To understand the mechanism of TolC docking to a trans-

porter, it has to be investigated in which way the TolC aper-

ture opens upon docking. Furthermore, it has to be examined

which residues are responsible for keeping the protein closed

and how the residues belonging to the aperture move into an

open conformation. By understanding this transition and the

final state, it is possible to study the transport of ions and

translocation of antibiotics through TolC in its open state.

Finally, one can get a better insight into how TolC docks

to transporters like AcrB or HlyB.

The crystal structure of TolC has been published in 2000

(13) and shows a mono-barrel homotrimer (see Fig. 1 B). The

100 Å long, periplasmic tunnel of coiled coils consists of 12

a-helices with two pairs from each monomer (Fig. 1 A).

One pair of each monomer is turned toward the center of

the tunnel forming the aperture at the lower periplasmic

end. In the middle of this periplasmic part, the equatorial
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FIGURE 1 TolC protein structure in

cartoon representation of the secondary

structure (50) with (A) the b-barrel

above and a-helical coiled coils below.

(B) The monomers in different colors.

(C) The protein in a simulation box

with the orientation of the positive

applied voltage (see Simulation Setup).

(D) Zoom to the aperture with the con-

stricting ring in licorice representation

of the side chains (dark shaded, T152

and D153; light shaded, Y362 and

R367). (E) Side view of panel D look-

ing from the periplasm toward the

membrane part (figures created with

VMD (40)).
domain is situated around the helices, which contains both

short a-helices and short b-strands and probably functions

as a hinge for the opening motions of the other helices.

The other part of TolC, which is, in vivo, embedded in the

outer membrane, consists of 12 b-sheets that form a 40 Å

long b-barrellike a channel through the membrane. The

diameter of this channel is roughly 35 Å.

Most previous ideas and hypotheses that describe the open

state and/or the opening mechanism when getting into

contact with its counterparts to form an efflux pump were

based on rigid body assumptions (22,25–27). In one very

recent study (28), all-atom and coarse-grained molecular

dynamics (MD) have been employed to investigate dynam-

ical properties of wild-type (Wt) and one mutated TolC.

These simulations as well as this one greatly differ from

the rigid-body studies, because the flexibility of the protein

structure is taken into account, enabling us to observe uncoil-

ing of the periplasmic-coiled coils. Basically, springs and

structural angle constraints are used to describe the

quantum-mechanical nature of the chemical bonds that

ensure the stability of the protein. In Vaccaro et al. (28),

only equilibrium simulations have been performed and

analyzed, whereas in this article, external forces are applied

in most of the simulations.

Motivated by a recent crystal structure (29) of a TolC

double mutant showing a partially open conformation, we

simulated two comparable double mutants and the Wt struc-

ture to investigate the dynamic differences that lead to the

opening. As in the experiment, the point mutations have

been symmetrically applied to two residues of all three

monomers in the constricting ring (Fig. 1 E, blue), which

in vivo, keeps the aperture closed via salt bridges and

H-bonds. This allows us to compare the Wt to two double

mutants, derived from the Wt, as well as to the open crystal

structure. Additionally, we also simulated the corresponding
single mutants to one double mutant, which helped us to

examine the importance of each point mutation for the

effects to be observed in the double mutant.

Since our mutants are derived from the Wt crystal structure,

they are in a closed conformation that allows us to dynami-

cally observe how TolC might open due to the removal of

the bonds in the constricting ring. In this article, the following

questions will be addressed, among other topics:

Is it possible to observe opening of the TolC aperture during

z10-ns-long MD simulations?

Will both double mutants (or any single mutant) relax

into conformations that are similar to the open crystal

structure?

Is it possible to speed up the simulations by applying an elec-

tric (steering) field in such a way that the closed TolC

structure transits into a partially open structure?

As will be shown below, applying an electric steering field

for speeding up the simulations can be very important in

obtaining the opening dynamics in the short simulation

time available. The steering field enables us to overcome

certain energy barriers that typically require much more

time to be passed by thermal fluctuations. On the one

hand, studying the effect of electric fields was motivated

by recent investigations in MD simulations of membranes

and membrane proteins (30–35) where their properties,

including stability of the lipid bilayer and the protein struc-

ture, were investigated. (Using this information, we could

ensure that no artificial effects due to the electric field

occurred.) On the other hand, the electric steering field was

motivated by the so-called grid-steered MD (36), which

has been developed to steer molecules through membrane

pores. In this study as well as in our investigations, the arti-

ficially applied electric field is used to speed up the MD

simulations and is not meant to be applied in experiments.
Biophysical Journal 96(8) 3116–3125
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Additionally, several experimental studies have been per-

formed on TolC (37–39), which helped us to focus on the

important segments of the protein, i.e., basically the aperture

region with a ring of residues that stabilize the constriction.

SIMULATION SETUP

As stated above, the crystal structure of the wild-type (PDB

code 1EK9) is simulated and compared to mutated versions

of the same structure as well as a partially opened crystal

structure. In contrast to the mutations in the literature

(37–39) and to the mutation in the recent MD study (28),

the mutations for the partially open crystal structure by Bavro

et al. (29), Y362F and R367E, have been applied (i.e., tyro-

sine 362 is replaced by phenylalanine and arginine 367 by

glutamate). For this mutant, two crystal structures with the

symmetry variants C2 and P212121, PDB codes 2VDD and

2VDE, respectively, were obtained. The two symmetry vari-

ants are due to variations in the crystallization setup. The

simulations denoted ‘‘MCryst’’ below were started from the

PDB 2VDE and compared to simulations starting from

the closed crystal structure derived from Wt, but with the

mutations equal to MCryst denoted ‘‘MGlu.’’ Thus, the

sequence of the residues in the mutated crystal structure

MCryst and our similar computer-generated mutant MGlu

are identical. To investigate whether the effects on the mutant

are due to the change in charge and/or length of the side chain,

we also applied a double mutation Y362F and R367D, i.e.,

residue 367 is mutated into an aspartate which has a shorter

side chain than the mutated residue above. This mutant is

denoted ‘‘MAsp’’ in the simulations according to the amino

acid into which the second residue is mutated (see Table 1).

Using VMD (40), the crystal structure of TolC was

aligned to the z axis with the periplasmic helices pointing

TABLE 1 Simulations

Mutation Index

KCl Conc.

[M] Natoms

Voltage

[V]

Time

[ns]

Wild-type Wt1a 0.1 203,907 þ1.0 20

Wt1b �1.0 20

Wt2a 1 200,547 þ1.0 20

Y362FþR367D MAsp1a 0.1 203,868 þ1.0 20

MAsp1b �1.0 20

MAsp2a 1 200,508 þ1.0 30

Y362FþR367E MGlu0a 0 204,067 þ1.0 20

MGlu0b �1.0 20

MGlu1a 0.1 203,877 þ1.0 30

MGlu1b �1.0 20

MGlu2a 1 200,517 þ1.0 20

Y362FþR367E Crystallized MCryst1a 0.1 198,139 þ1.0 20

MCryst1b �1.0 10

Details of the different simulations: The index carries a character 0 at the end

for a neutralized system with just the required number of counterions

(24 potassium), a 1 for a 0.1 M concentration, and a 2 for a 1 M concentra-

tion. Furthermore, the voltage can be read from the last letter of the index:

a for þ1 V, b for �1 V.
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in positive z direction, placed into a preequilibrated POPE

lipid bilayer in the x-y plane and solvated in TIP3P water

(41). At the end of the buildup phase, all lipid and water

atoms that overlapped with the protein have been removed.

Furthermore, KCl ions have been added at random positions

in the water to neutralize the charge of the protein and to

generate specific salt concentrations (0.1 M and 1 M). This

setup leads to a periodic box size of z(107 � 107 � 173)

Å3 after the equilibration of the Wt, with slight deviations

for the mutants shown in Table 1. These mutants have

been obtained using the Mutator plug-in of VMD.

For the MD simulations, the MD program NAMD (42)

was employed together with the CHARMM27 force field

(43) and periodic boundary conditions. The particle-mesh

Ewald method was used with a grid spacing of maximal 1 Å

per grid point in each dimension. After minimizing the

system for up to 50,000 steps, the atom velocities were

randomly chosen to resemble a Maxwell distribution. The

temperature was kept at 310 K by applying Langevin forces

to all heavy atoms with the Langevin damping constant set to

5 ps�1. The integration time step was chosen to be 1 fs, to

ensure the accuracy of the simulations under applied volt-

ages. During the equilibrations, the pressure was kept at

1.01325 bar for 10 ns in the NpT ensemble using the

Nosé-Hoover Langevin piston pressure control. The van

der Waals energies were calculated using a smooth cutoff

(switching radius 10 Å, cutoff radius 12 Å). All subsequent

simulations with an external electric voltage were carried out

in the NVT ensemble with the direction of the field parallel to

the z axis (see Fig. 1 C).

Although the simulations with electric steering fields have

been run for at least 20 ns, only the later 10 ns have been

used for deep analysis (see Table 1). During the simulations

with applied voltage, the b-barrel of TolC has been con-

strained to the central position of the simulation box. The

constraints were imposed by harmonic forces with the force

constants set to 1 kcal/M Å2. We want to emphasize once

more that the external electric field is used as steering force

to speed up the MD simulations similar to the grid-steered

MD (36). For example, within a simulation with an applied

electric voltage of 1 V, the additional force experienced

by monovalent charges is of magnitude of F z 9 pN parallel

to the z axis, which would correspond to an energy W z 1 kBT
if an monovalent ion is moved 5 Å against the field direction.

This sample calculation is based on the field strength, an

approximation for the electrostatic force and corresponding

work. The proposed ion movement, which will be discussed

below, would also take place by thermal motion on a time-

scale larger than milliseconds. This is far beyond the time-

scales accessible by MD simulations.

RESULTS

In the following, we analyze the simulations described

in Table 1. Before going into the details of the individual
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FIGURE 2 Results of simulations

with applied voltage: In the first row,

snapshots of the protein with backbone

(cartoon) and all-atom (transparent

surface) representation of the last frame

are drawn using the same perspective as

in Fig. 1 E. In the second line, the

distances (in Å) between the Ca atoms

(van der Waals representation) of

G365 are displayed with the protein

backbone in transparent cartoon repre-

sentation. In the third line, the traces

of the residue G365 Ca atoms are shown

with time-dependent coloring, starting

from the equilibration.
simulations, we show in Fig. 2 that the simulation results of

the Wt structure and the MAsp as well as MGlu mutants are

qualitatively different when applying an external steering

voltage. As can be clearly seen, the Wt structure remains

in its closed conformation while the mutated versions open

partially. Furthermore, Fig. 2 visualizes that the mutant

MAsp opens asymmetrically, which appears to be qualita-

tively similar to the asymmetric C2 crystal structure reported

in Bavro et al. (29). This asymmetry makes it inappropriate

to use circular area calculations for the opening area. To

quantify the effects of opening, we calculated the distances

between representative aperture residues for which we chose

G365 (Fig. 2). Again, the asymmetric opening of the MAsp

mutant becomes apparent. Additionally, the last row shall

visualize the paths of the aperture tips (Ca atoms of G365),

which also indicates that they do not move equally.

To be able to compare the degrees of opening using one

number, we calculated the triangular area between the Ca

atoms of the residues G365 to get an average over the three

monomers. This is certainly not the only way to calculate

the area of the aperture that is actually overestimated, but it

is easy to perform, and works in asymmetric structures for

which other measures might not. Using methods to calculate
the area of the channel more accurately at the position of

residue G365 lead to certain problems, because the protein

structure can no longer be described by a closed surface as

one approaches conformations that are more open. The

residue G365 was chosen in accordance with Bavro et al.

(29), and shall indicate the motion of the helix pairs, but

not the change of the internal area at the constriction, which

is difficult to calculate because of the asymmetry. For

comparison, the real internal area at the constriction of the

Wt crystal structure can be estimated with A z 16.7 Å2 (or

radius r ¼ 2.3 Å) using the program CAVER (44). As

mentioned above, this program calculates only a circular area.

An alternative approach to visualize and quantify the

motion of the residues belonging to the aperture is called

the porcupine plot, used before, e.g., in Barrett et al. (45)

and Tömroth-Horsefield et al. (46). It is employed in Fig. 3

to represent the direction and magnitude of the deviation

per residue below the equatorial domain. Here, the deviation

for the final structure of MGlu0b with respect to the partially

open crystal structure (2VDE) is shown using a color scale

indicating the magnitude and the maximum deviation

(values <2 Å are not shown). As can be seen easily, two

monomers moved further away from the reference while
Biophysical Journal 96(8) 3116–3125



the third one remained close to it. Looking at the trajectory of

MGlu0b, the aperture is approximately passing through the

state of the partially open crystal structure. We want to

note in passing that the aperture is not moving closer to

the membrane, indicated by the upper image. This can be

also verified during the whole trajectory (data not shown).

Concerning the stability of the system, the standard anal-

ysis including RMSD calculations has been performed.

There are no apparent distortions of the structure, but the

obtained data is not expressive since the direction of

the motion is not taken into consideration. Most important,

all protein parts below the equatorial domain (see Fig. 1 D)

are moving. The closer the residues are to the aperture,

the more they tend to move (see upper image in Fig. 3).

This indicates that the equatorial domain functions as a

hinge.

Figs. 4 and 5 show the triangular area for the simulations

with an applied voltage of þ1 V and �1 V, respectively. As

mentioned above, previous to all simulations there is a 10-ns

equilibration phase without a steering field. The triangular

area did not change much in these equilibration runs (data

FIGURE 3 Porcupine plot pointing from open crystal structure (2VDE) to

MGlu0b final structure with arrows per residue Ca atom lengthened and colored

due to deviation value (values<2 Å omitted). (Top) Direction of view: perpen-

dicular to the membrane; (bottom): toward the membrane (see Fig. 1).

Biophysical Journal 96(8) 3116–3125
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not shown), except for MGlu0. In the latter case, the protein

already begins to open during the equilibration. Starting at

the equilibrated crystal structures, Wt and MCryst, and

applying a steering field, the areas also remain rather

constant for the two simulations as can be seen in Figs. 4

and 5. This is not a surprise, because the voltage is not strong

enough to significantly influence the protein itself. For the

computer-generated mutants, the situation is different. For

positive applied voltage, the mutant MGlu remains closed

in the presence of a 100 mM KCl solution. Additionally,

MGlu0a tends to close again toward an aperture size similar

to MGlu1a, which indicates that the presence/absence of ions

is of some importance. However, the simulations of MAsp

do start to open and the triangular areas rise to values that

are slightly larger than for MCryst. This is true for all inves-

tigated concentrations. When prolonging the trajectory for

the MAsp2a case to 30 ns (data not shown), the area declines

again slightly to approximately the value found for MCryst.

Additional simulations with þ0.5 V (data not shown)

showed similar results, which indicates that the actual field

FIGURE 4 Comparison of the triangular area. The shown results are for

an external voltage of þ1 V. A running average has been calculated for

each 250 ps.

FIGURE 5 The same as in Fig. 4, but for a voltage of �1 V.

Schulz and Kleinekathöfer
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FIGURE 6 Slices through the poten-

tial map for different simulations: (A)

Wt1a, (B) MGlu1a, (C) MAsp1a, and

(D) MAsp1b.
strength is not of high importance, but instead, the presence

of the field is. The reasons for this will be discussed below.

In the case of a negative applied voltage, MGlu and MAsp

both show an opening of the protein. In contrast, prolonging

the field-free equilibration runs of the mutants to 20 ns (data

not shown) does not lead to a partially open conformation.

The data for MGlu2 is not shown in Figs. 4 and 5, because

the results are similar to those of MGlu1. For a voltage of

�1 V, slightly more time is needed until the aperture begins

to open. For the wild-type, there are no qualitative differ-

ences between Wt1 and Wt2. Comparing the values of

MAsp1a and MGlu1b, the latter one reaches greater values

in the triangular area than the former one, due to a higher

asymmetry of the aperture region which does not signifi-

cantly increase the area values. Furthermore, the helices in

MAsp1a (see Fig. 2, second column), which are rather close

to the initial conformation, move slightly inward. This can be

interpreted as natural constraints of the coiled-coils versus

breaking apart of the structure, especially the a-helical

barrel.

Concluding, the electric steering voltage has an influence

on the opening or at least on the speed of opening for some of

the described setups, but not for all of them. The side-chain

length of the mutated residue 367, which is the difference

between the mutants MGlu and MAsp, seems to have

some influence on the strength of the constricting ring. Of

course, our findings are always restricted to the simulated

time spans that were up to 40 ns in total (10 ns field-free

equilibration plus 30 ns including external field).

To analyze the findings, we determined the electrostatic

potential maps, which show the global distribution of all

charges over the whole trajectory (30). Some of these

maps are shown in Fig. 6 as slices through the middle of

the protein (y ¼ 0) which are averaged over all frames of
the trajectory from 10 ns to 20 ns with applied voltage

(30,31). Within this figure, the protein oriented along the

z axis, and the lipid bilayer with the highest potential values

along the x axis, are well distinguishable from the solution.

Using this method, one can see the open aperture for both

MAsp1a and MAsp1b (Fig. 6, C and D). In contrast to this

mutant, MGlu does open in MGlu1b (similar to Fig. 6 D),

but not in MGlu1a (Fig. 6 B). This cannot be understood

readily just by looking at the secondary structure and global

motions.

Because this more global analysis of the charge distribu-

tion does not lead to a clear explanation of the electric field

effects on the opening of the tunnel, a more local analysis

was performed to understand why the aperture remains

closed, e.g., in the simulation MGlu1a. To this end, we

investigated the region close to the mutated residues

(Fig. 1 E) considering the amino-acid conformations and

charge locations. As described earlier (29), mutating R367

inhibits the salt bridge toward D153. At the same time,

though, this mutation leads to a cation (affinity) pocket

formed by the negatively charged residues D153 and

D367/E367 as well as the polar T152, which can be occupied

by potassium ions in this case. A similar residue configura-

tion was described in Blaustein et al. (47), where Ca2þ-

binding domains of a Na/Ca exchanger protein have been

investigated.

While analyzing the pathways of the ions, especially of the

potassium ions, through the aperture and close to the three

cation pockets between the monomers (Fig. 7), one can

easily observe the attraction of potassium ions toward these

pockets, which leads to new formations of ionic bonds medi-

ated by these potassium ions. Especially, one can easily

distinguish between simulations with positive and negative

voltages applied. In the positive case, the cations flow
Biophysical Journal 96(8) 3116–3125
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through the channel and therefore pass closely by the

cations’ pockets. In the negative case, the cations instead

accumulate in the region beside the protein and therefore

comparatively seldom come close to the cation pockets.

Particularly for the case of MGlu0b, i.e., a simulation with

negative applied voltage and minimal ion concentration,

there are basically no cations close to the cation pockets

(see also discussion below).

The occupation of the cation pockets over time during the

last 10 ns of some of the applied voltage simulations is

shown in Fig. 8. In these occupation numbers, a clear differ-

ence between the simulation MGlu1a (which does not show

opening) and MAsp1a (which does show opening) can be

seen. Fig. 8 indicates that as long as at least two cation

pockets are occupied frequently, no opening of the channel

occurs. This can be understood directly, since each monomer

is connected to two of the pockets and both have to be empty

to allow opening motions of this particular monomer.

Furthermore, the average occupation frequency was calcu-

lated over a time span of 10 ns for all three pockets in the

different simulations and stages of the simulation, i.e., the

equilibration; the first 10 ns; and the subsequent 10 ns with

applied steering field (Fig. 9). Additionally, some simula-

tions have been run with a voltage of þ0.5 V using the state

after the first 10 ns of the þ1 V simulations. This was found

to be applicable, because the structure did not change much

within the first 10 ns. Despite the decreased voltage, the

FIGURE 7 The MGlu aperture (cartoon representation) with the residue

side chains (licorice representation colored by amino-acid type) of the

cation pockets (transparent surface representation) occupied with potas-

sium ions (van der Waals representation). Same perspective as in Fig. 1

E. Each cation pocket consists of the residues T152, D153, and E367.
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results are similar with a slightly higher occupation

frequency of the cation pockets.

Comparing these occupation frequencies with the confor-

mations of the aperture, the correlation is quite striking. If the

occupation frequency is <~0.2, the protein definitely opens.

For values between 0.2 and 0.24, the opening depends on the

concentration and the observed stage, e.g., both values for

MAsp2a are similar although only the latter state is opened,

which describes the transition into the partially open con-

formation. Hence, the correlation between occupation

frequency and final conformation could be confirmed for

all simulations performed with the double mutants that built

FIGURE 8 Occupation for each of the three cation pockets with ion

selection range of 3 Å. A black line represents that the respective pocket

is occupied.

FIGURE 9 Average occupation frequency of the cation pockets. The label

‘‘equi’’ denotes the field-free equilibration runs, and the letters a, b, and c

stand for þ1 V, �1 V, and þ0.5 V, respectively.
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up cation pockets. It has to be stated clearly that this obser-

vation is within the timescale currently accessible by MD

simulations.

In addition, simulations with the single mutants from

Y362F as well as R367D have been performed (data not

shown) to examine the contribution of each residue to the

strength of the constricting ring. Regarding the triangular

area values (as in Fig. 4), it can be seen that the values remain

lower than the values of MGlu for both single mutants. For

R367D, the occupation of the cation pockets has been inves-

tigated, which resulted in an occupation frequency <0.2,

although the protein did not open during the simulation.

This verifies that, although the cation pockets are relatively

empty, the protein is not able to open—which means that

the occupation frequency threshold is only applicable for

the double mutants. In general, it can be stated that both

mutations have to be applied to enable the opening of the

aperture without external stimuli.

CONCLUSION

The aim of this study was to investigate the dynamic effects

of two point mutations, Y362F and R367E, on the aperture

stability of TolC within MD simulations. In recent experi-

ments (29), double mutations of this kind lead to a partially

open structure. Interestingly enough, using equilibration runs

at physiological salt concentrations did not lead to a major

change in the conformation on a 10–20 ns timescale. This

is also seen in Vaccaro et al. (28), with the mutations

Y362F and R367S. By minimizing the salt concentration

toward a solely neutralized system MGlu0, the protein

opened slightly during the equilibration, which could finally

be explained by the corresponding low ion-pocket occupa-

tion frequency (Fig. 9). In this simulation, the helices rotate

iris-like toward an open conformation (Figs. 2 and 3), as also

indicated in Bavro et al. (29). This leads to the suggestion

that it might be favorable to use a minimal ion concentration

when equilibrating mutants. Otherwise, ions might establish

temporary ionic bonds that could increase the stiffness of the

protein; see also Laine et al. (48). Furthermore, it was

checked that it is not enough to simply mutate residues

Y362 or R367 separately; a double mutation is needed to

induce an opening of TolC.

The simulations showed that applying an electric steering

field is an alternative approach to speed up simulations and to

investigate the aperture stability of TolC. But in contrast to

the crystal structure from Bavro et al. (29), the mutated

protein does not open symmetrically under physiological

conditions within the simulated time. Furthermore, the

opening depends on the side-chain length and the charge/

polarity of the residues within the constricting ring. One

reason is that the ions are able to influence the opening by

formation of ionic bonds in place of the wild-type salt

bridges that have been deleted by the mutations. Although

only potassium has been investigated here, it seems unlikely
that the observed effects of the ions are restricted to this ion

type. Because of two negative side chains in the pocket,

other cations like Naþ or Ca2þ should have similar or

stronger effects due to the charge, which is indicated in

Blaustein et al. (47). Furthermore, the method employed

for the initial ion placement might be a critical point. In

this study the ions were distributed randomly in the water

layer. If a Poisson-Boltzmann solver would be used to deter-

mine the positions for the ions at the electrostatic extrema,

the cations might be placed directly into the cation

pockets—which would be rather unfavorable for this and

similar investigations.

In this study, the effect of bond reformation is likely to be

only a problem of the timescale within MD simulations. In

addition to the results specific to TolC, this investigation

also shows how the ions of the solution can affect large

domain motions. This is especially the case for spontaneous

motions, and might be applicable to entirely different

systems as well. For example, in Laine et al. (48), it was

revealed that the structural flexibility of calmodulin depends

on the number of bound calcium ions. Another example is

given in Sotormayor and Schulten (49), where calcium

ions protect cadherin from unfolding.

The obtained data can be used to investigate the electric

conductance of the open state of the protein, which can be

compared to experiments similar to studies of OmpF (35).

In that study, the temperature dependent ion conductance of

OmpF has been investigated. Therefore, it has to be examined

how stable the opened structures are and which influence the

mutations have on the measurements. Moreover, the rather

symmetrically opened structure from MGlu0b can be used

to analyze the docking of TolC with in vivo partners like

AcrB and AcrA. In several hypothetical studies (26,27,29),

it has been investigated how TolC might connect to AcrA.

While opening the aperture of TolC, the a-helices turn to

open a groove that is favorable to dock with the a-helical

domain of AcrA. In Bavro et al. (29), it was pointed out that

the connection to AcrB is required before the groove is acces-

sible. Furthermore, it was stated that the bonds between the

residues of the constricting ring are substituted by new bonds

toward the TolC docking domain of AcrB. As can be seen

from these simulations, the influence of the electrostatics

and possible bound ions on the opening of TolC is rather

important. In future studies, one could try to put charges

such as those from AcrB close to the TolC Wt structure and

analyze possible opening motions. As a starting point one

could use the results of docking studies between the partially

open crystal structure of TolC and AcrB (29). The obtained

information from these next steps can be used to understand

the mechanism of efflux pumps and antibiotic resistance in

more detail, which is important for designing new antibiotics.
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