
Biophysical Journal Volume 96 April 2009 3015–3031 3015
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ABSTRACT This article introduces a chemical kinetic model of the transcriptional elongation dynamics of RNA polymerase.
The model’s novel concept is a look-ahead feature, in which nucleotides bind reversibly to the DNA before being incorporated
covalently into the nascent RNA chain. Analytical and computational methods for studying the behavior of the look-ahead model
are introduced, and several approaches to parameter estimation are tested on synthetic and also on actual experimental data.
Two types of experimental data are considered: 1), the mean velocity of RNA polymerase as a function of the ambient concen-
trations of the ribonucleoside triphosphates; and 2), the distribution of time intervals between the forward steps of RNA poly-
merase. By separately fitting the look-ahead model to these two types of data, we obtain estimates of the model parameters.
The most difficult parameter to estimate is the width of the look-ahead window. Both types of data suggest a small window
size, but the second type does a better job of distinguishing the different window sizes. These latter data rule out a window
size of 1, and they strongly suggest a look-ahead window that is approximately four bases in width. Additional experiments to
determine the window size are proposed.
INTRODUCTION

RNA polymerase is the key enzyme of transcription, the step

at which most regulation of gene expression occurs. Tran-

scription consists of three distinct processes: initiation, elon-

gation, and termination. Of these processes, elongation has

been until recently the least studied, but this situation has

fortunately changed with the advent and extensive use of

single-molecule force microscopy (1–8).

From a modeling perspective, elongation is the transcrip-

tional step most amenable to a quantitative description. The

motion of RNA polymerase during transcription can be

viewed as a stochastic process, more specifically as a random

walk along the DNA. The goal of modeling is to characterize

this random walk. Previous models of this kind (1–8) have all

been mechanical in nature, i.e., they have considered, in one

way or another, the elastic forces that arise within the RNA

polymerase molecule during transcriptional elongation.

In this article (see also preliminary reports (9) and (10)), we

introduce a formal chemical kinetic model for the dynamics of

the movement of RNA polymerase along DNA. In our

proposed model, we focus on the discrete events of reversible

binding and unbinding of nucleotides to the DNA, and on the

covalent linkage of nucleotides into the nascent RNA chain.

In this sense, our model is formal, because it only considers

the stepwise motion of the RNA polymerase, not the physics

of how that motion is generated. The model proposed herein is

most easily visualized in terms of the power-stroke mecha-

nism for the forward motion of RNA polymerase (11,12),

since we assume that covalent linkage of nucleotide to the

nascent RNA chain is synchronous (at least on the timescales
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of interest) with forward translocation of the RNA polymerase

by one basepair along the DNA. Our model could also be

consistent with a Brownian ratchet mechanism (13) in which

covalent linkage of nucleotide to the nascent RNA chain locks

in diffusive forward motion of the RNA polymerase, which is

provided that the overall time elapsed during a forward move

would be short in comparison to the time intervals among the

chemical events of binding, unbinding, and covalent linkage.

We are concerned here with a sequence of chemical events,

not with the physical mechanism that propels the enzyme

forward.

The emphasis of this article is on parameter estimation.

We first describe a stochastic simulation method that can

be used to generate synthetic data on which parameter esti-

mation procedures can be tested, and then we discuss

a master-equation analysis that yields noise-free predictions

for comparison with experimental data during parameter

fitting. Two sets of published experimental data are consid-

ered in this article as targets for parameter estimation, and

additional experiments are proposed. The first set of pub-

lished data is that of Adelman et al. (14). It involves measure-

ments of the mean velocity of transcription as a function of

the ambient concentrations of the four ribonucleoside

triphosphates. Velocity histograms are also reported in this

work. The second set of published data (15) employs fixed

concentrations of the ribonucleoside triphosphates, which

are chosen to be equally rate-limiting. These concentrations

are also chosen to be much lower than the values that are

typically used, thus slowing the process of transcription to

the point that individual forward steps of RNA polymerase

are easily resolved. Such an experiment reveals the statistical

distribution of the time intervals between successive forward

steps of RNA polymerase, and this is valuable information

for parameter estimation.
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The most difficult parameter to estimate turns out to be the

size of the look-ahead window. This is an integer parameter,

denoted w, which is equal to the number of sites within the

transcription bubble at which ribonucleoside triphosphates

may be reversibly bound to the DNA template strand, before

their covalent linkage to the nascent RNA chain. Although

w ¼ 1 may be regarded as a special case of the look-ahead

model (as we do in this article), it should be kept in mind

that only when w > 1 does the look-ahead model deserve its

name, since it is only if w> 1 that there is any parallel process-

ing of the ribonucleoside triphosphates, with selection of the

correct base being done at several DNA template-strand sites

simultaneously.

Our approach to the determination of the integer parameter

w is simply to try different values of w and for each such

value to fit the model to the experimental data by adjusting

the rate constants of the model. We then compare the quality

of the fit that can be achieved for each of the different

hypothesized values of w. This is a fair comparison, since

the model is formulated in such a way that the total number

of parameters is independent of w.

When this fitting procedure is applied to the experimental

data of Adelman et al. (14), the best fit to the mean transcrip-

tion velocity as a function of the ribonucleoside triphosphate

concentrations seems to be obtained with w¼ 1 or with w¼ 2,

and the fit seems to become gradually worse as the window

size increases from there. One might hope that the velocity

histograms would help to choose between w ¼ 1 and w ¼ 2,

but in fact these two cases predict nearly identical velocity

histograms, both of which underestimate the spread in the

experimental velocity histogram by roughly a factor of two

(although this may well be explained by experimental vari-

ability not taken into account by the theory).

The fit of the model to the statistical distribution of the time

intervals (waiting times) between successive forward moves,

as reported in Abbodanzieri et al. (15), is much more success-

ful at resolving the window size. Here, it turns out that there is

a qualitative distinction between the predictions of the model

with w¼ 1 and corresponding predictions with w> 1. Specif-

ically, the predicted waiting time distribution in the case w¼ 1

is nonmonotonic: it rises to a peak and then decays. The wait-

ing time distributions for w > 1 are monotone decreasing,

as are the experimental data. An excellent fit is obtained for

w ¼ 4. We regard this as evidence in favor of the look-ahead

hypothesis.

Additional experiments specifically designed to determine

the window size are proposed, and the procedures for extract-

ing the window size from the proposed experiments are tested

on synthetic data.

THE MODEL

During elongation, the double-stranded DNA is locally melted by the RNA

polymerase over a distance of ~14–17 basepairs. This locally melted region

is known as the transcription bubble. Within the transcription bubble, one

strand of the DNA acts as a template, upon which complementary ribonucle-
Biophysical Journal 96(8) 3015–3031
oside triphosphates (ATP, GTP, CTP, and UTP) can reversibly bind and

unbind to/from the DNA template strand. It has been hypothesized,

however, that only a part of the transcription bubble is actually used for tran-

scription. The size of this window of activity within the transcription bubble

formed by the RNA polymerase is an integer parameter of our model. The

binding of ribonucleoside triphosphates within the window of activity is

assumed to be reversible.

An irreversible reaction, however, is the incorporation of a nucleotide into

the nascent RNA chain. This can occur only when that nucleotide is revers-

ibly bound at the first site of the window of activity, i.e., the site at the 30 end

of the nascent RNA chain. When such incorporation of a nucleotide into the

nascent RNA chain occurs, we assume that the RNA polymerase (and hence

the transcription bubble and the window of activity) translocates forward

one basepair. If the window of activity has a size of more than one basepair,

it is quite likely that when the polymerase molecule, and hence the window,

moves forward, it will already find the correct nucleotide bound at what has

just become the site where that nucleotide can be incorporated into the

growing RNA chain. This is the look-ahead feature of the model, a kind

of parallel processing: placement of the correct ribonucleoside triphosphate

at each site on the template strand of the DNA can occur before that site has

been reached by the nascent RNA molecule.

The model is completely specified, then, by the following parameters:

w is the length (in bases) of the look-ahead window.

(kon)ij is the rate constant for reversible binding of ribonucleoside triphos-

phate of type i (ATP,CTP, GTP, or UTP) to deoxyribonucleotide of

type j (A, C, G, T) in the template strand within the window of

activity.

(koff)ij is the rate constant for unbinding of reversibly bound ribonucleo-

side triphosphate of type i from deoxyribonucleotide of type j.

(kf)ij is the rate constant for covalent incorporation of nucleotide of type i

into the nascent RNA chain, provided that there is a ribonucleoside

triphosphate of type i reversibly bound to a deoxyribonucleotide of

type j at the first site or the window of activity.

Note that we consider not only correct Watson-Crick basepairings, but also

the possibility of errors. The parameter (kon)ij is of course, much larger, and

(koff)ij much smaller, when (i,j) is a correct Watson-Crick basepair than

otherwise. This mechanism protects against errors in transcription. Further

error protection could be obtained by making (kf)ij larger when (i,j) is

a correct Watson-Crick basepair then when it is not. In our simulations,

however, we have assumed that kf is constant, independent of (i,j).
Fig. 1 shows the look-ahead window of RNA polymerase. Since the first

site (left end of box, indicated by vertical tick mark) is unoccupied, the poly-

merase cannot move forward. Possible events are the unbinding of C, G, or U,

or the binding of any ribonucleoside triphosphate (rNTP) to any of the five

unoccupied sites. Fig. 2 (top) is the same as Fig. 1 except that the first site

within the look-ahead window is also occupied. Possible events still include

the unbinding of any of the reversibly bound rNTPs or the binding of any

rNTPs (including incorrect Watson-Crick basepairing) to any of the unoccu-

pied sites. In this case, however, there is an additional possible event because

the first site is occupied, namely, the forward motion of RNA polymerase, as

depicted by the arrow in the figure. Note, in particular, that after this motion

the new first site in the window may again be occupied (as shown), leading to

the possibility of another forward step as a subsequent event.

Simulation and analysis of the look-ahead model

A stochastic approach

One approach in studying the proposed model is to use stochastic computa-

tional methods. We model the movement of RNA polymerase along DNA

using the Gillespie algorithm (16,17). For every possible transition, a suitable

rate constant is assigned: for each unoccupied site within the window of

activity, there are four binding rate constants, one for each of the ribonucle-

oside triphosphates that can possibly occupy that site. Note that if a site is

occupied within the window of activity, then there is a rate constant for
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the ribonucleoside triphosphates on that site to dissociate, and if the first site

within the look-ahead window is occupied, then there is a rate constant for

the RNA polymerase to translocate forward one basepair along the DNA,

incorporating the rNTP at the first window site into the nascent RNA chain

while so doing.

The Gillespie algorithm jumps from event to event. Let K¼ (k1þ.þ km)

be the sum of the individual reaction rates of those reactions that are possible

given the current state, where each of the kn values is selected from one of the

(kon)ij, (koff)ij, and, (kf)ij (if appropriate). Note that the number of possible reac-

tions at any given time is given by m ¼ 4u þ (w � u) þ b, where w is the

window size, u is the number of unoccupied sites, and b ¼ 1 if the first site

is occupied and b ¼ 0 otherwise. At each step, choose the time T to the

next event from the probability density function

K e�Kt;

and then, independently of the above, choose which event occurred so that

event j is chosen with probability,

kj

K
:

A master-equation formulation

Another approach to studying the look-ahead model is to formulate and solve

the master equation that describes the time evolution of the probabilities of the

different possible states of the model. Although the master equation describes

an underlying stochastic process, the evolution of probabilities that it

describes is deterministic, since these probabilities refer to a large ensemble

FIGURE 1 Schematic of the look-ahead model. Enclosed within the box

is the window of activity. The top row of letters represents the DNA template

strand, which is the strand complementary to the RNA molecule that is being

synthesized. The nontemplate (coding) strand of DNA is not shown. The

lower row, to the left of the window of activity, represents the nascent

RNA strand. Within the window of activity, if a position is empty, a ribonu-

cleoside triphosphate (rNTP) can bind reversibly at that position; and

conversely if a position within the window of activity is occupied, then

the rNTP at that position can dissociate, leaving that site of the window

empty again. In its general form, the look-ahead model allows for incorrect

(i.e., non-Watson-Crick) basepairing within the window of activity (for

example, the G at the fourth position of the window), and also for the incor-

poration of incorrect bases into the nascent RNA chain (not shown here).

The first position of the window of activity, known as the active center, is

special and is indicated by a vertical mark in the figure. If that site is occu-

pied, the rNTP that is located there can be covalently and irreversibly linked

to the nascent RNA chain. When this happens, the whole RNA polymerase

molecule moves one basepair forward along the DNA (see Fig. 2).
of similar systems. Thus, the master-equation solution is noise-free, even

though the underlying dynamics of the look-ahead model are stochastic.

The same parameters that were used above when introducing the look-ahead

model also appear in the master-equation formulation. We simplify the

problem, however, by considering only correct Watson-Crick basepairing.

Another simplification made here is that the DNA sequence is generated by

a random process in which the choice of base at each location is made inde-

pendently for the different locations on the DNA. Thus, we assume that the

DNA sequence is fully characterized by the four base frequencies, whose

sum must be one.

A master equation is a first-order differential equation describing the time-

evolution of the probability of a system to occupy each one of a discrete set

of states,

dPðlÞ
dt
¼
X
k:ksl

ðPðkÞRðk; lÞ � PðlÞRðl; kÞÞ;

where P(k), which is a function of time although we do not write that explic-

itly, is the probability that the system is in the state k at any particular time,

and where R(k, l), which in our case will be independent of time, is the prob-

ability per unit time that the system in state k will make a transition to state l.
Once the master equation has been formulated, we study its steady state by

setting each of the time derivatives dP(l)/dt equal to zero, along with an addi-

tional constraint that the probabilities of all states add up to one.

The formulation of the master equation for the look-ahead model proceeds

as follows.

FIGURE 2 Forward motion of RNA polymerase in the look-ahead model.

If the first site (active center, vertical mark in the figure) of the window of

activity is occupied, the rNTP that is located there can be covalently and

irreversibly linked to the nascent RNA chain. When this happens, the

RNA polymerase simultaneously moves one basepair forward along the

DNA. Thus, the whole window of activity moves one step to the right, as

shown. In the example shown here, not only the first site but also the second

site is occupied before the move. The result is that after the move the active

center is again occupied, so another forward move can happen without wait-

ing for the active center to fill. Thus, two (or more, depending on how many

adjacent sites are filled starting from the active center) forward moves are

likely to happen in rapid succession (but not simultaneously, since each is

regarded as a separate step with its own exponentially distributed waiting

time). When a forward move results in an empty active center, a longer delay

is likely, since the active center has to fill before the next forward move can

occur. In its most general form, the look-ahead model allows for the incor-

poration of incorrect bases (i.e., those that are not Watson-Crick basepaired

with the corresponding bases on the DNA template strand) into the nascent

RNA chain, although the rate constant for doing so is presumably smaller

than that for correctly paired bases.

Biophysical Journal 96(8) 3015–3031
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Let w ¼ window size. Possible states of the window are�
a1 a2 . aw�1 aw

b1 b2 . bw�1 bw

�
; (1)

where ai 3 {1, 2, 3, 4} and bi 3 {0, 1}.

Here ai indicates which DNA base on the template strand is located at site

i within the window, and bi indicates whether a complementary RNA base is

present (bi ¼ 1) or absent (bi ¼ 0).

Possible reactions and corresponding rate constants are described below.

For reversible binding events, we have the set of reactions�
a
b

�
/
ðbi ¼ 0ÞkonðaiÞ

�
a

b þ di

�
; (2)

where i ¼ 1,.,w and kon(ai) is the probability per unit time of binding an

rNTP to site i of the window of activity when base ai is present at the cor-

responding site on the DNA template strand, given that site i is currently

empty, i.e., that it does not currently have an rNTP bound. The notation

(bi ¼ 0) is a Boolean expression that evaluates to 1 when it is true and

0 when it is false, and similarly for other such expressions that appear below.

Recall that the values of bi are 1 or 0, depending on whether site i is occupied

by an rNTP or not. The factor (bi ¼ 0) in the probability per unit time for

filling site i therefore makes that probability per unit time equal to zero if

site i is already filled. The notation di represents a vector of length w with

1 in the ith position and all other elements equal to zero, so that

di
j ¼

1 ; if i ¼ j
0 ; otherwise

:

�
(3)

Thus, if b denotes a state in which site i is empty, b þ di denotes a state in

which all sites other than i are the same as in state b, but site i is filled.

For unbinding events, we have�
a
b

�
/

ðbi ¼ 1Þkoff ðaiÞ
�

a
b� di

�
; (4)

where koff(ai) is the probability per unit time of the unbinding of an rNTP from

site i of the window of activity, given that the base ai is present at the corres-

ponding site on the DNA template strand, and also that there is currently an

rNTP (reversibly) bound at site i. The latter condition is enforced by the

Boolean factor (bi ¼ 1) in the unbinding rate.

If the first site of the window of activity is occupied, then we must also

allow for the incorporation reaction in which the RNA base located in position

1 of the window is covalently incorporated into the nascent RNA chain; the

window then shifts forward by one basepair along the DNA. Recall that, in

our model formulation, covalent linkage and forward motion are simulta-

neous.

When the window steps forward (to the right in our notation), all the ai

and bi values shift one step to the left relative to the window. In this shift,

the values that were originally stored as a1 and b1 are discarded, and we

have to decide what values to put in aw and bw. Immediately after the shift
clear that aw should be set equal to the value that represents the base on the

DNA template strand that has just been drawn into the window of activity.

Recall the assumption, stated above, which we make in this section, that the

DNA sequence is random, with bases drawn independently from specified

base frequencies for the DNA template strand. Let the probability of

choosing base j for any particular position be a(j), where j ¼ 1, 2, 3, 4,

a(j) > 0, and
P4

j¼1 aðjÞ ¼ 1. Then, immediately after the shift, we may

set aw ¼ j with probability a(j).

It is now clear that the possible reactions and corresponding probabilities

per unit time associated with incorporation of a base into the nascent RNA

chain, together with the associated forward movement of the RNA poly-

merase molecule, are�
a
b

�
/

ðbi ¼ 1Þkf aða0wÞ� a2 . aw a
0
w

b2 . bw 0

�
; (5)

where a0w ¼ 1, 2, 3, 4.

For a given starting state (a, b), there are, at most, w possible binding reac-

tions (Eq. 2 with i ¼ 1, 2, ., w); at most, w possible unbinding reactions

(Eq. 4 with i ¼ 1, 2, ., w); and at most, four possible incorporation/

forward-stepping reactions (Eq. 5 with a0w ¼ 1, 2, 3, 4). In all three cases,

only some of these possible reactions have nonzero rates, as indicated by

the Boolean factors (bi ¼ 0), (bi ¼ 1), and (b1 ¼ 1) in their rate constants

(probabilities per unit time).

These reactions were written in terms of the state of origin. We also need

to express them in terms of the destination state. In that case, the same reac-

tions as above will appear but they, and their rates, will be expressed slightly

differently. For reversible binding events, we have�
a

b� di

�
/

ðbi ¼ 1ÞkonðaiÞ
�

a
b

�
: (6)

Note that the rate constant now has the factor (bi ¼ 1), instead of (bi ¼ 0).

The reason is that b now refers to the destination state. For unbinding events,

we have �
a

b þ di

�
/

ðbi ¼ 0Þkoff ðaiÞ
�

a
b

�
: (7)

Finally, we have for the forward step of the RNA polymerase molecule,�
a
0
1 a1 . aw�2 aw�1

1 b1 . bw�2 bw�1

�

� /
ðbw ¼ 0Þkf aðawÞ

�
a1 a2 . aw�1 aw

b1 b2 . bw�1 bw

�
: (8)

Note that the condition (b1 ¼ 1) is no longer needed here, since that require-

ment is built into the origin state. It is replaced by (bw ¼ 0), since the

destination state cannot have anything bound to the last site in the window

immediately after the forward move of the RNA polymerase.

The master equation may now be written as
(forward movement of the RNA polymerase) it is clear that we should set bw

¼ 0, since there has not been time for an rNTP to bind to the newly created

last site that has just been introduced into the window of activity. It is also

There is one such equation for each of the 8w choices of
�

a
b

�
. The steady-

state equations are of course found by setting d
dtP
�

a
b

�
¼ 0 and imposing the

normalization

d

dt
P

�
a

b

�
¼
Xw

i¼ 1

ðbi ¼ 1ÞkonðaiÞP
�

a

b� di

�
�
Xw

i¼ 1

ðbi ¼ 0ÞkonðaiÞP
�

a

b

�
þ
Xw

i¼ 1

ðbi ¼ 0ÞkoffðaiÞP
�

a

b þ di

�

�
Xw

i¼ 1

ðbi ¼ 1ÞkoffðaiÞP
�

a

b

�
þ ðbw ¼ 0ÞkfaðawÞ

X4

a
0
1
¼ 1

P

 
a
0
1; a1;.; aw�1

1; b1;.; bw�1

!
� ðb1 ¼ 1ÞkfP

�
a

b

�
:

Biophysical Journal 96(8) 3015–3031
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X
�

a

b

�P

�
a
b

�
¼ 1: (9)

Once the steady-state equations have been solved, the mean forward velocity

of the RNA polymerase in basepairs per second may be evaluated as

v ¼
X
�

a

b

� ðb1 ¼ 1ÞkfP

�
a
b

�
: (10)

Note that v is just the product of kf and the probability that b1 ¼ 1.

The master-equation and stochastic approaches
are consistent

To verify that the stochastic simulation and the steady-state master-equation

solution give the same mean velocity results, we consider a sequence of

template DNA generated by the following simple stochastic process: each

base is chosen independently with equal probabilities for the four possible

outcomes. Note that the particular sequence chosen is only used in the

stochastic simulation; the master equation only involves the base frequen-

cies. We found that the only difference between the two results was the

statistical error of the stochastic simulation, which can be reduced by

increasing the length of the run. Such results are shown in Table 1.

If an actual DNA sequence is used in the stochastic simulation, then the

best we can do to match it in the master-equation formulation is to input

the four base frequencies from that DNA sequence. In this situation, we

no longer expect perfect agreement in the computed mean velocities, even

in the limit of infinitely long stochastic simulations, since the stochastic

simulation result may depend on correlations in the given base sequence

to which the master-equation formulation is blind. Our simulations found

a small but persistent discrepancy between the mean velocity computed

by the stochastic simulation when an actual DNA sequence was used and

that predicted by the steady-state master-equation solution. Because the

discrepancy is small, in practice, we can justify using the master-equation

formulation for real DNA sequences by reflecting its base frequencies.

PARAMETER ESTIMATION

Interpretation of experimental data

We first discuss the type of experimental data that are shown

in Fig. 2 of Bai et al. (7). In the experiments reported there,

a particular rNTP concentration was varied (with the other

three rNTP concentrations held constant at 1000 mM) to

determine the influence of the varied rNTP concentration
on the mean velocity of the RNA polymerase molecule.

This was done for all four rNTP concentrations separately.

In our interpretation of these experimental data, we

assume that the reversible binding of an rNTP to its comple-

mentary base on the template DNA strand is governed by the

law of mass action. Thus,

ðkonÞi¼
�

k
0

on

�
i

�
½rNTP�i
½rNTP�0

�
; (11)

where i ¼ 1, 2, 3, 4 specifies a particular ribonucleoside

triphosphate and where [rNTP]i is the ambient concentration

of that rNTP. In the above equation, [rNTP]0 ¼ 1 mM ¼
1000 mM is an arbitrarily chosen reference concentration

that is introduced so that the units of (kon)i and (k0on)i are

the same, namely s�1. The particular value chosen for

[rNTP]0 has no significance at all.

It is important to note that the above mass action equation

only holds for direct simple binding with no intervening

binding events, such as the rNTP binding to another site in

the RNA polymerase before binding to its complementary

base on the DNA template strand. Note that (k0on)i is, by

the mass action hypothesis made above, independent of

concentration and is the actual parameter that we wish to

find by comparing the model’s results with the experimental

data. No matter how many different combinations of rNTP

concentrations were used in the experiment, there are only

four distinct values of (k0on)i. This type of experimental

data is useful because each additional combination of

rNTP concentrations enriches the data set without increasing

the number of model parameters, provided that the mass

action assumption is made as described above.

Model calibration to noise-free synthetic data

Before considering actual experimental data (for which the

true parameters are unknown), we test our approach to

parameter estimation by generating synthetic data for an

arbitrarily chosen set of parameter values, to see whether

those parameters can be recovered by fitting the model to

the synthetic data. The synthetic data that we generate will

be of the type discussed above, i.e., they will describe the

mean velocity of transcription as a function of the different

rNTP concentrations.
TABLE 1 Comparison of elongation velocities computed by stochastic Gillespie simulation with elongation velocities obtained by

solving the master equation of the look-ahead model

Length of DNA strand w¼1 w¼2 w¼3 w¼4 w¼5

100 kbp 145.1926 214.1003 273.4290 323.7073 371.2490

200 kbp 144.8008 214.8499 271.0661 323.8148 369.3665

600 kbp 145.2393 214.9488 271.4428 323.2738 370.6913

1 Mbp 145.1523 214.7566 271.6649 322.9719 369.4076

2 Mbp 145.0068 214.6831 272.1620 322.9694 369.7292

Master equation 145.0777 214.7221 272.0295 322.9051 369.5776

Off-rates have been set equal to zero for this comparison. (kon)ATP ¼ 100.0, (kon)CTP ¼ 150.0, (kon)GTP ¼ 200.0, (kon)UTP ¼ 250.0, and (kf) ¼ 2100.0. These

constants were arbitrarily chosen; any choice of constants will result in the same conclusion.
Biophysical Journal 96(8) 3015–3031
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There are two fundamentally different ways that such

synthetic data can be generated. One is to use the master-

equation formulation, which generates noise-free synthetic

data, and the other is to use stochastic simulation, which

generates noisy data with a noise level that can be adjusted

(as in an actual experiment) by varying the amount of data

that is collected. These two kinds of synthetic data will be

used in this subsection and in the next, respectively. In

both cases, though, regardless of which method was used

to generate the synthetic data, we use the master-equation

formulation in the parameter fitting process itself.

To make the parameter fitting procedure more robust by

reducing the dimension of the parameter space, we make

certain a priori assumptions that reduce the number of

unknown parameters. In this article, we only do parameter

fitting under the following simplifying assumptions: First,

only correct Watson-Crick basepairing is considered. Next,

we assume that all of the off-rates are negligible, and that

the forward rate is independent of which nucleotide is being

incorporated into the nascent RNA chain. Finally, we treat

the base frequencies of the DNA template strand as known

parameters, since these can be independently measured in

any particular case. With these assumptions, we have six

unknown parameters to consider: the window size w, and

the five rate constants (k0on)A, (k0on)C, (k0on)G, (k0on)U, and

kf. Of course the window size is restricted to positive integer

values (and in practice we only consider the values 1, 2, 3, or

4), and the rate constants are not allowed to be negative.

There are no other constraints.

The objective function that we seek to minimize during

parameter estimation is simply the squares’ sum of the

differences of the computed mean velocities from the exper-

imental mean velocities (which are synthetic data in this

section and the next, but which then will be taken as the

actual experimental data of (7)). The way that we deal

with the discrete parameter w is simply exhaustive search,

i.e., we do a separate minimization of the objective function

for each value of w and see which gives the smallest value of

the objective function (which will be called the residual in

the following). For each fixed w, we use the nonlinear

least-squares package of MATLAB (The MathWorks, Na-

tick, MA) to do the minimization of the objective function

with respect to the five rate constants listed above. To
Biophysical Journal 96(8) 3015–3031
construct an initial guess we choose each of these rate

constants randomly and independently from an exponential

distribution.

Noise-free synthetic data were generated for window sizes

1, 2, 3, and 4, with rate constants chosen arbitrarily, and then

the true parameters were forgotten, so to speak, and parameter

fitting was done as described above to see whether the true

parameters, including the window size, could be recovered.

The results, shown in Table 2, indicate not only that a reason-

able residual value can be returned, but also that the original

set of parameters can indeed be reliably recovered.

Model calibration to stochastic synthetic data

In the previous subsection, we studied parameter estimation

of a noise-free model to noise-free synthetic data. Here, we

study parameter estimation of the same noise-free model in

the context of stochastic synthetic data. The reason for doing

this, of course, is that stochastic synthetic data are more

representative of the kind of data that would actually be

available from a real experiment. Our approach to parameter

estimation here is exactly the same as in the previous subsec-

tion; the only difference is that stochastic simulations are

used to generate the synthetic data. This introduces an addi-

tional consideration, however, which is the amount of data

that is collected in any particular simulated experiment. As

in real experiments, we regard each synthetic experiment

as being comprised of some number of runs. Each run

involves the synthesis of an RNA chain containing ~1800

bases. Recall that the output of interest is the mean velocity

of transcription, which is obtained by averaging over all of

the runs. Clearly, this mean velocity will be increasingly

noise-free as the number of runs increases, and this should

facilitate recovery of the true parameters. What we seek to

determine, then, is the number of runs that will be needed

for successful parameter recovery.

The results of the parameter estimation of the look-ahead

model to stochastic synthetic data for different numbers of

runs and for window size w ¼ 3 can be found in Table 3.

We observe that as the number of runs increases, the residual

values get smaller, for the correct window size case. The

residuals for the wrong window sizes are much larger than

the residuals for the correct window size (see Table 4).
TABLE 2 Parameter estimation to non-noisy synthetic data

Window size (kon)0ATP (kon)0CTP (kon)0GTP (kon)0UTP (kf) Residual value

1 34.8820 447.2032 19.7825 13.3369 75987.4229 5.1393

2 25.0187 250.1942 15.0130 10.0144 2026.0413 2.8637e-04

2 25.0 250.0 15.0 10.0 2500.0 0.0000

3 21.3233 197.3928 13.1974 8.9647 126.9686 0.3382

4 18.7992 167.8213 11.8758 8.1697 73.9755 0.9203

Parameter values obtained after fitting master-equation solutions to synthetic data (also generated by solving the master equation) are presented in this table.

The version of the look-ahead model used here involved six parameters that are regarded as unknown during the fitting procedure: the window size, w; the four

k0on rates; and the kf rate. In the case shown here, the actual window size is w ¼ 2, and the rate constants used to generate the synthetic data are shown in the

highlighted line of the table. Best-fit rate constants are shown for hypothesized window sizes w ¼ 1, 2, 3, 4.
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TABLE 3 Parameter estimation to stochastic synthetic data

Number of runs (kon)0ATP (kon)0CTP (kon)0GTP (kon)0UTP (kf) Residual value

1 144.1399 292.3984 18.0066 258.0734 25.5338 2.4289

2 136.1948 276.5599 18.3828 19204.9089 25.1818 0.5733

5 150.2007 298.6737 18.6721 10505.9542 25.0187 0.6421

10 146.1004 281.6812 18.5434 538.3728 25.2058 0.2443

20 147.8141 285.7769 18.2752 628.0292 25.3852 0.0793

30 154.1701 291.5470 18.4290 28782.2366 25.2366 0.0514

100 156.3131 288.5127 18.5213 1122.4812 25.1661 0.0291

Actual 150.0 300.0 20.0 2000.0 25.0 0.0000

This table summarizes the estimated parameter values obtained by best fit to stochastic synthetic data when the assumed window size used in the parameter

fitting matches the window size that was used to generate the synthetic data (in this case, w ¼ 3). The number of runs indicates how many times an elongation

experiment was performed to produce the synthetic data used in the parameter estimation.
The story is essentially the same (data not shown) when the

true window size is different from 3.

The conclusion of these studies with stochastic synthetic

data is that 30 runs (at each set of rNTP concentrations) suffice

for the reliable recovery of the true parameters. This is

a feasible number of runs for an actual experiment (see (14)).

Parameter estimation to experimental data

In the previous subsections, we calibrated our model to

synthetic data; we concluded that the methodology outlined

above for parameter estimation reasonably recovers the orig-

inal (i.e., true) parameters. This was demonstrated both for

noise-free synthetic data and also for noisy synthetic data

generated by stochastic simulation. In the latter case, it was

necessary to control the noise by doing sufficiently many

runs (30 runs) to obtain each data point.

We now estimate parameters that give the best fit of the

look-ahead model to the actual experimental data found in

Bai et al. (7). As in the synthetic data case, the fit is based

on mean velocity as a function of concentrations of the

various rNTPs, and the master-equation formulation of

the model is used in the parameter-estimation procedure. The

results are summarized in Table 5. The magnitudes of the

residuals indicate that the best window sizes are 1 and 2.

These two best fits are visualized in Figs. 3 and 4.

TABLE 4 Residual values from parameter estimation to

stochastic synthetic data

Number of runs 1-Bp window 2-Bp window 3-Bp window

1 3.6678 2.6918 2.4289

2 2.1468 0.7738 0.5733

5 2.1024 0.8715 0.6421

10 1.5291 0.3480 0.2443

20 1.8996 0.3734 0.0793

30 1.8153 0.3340 0.0514

100 1.7086 0.3042 0.0292

In this table, the window size w ¼ 3 is used to generate the stochastic

synthetic data, with varying numbers of runs. Parameter fitting is done for

hypothesized window sizes w ¼ 1, 2, 3 (of which only the last is correct).

As the number of runs used to generate the stochastic synthetic data

increases, the residuals of the parameter fit gets very small when the correct

window size (w ¼ 3) is used, but levels off at considerably larger values

when an incorrect window size (w ¼ 1, 2) is used in the parameter fitting.
As an additional check on the model, the estimated param-

eter values are used to generate velocity histograms, and

these are compared to the corresponding velocity histograms

that are found experimentally (see Fig. 5). One might hope

that the velocity histograms would help distinguish between

the window sizes 1 and 2, but this is not the case. Indeed the

predicted velocity histograms for those two cases are virtu-

ally indistinguishable from each other, and have approxi-

mately half the width of the corresponding experimental

histogram. Although this discrepancy may point to defi-

ciencies in the look-ahead model (and in particular to the

special case of the look-ahead model that was used in doing

the parameter fitting), it is also possible that there are sources

of noise in the experimental procedure and data collection

that are not taken into account in our simulations.

Waiting time distribution

A more detailed approach to study the statistics of the motion

of RNA polymerase is to analyze the distribution of the wait-

ing times between successive base incorporations into the

nascent RNA. In a recent publication (15), an experiment

is described to measure this waiting time distribution under

very low rNTP concentrations, concentrations which,

besides being low, were chosen to be equally rate-limiting.

(Note that the phrase ‘‘equally rate-limiting’’ is not intended

to imply that the binding of rNTP is the rate-limiting step in

the forward progress of RNA polymerase during transcrip-

tion elongation. Instead, it refers to a condition in which

the ambient concentrations of the different rNTP have been

adjusted so that the mean time required for each DNA base

to be transcribed is the same for all four of the DNA bases.)

We now compare the results of these published experiments

to the predictions of a special case of the look-ahead model:

1), only correct Watson-Crick basepairing is allowed; 2), all

four binding rates kon are equal, and all of the unbinding rates

koff are zero; and 3), the forward (incorporation) rate, kf,

which is relevant only when the first site of the look-ahead

window is occupied, is the same, regardless of which base

is being incorporated.

Note in particular the assumption that all four of the binding

rates kon are equal. Within the framework of the look-ahead
Biophysical Journal 96(8) 3015–3031
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TABLE 5 Parameter estimation results to experimental data

Window size (kon)0ATP (kon)0CTP (kon)0GTP (kon)0UTP (kf) Residual value

1 74.2694 480.7675 87.0047 53.6504 26.7532 6.303

2 56.6867 308.2255 64.7741 42.6405 21.6249 6.420

3 46.2350 239.3362 52.2671 35.2516 20.3795 7.764

4 39.4171 199.2069 44.2863 30.1923 19.8513 9.190

5 34.6143 172.2444 38.7318 26.5381 19.5634 10.507

Parameter values obtained fitting simulation results to actual experimental data are shown in this table.
model with negligible off-rates and a single forward rate, this

is the parameter choice that realizes the condition used in the

experiment that all four of the rNTP concentrations are

equally rate-limiting. This is an important simplification,

since it reduces the number of parameters that need to be

determined, and even more so since it, together with the

assumption that the forward (incorporation) rate is indepen-

dent of which base is being incorporated, makes the statistics

of the motion of RNA polymerase completely independent of

the DNA sequence, thus simplifying the analysis of the

model.

Under these simplifying assumptions, it is straightforward

to show that the waiting time distribution of the look-ahead

model is always of the form
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rTðtÞ ¼
1� q

1 þ q
kfe
�kf t þ 2q

1 þ q

kfkon

kf � kon

�
e�kont � e�kf t

�
;

(12)

where rT(t) is the probability density for the time T of the

next forward move after the forward move that occurred at

t¼ 0, and where q is a parameter that depends on the window

size, w, in a manner that is detailed below for the particular

cases w ¼ 1, 2, 3, 4.

The explanation of this general formula for the waiting time

distribution is very simple. Immediately after a forward move,

the first site of the window of activity may be occupied or unoc-

cupied. If it is occupied, then the time to wait until the next

forward move is simply an exponentially distributed random
FIGURE 3 Fit of the look-ahead model with window size w ¼ 1 to experimental data. The red error bars connected by dashed lines show the experimental

velocity of RNA polymerase (in basepairs per second) as a function of rNTP concentrations, as reported in Bai et al. (7). In each of the four plots, one of the

rNTP concentrations is varied while the others are held constant at 1000 mM. The form of the look-ahead model that is fit to these data allows only correct

Watson-Crick basepairing, sets all koff rates equal to zero, and assumes that kf is independent of which base is being incorporated into the nascent RNA chain.

Blue stars show the mean velocities of this version of the look-ahead model computed by solving the steady-state master equation with base frequencies of the

DNA template strand chosen to match those of the template strand of the DNA tether used in the experiments, with window size w ¼ 1, and with the five

unknown rate constants kf and (k0on)i of the model chosen to give best fit to the experimental data shown in the figure. The computed results fall within or

very near the experimental error bars in all cases.
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FIGURE 4 Fit of the look-ahead model with window size w ¼ 2 to experimental data (7). See Fig. 3 legend. The only change here in comparison to that

figure is that the window size w ¼ 2 was used, and best-fit rate constants for that window size were found and used to obtain the computed velocities (blue

stars). Even though the best-fit rate constants are different here from the ones found with w ¼ 1, the quality of the fit is similar.
variable with mean 1/kf, as in the first term on the right-hand

side of Eq. 12. In the opposite case, in which the first site is

unoccupied immediately after a forward move, then the next

forward move cannot occur until that site fills, an event that

has probability per unit time kon. In these circumstances, the

waiting time until the next forward is the sum of two indepen-

dent exponentially distributed random variables, the first with

mean 1/kon and the second with mean 1/kf. The probability

density for the sum has the form of a difference of exponentials,

as in the second term on the right-hand side of Eq. 12. The

factor (1� q)/(1þ q) is the probability that the first site is occu-

pied immediately after a forward move, and the factor 2q/(1þ
q) is the probability that the first site is unoccupied immediately

after a forward move. Note that these two factors add up to one.

Different window sizes have different waiting time distribu-

tions only because these probabilities depend upon the window

size. In particular, for window size 1 it is always the case that the

first site is empty immediately after a forward move, so q ¼ 1

when w¼ 1. Clearly, with kon and kf held constant, increasing

the window size can only decrease the probability that the first

site is empty immediately after a forward move, thus we expect

that q will decrease as the window size increases.

The problem of determining the value of q as a function of

the ratio g ¼ kon/kf for any particular window size is a chal-

lenge for which the difficulty seems to grow rapidly with the

window size. We have managed to solve this problem for

w ¼ 1, 2, 3, 4, and have verified the results by computer

simulation. The formulae we have found are
qw¼ 1 ¼ 1

qw¼ 2 ¼
1

2

�
1
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1

2
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where g ¼ kon/kf, and where

K ¼
 

1 þ g

ð1 þ 2gÞ2

!�
13 þ 36g

21 þ 36g

�
: (13)

We have fit the above formula for the waiting time distribu-

tion to the experimental data reported in Abbodanzieri et al.

(15). For each window size separately, we have found the

parameters kon and kf that give the best fit of the model to

the data, in a least-squares sense. The data are reported in

Abbodanzieri et al. (15) on a semilogarithmic plot; that is,

the logarithm of the probability density is plotted against

the waiting time, and we have done the fit with the data in

that format as well (see Fig. 6). Since the logarithmic scale

emphasizes rare events, however, we have also replotted

(but not refit) both the data and the best-fit theoretical curves

on an ordinary linear plot for comparison (see Fig. 7).

Biophysical Journal 96(8) 3015–3031
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The waiting time distribution clearly distinguishes the

different window sizes. The most important result here is

that the window size w ¼ 1, in which there is no look-ahead

at all, is clearly ruled out by the data. The theoretical proba-

bility density of the waiting time in that case has the form

given by the second term only on the right-hand side of

Eq. 12. This term, which is a difference of two exponentials,

describes a curve that rises from zero to a peak value before

decaying, unlike the data, which are monotone decreasing.

The fact that the shortest waiting times have the highest

probability densities in the data is strong qualitative evidence

in favor of the look-ahead concept, since this observation

implies that the first site of the window of activity is quite

likely to be occupied immediately after a forward move,

and this requires the kind of parallel processing that is

implied by the look-ahead model.

The fit of the model prediction to the data is particularly

good for the window size w ¼ 4, the largest window size

for which we currently have a theoretical result available

for comparison. Although the fit for this case on the logarith-

FIGURE 5 Comparison of computed and experimental velocity histo-

grams. Since velocity histograms were not used in the parameter fitting,

they provide an independent check on the validity of the model. Computed

histograms obtained by stochastic simulation with the best-fit parameters

found above for window sizes w ¼ 1 and w ¼ 2 (blue open circles and

blue dashed line, respectively) are compared to the experimental velocity

histogram (green solid line) from Bai et al. (7). The two window sizes

(with best-fit rate constants determined separately in each case) give nearly

identical results, which are narrower than the experimental histogram by

roughly a factor of 2. This suggests that there is an additional source of vari-

ability not taken into account by the particular form of the look-ahead model

used in fitting the mean velocity data. (Recall in particular that off-rates were

neglected, that incorrect Watson-Crick basepairing was not allowed, and that

the forward rate was assumed independent of which base was being incor-

porated into the nascent RNA chain.) This additional source of noise may

be attributed to the instrumental noise in single molecule experiments;

specifically, the unidirectional drift and the heterogeneity in the RNA poly-

merase enzymes may cause a large variance in the experimental population

elongation rate (29). This noise may explain why the simulation velocities

have smaller variance in the average velocity in comparison to the experi-

mental measurements.
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mic scale (Fig. 6) still shows some error for the longer wait-

ing times (which occur only rarely in the data), that error

becomes invisible when the data and the theoretical results

FIGURE 6 Fit of the theoretical predictions (Eq. 13) of the look-ahead

model to the experimental distributions of the waiting times between

forward moves of the RNA polymerase molecule. Four window sizes

(w ¼ 1, 2, 3, 4) are considered, and each of these cases (solid lines) has

been separately best-fit to the experimental data (open circles). Horizontal

axis is the waiting time between forward moves of the RNA polymerase

molecule, in seconds, and the vertical axis is the base 10 logarithm of the

probability density for the occurrence of each waiting time. The experi-

mental data are replotted from Fig. S3(c) of Abbodanzieri et al. (15). Note

the poor character of the fit for window size 1 and the dramatic improvement

with increasing window size up to window size 4, for which the fit is remark-

ably good; see also linear plot of the same data in Fig. 7.

FIGURE 7 The experimental data and theoretical curves of Fig. 6 are here

replotted with a linear scale for the vertical (probability density) axis. Here as

on the logarithmic plot, the fit for window size 1 is poor, and the fit for

window size 4 is excellent. The logarithmic plot visually emphasized the

infrequently occurring long waiting times, which are here relatively sup-

pressed, with the consequence that the fit for window size 4 looks essentially

perfect, even though the fitting was done to the logarithmic form of the data.
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are replotted on a linear scale, where the visual impression is

of an essentially perfect fit (Fig. 7).

The conclusion that the non-lookahead case w ¼ 1 has

a waiting time distribution that rises from zero to a peak

before decaying (contrary to the monotone decay of the

experimental data) is very general and not dependent on

specific modeling assumptions. Any transcription model

with a single site for binding of rNTP has the feature that

at least two steps are needed per forward step of the

enzyme, namely the binding of rNTP and its covalent

linkage to the nascent RNA chain. Any such model will

therefore have a nonmonotone waiting time distribution

qualitatively like that derived above for the case w ¼ 1.

The only escape from this conclusion is that the rising phase

of the waiting time distribution may be so fast that it is not

resolved by the experimental measurement. This would be

the case, for example, if the binding/unbinding of rNTP

were a process of rapid equilibrium. We consider this possi-

bility below.

Rapid equilibrium limit

A potential criticism of the parameter fitting procedures

considered in this article is that all of the unbinding rates

have arbitrarily been set equal to zero. In this section, there-

fore, we briefly discuss the opposite limit, in which the

reversible binding/unbinding within the window of activity

is regarded as a rapid equilibrium process. In this limit, the

size of the window of activity makes no difference, so the

look-ahead feature of our model becomes irrelevant, and

we might as well consider only the case w ¼ 1. This obvi-

ously implies that it is futile to try to determine the window

size by parameter fitting if reversible binding is a rapid equi-

librium process.

Let us consider the form of the waiting time distribution

under the rapid equilibrium assumption with the rNTP

concentrations chosen to be equally rate-limiting. What

‘‘equally rate-limiting’’ means in the context of rapid equi-

librium is that the product kfpoccupied is the same for all

four of the rNTP, where poccupied is the probability that

a site which can bind that particular rNTP is occupied.

Note that kf and poccupied may separately differ for the

different rNTPs, provided that their product is the same for

all four rNTPs. This can always be achieved by adjusting

the ambient rNTP concentrations, since each of the poccupied

can be adjusted within the interval (0, 1) by varying the cor-

responding rNTP concentration.

Under the conditions described in the previous paragraph,

it is easy to see that the waiting-time distribution is a simple

exponential of the form k exp(� kt), where k ¼ kfpoccupied

This would give a straight line on a semilogarithmic plot

and is inconsistent with the experimental data reported in

Abbodanzieri et al. (15).

One can always argue, however, that the equally-rate-

limiting condition as described above may not have been
perfectly achieved in the experiment. In that case, the waiting

time distribution under the assumption of rapid equilibrium

would be mixture of several exponentials, and it might

indeed be possible to fit the experimental data with such

a model. Further experimental work may be needed to clarify

this issue. If the rapid equilibrium assumption is correct, then

it should be possible to find a combination of ambient rNTP

concentrations that fulfill the above conditions and make the

waiting time distribution into a single exponential. This

would disprove (or at least make irrelevant) the look-ahead

model, since rapid equilibrium makes the first site of the

look-ahead window be the only one that matters.

A further prediction of the rapid-equilibrium assumption,

in common with all models that have w ¼ 1, is that the wait-

ing times for the individual forward moves of the RNA poly-

merase model should be statistically independent of each

other. This will be discussed more fully below; see Proposed

Experimental Test to Rule Out a Large Class of Models in

which Look-Ahead Does Not Occur.

Proposed experiments to determine
the window size

The foregoing results leave some ambiguity about the size of

the look-ahead window. Experimental data on mean velocity

as a function of concentration (7) are best fit by the look-

ahead model with w ¼ 1 or w ¼ 2. Velocity histograms

obtained in those same experiments do not help to determine

the window size (and indeed have widths that are approxi-

mately twice that predicted by the model, regardless of the

window size), but experimental data on waiting time distri-

butions obtained with low, equally rate-limiting ambient

rNTP concentrations (15) are well fit by the look-ahead

model with w ¼ 4. To help resolve this ambiguity, we

now propose two additional experiments that may help to

determine the window size.

The experiments we propose are both of the type in which

ambient rNTP concentrations are varied and the mean

velocity of transcription is measured. In the first proposed

experiment, we again exploit the notion of equally rate-

limiting concentrations (15) to obtain what we call universal

curves. There is one such curve for each window size, with

no adjustable parameters. In the second case, we propose

experiments with saturating rNTP concentrations for more

direct determination of the parameter kf, after which it should

be straightforward to determine the window size.

Throughout this section, we employ the six-parameter

version of the look-ahead model that was considered previ-

ously. Recall that the unknown parameters of this version of

the model are the window size, w, the forward rate, kf, and

the four concentration-independent on-rates, (k0on)i, from

which the on-rates themselves, (kon)i, can be determined

once the rNTP concentrations are known. It is the ability to

manipulate the on-rates by varying the concentrations that

motivates the experimental protocols proposed here.
Biophysical Journal 96(8) 3015–3031
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Universal curves

This proposed method of determining the window size is

based on the observation that the look-ahead model

simplifies enormously in the special case that all four of

the rates (kon)i are equal. In that case, the DNA sequence

becomes irrelevant, and the unknown parameters are reduced

to three: w, kf, and kon. Let v be the mean velocity of the RNA

polymerase along the DNA in basepairs per second. From

dimensional considerations, it is clear that v=kf is determined

by kon/kf for any particular window size, w. It is intuitively

clear that v=kf is a monotonically increasing function of

kon/kf. This function starts at zero when its argument is

zero and asymptotically approaches one as its argument

approaches infinity. There is one such function for each

window size w. These functions involve dimensionless vari-

ables only and have no adjustable parameters. In that sense,

they are universal, and their graphs are universal curves. The

universal curves may be obtained by solving the master

equation in the appropriate special cases and then plotting

the results as v=kf versus kon/kf.

Examples of the universal curves are plotted in Fig. 8. As

w increases, the curves shift up and to the left, i.e., the velocity

is an increasing function of w when the other parameters are

held fixed. This is a reflection of the parallel-processing

feature of the look-ahead model. The RNA polymerase moves

faster when w is larger because of the opportunity to bind

more rNTP in advance of their covalent incorporation into

the growing RNA chain.

For purposes of parameter estimation, however, the most

important feature of the universal curves is that each of

them is unique. If one could make a plot of experimental

data of v=kf as a function of kon/kf, that plot would presum-

ably fall on one and only one of the universal curves. The

one with which it agreed would reveal the correct value of w.

To make use of this idea, though, we have to make all of

the on-rates equal, and also we then need to be able to vary

that common on-rate and plot the results in terms of the

dimensionless variables stated above, namely v=kf as a func-

tion of kon/kf. It is not immediately obvious how we can do

any of this, since we do not know any of the parameters of

the model a priori.

To overcome this difficulty, we make use of the parameter-

fitting procedure described above, in which the data take the

form of plots of the mean velocity of transcription as a function

of the concentrations of each of the rNTP, varied one at a time.

Even though that parameter fitting procedure is not very effec-

tive for determining the value of w, it does determine the best-

fit rate constants, kf and (k0on)i, for any hypothesized value of

w. We can therefore check whether any particular guess for w
is correct in the following way:

Step 1. Given the experimental data on the mean velocity of

transcription as a function of each of the rNTP concen-

trations, together with a hypothesized value of w, deter-

mine the best-fit rate constants kf and (k0on)i.
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Step 2. Use the fitted values of (k0on)i to determine the

rNTP concentrations that make all four of the (kon)i ¼
kon, independent of i. Since (kon)i ¼ (k0on)i[rNTP]i/

[rNTP]0, the correct choice of [rNTP]i to yield any

particular common on-rate kon is given by

½rNTP�i¼ ½rNTP�0
kon

ðk0onÞi
: (14)

Step 3. Now do an experiment with the rNTP concentra-

tions set according to the above formula, and plot

a single point with coordinates kon=kf ; v=kf . In these

ratios, the value of kf that should be used is the one

that was obtained during the parameter fitting for the

hypothesized value of w.

Step 4. Repeat this procedure for enough values of kon/kf

to get a picture of the graph of v=kf versus kon/kf.

Step 5. Plot the data points of this graph on the same axes as

the family of universal curves. If the result fits the

universal curve for the hypothesized value of w, then

that value of w is correct, or at least self-consistent.

FIGURE 8 Universal curves that give v=kf as a function of kon/kf when the

rNTP concentrations have been adjusted, so that all four of the on-rates are

equal (and then varied in fixed proportions to vary the common value of

kon). Results computed by solving the steady-state master equation for various

window sizes w ¼ 1, 2, 3, 4, 5 are shown. The mean velocity increases with

increasing window size for fixed values of the rate constants of the model

because of the look-ahead feature that rNTP molecules can be bound and

held in readiness within the window of activity in advance of their being incor-

porated into the nascent RNA chain. Note that this look-ahead effect is very

substantial, as w increases for small window sizes, but that it tends to saturate

(diminishing returns) as the window size grows, suggesting convergence to

a limiting universal curve for large window sizes. Each of the universal curves

is expressed in terms of dimensionless variables and has an absolute signifi-

cance, with no adjustable parameters. The look-ahead model used here is

restricted by the conditions that off-rates are neglected, incorrect Watson-

Crick basepairing is forbidden, and the forward rate is assumed independent

of which base is being incorporated into the nascent RNA chain.
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What is less clear, perhaps, is what will happen when the

hypothesized value of w is incorrect. In that case, the param-

eters obtained by best fit will be wrong, the concentrations

used will not actually yield equal values of kon, and the

results will not, typically, fall on any of the universal curves.

Fortunately, we can test the proposed experiment by

computer simulation using synthetic data. In this test, we

consider only window sizes w¼ 1, 2, 3 for clarity of illustra-

tion, but the method can be extended without difficulty to

larger window sizes. The results of the proposed experiment

by computer simulation can be seen in Fig. 9. The correct

window size can be inferred from the calculated curve that

most closely matches to one of the three universal curves.

RNA polymerase velocity at high rNTP
concentrations

When parameter fitting is done for a hypothesized window

size, the best-fit value of kf depends on the window size in

a systematic way. This is again because of the parallel-pro-

cessing feature of the look-ahead model as discussed above.

FIGURE 9 Example of the use of the universal curves to determine the

window size. Synthetic data like those shown in Figs. 3 and 4 were gener-

ated with the following true parameters: w ¼ 2, kf ¼ 25.0/s, (k0on)A ¼
150.0/s, (k0on)C ¼ 300.0/s, (k0on)G ¼ 20.0/s, and (k0on)U ¼ 2000.0/s. The

look-ahead model was then fit to the synthetic data with hypothesized

window sizes ~w ¼ 1; 2; 3. For each hypothesized window size, additional

synthetic data were generated using the true rate constants and with a simu-

lated experimental protocol involving rNTP concentrations adjusted in an

attempt to achieve equal on-rates. Note, however, that this attempt is only

successful to the extent that the rate constants have been correctly identified,

which is only the case when the hypothesized window size is correct. The

new synthetic data are plotted in the manner that should produce one of

the universal curves if the parameters have been correctly identified. The

plotting procedure uses the parameters known to the investigator, which

are the best-fit parameters for each hypothesized window size, not the true

parameters. Results are compared to the corresponding universal curve in

each case. The result that fits its universal curve (in this case, ~w ¼ 2) deter-

mines the true window size. Note that the synthetic data obtained with

~w ¼ 1; 3 do not match their own (or indeed any other) universal curve.
Since a larger window size produces faster motion for any

given set of rate constants, the fitting procedure necessarily

adjusts the rate constants to compensate for the window

size in an attempt to match the observed mean velocity.

The result is that the best-fit value of kf will be a decreasing

function of the hypothesized window size. This means that if

we have an independent way to measure kf, we can use that

independent measurement to determine the window size,

simply by seeing which of the hypothesized window sizes

led to the most accurate prediction of kf.

Within the framework of the look-ahead model, the most

obvious way to measure kf is to employ saturating concentra-

tions of all four rNTPs, so that the window is always fully

occupied, and the RNA polymerase simply moves forward

with probability per unit time equal to kf. Indeed, experimen-

talists seem to be not too far from this condition when they

set all of the rNTP concentrations equal to 1000 mM. From

Figs. 3 and 4, however, it is clear that this does not quite

produce the limiting velocity of forward movement, and

that higher concentrations would be needed for that purpose.

As before, we test this proposed experiment by computer

simulation. Table 6 summarizes the results. The table shows

that the velocities computed at saturating rNTP concentra-

tions do indeed match the values of kf that were obtained

by parameter fitting with the correct window size.

Proposed experimental test to rule out a large
class of models in which look-ahead does not
occur

The original formulation of the model proposed in this article

is very general. Besides the window size w, it involves 3� 4�
4 parameters (kf)ij, (kON)ij, and (kOFF)ij, where i denotes one of

the four possible DNA bases and j denotes one of the four

possible rNTPs. In particular, this general formulation allows

for the possibility of non-Watson-Crick basepairing and for

errors in transcription. One can make the model even more

general than this in the case w > 1 by allowing (kON)ij and

(kOFF)ij to depend not only on i and j but also on position

within the window of activity. Also, one can generalize

even further by including the limiting case of rapid

TABLE 6 The following table shows how the true window size

can be found once the forward rate constant kf of the look-ahead

model has been independently measured

Actual window size ðkfÞ~w¼1 ðkfÞ~w¼2 ðkfÞ~w¼3 Saturating velocity

w ¼ 1 24.9990 20.7479 19.4603 24.9990

w ¼ 2 29.7632 25.0000 23.4987 24.9999

w ¼ 3 30.8796 26.4439 25.0000 24.9999

The quantity ðkfÞ~w¼1;2;3 refer to the forward rate constants obtained by

parameter estimation, where ~w is the hypothesized window size used during

the parameter estimation process. The saturating velocity is defined as the

limiting velocity at high rNTP concentrations, which we computationally

simulated. Since the saturating velocity is equal to the true value of kf it

should match one of the ðkfÞ~w¼1;2;3 values. The specific ~w for which the

match occurs is the true window size.

Biophysical Journal 96(8) 3015–3031
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equilibrium in which (kON)ij / N and (kOFF)ij / N, but in

such a way that
ðkONÞij
ðkOFFÞij

has a finite limit.

Within the framework of this large class of models, we seek

an experimental test that can potentially rule out all of the non-

lookahead models. These are the models with w¼ 1, and also

all of the rapid equilibrium models (regardless of w). The

models with w¼ 1 have no look-ahead feature, and the rapid

equilibrium models may as well have w¼ 1, since the activity

at window sites other than the first (if any) has no effect on the

dynamics of transcription in the case of rapid equilibrium.

The experiment that we propose involves the transcription

of a random DNA sequence, more specifically one in which

the bases at the different sites along the DNA are chosen inde-

pendently according to prescribed base frequencies. The

ambient concentrations of the various rNTP should be chosen

sufficiently low that the times of the individual forward moves

of the RNA polymerase can be resolved, as in Abbodanzieri

et al. (15). There is no requirement here that these concentra-

tions should be equally rate-limiting, however.

The experiment that we have just described defines

a stationary stochastic process of which the output is the

sequence of times at which the RNA polymerase makes its

forward moves. For all of the models that we have classified

above as non-lookahead models, it is easy to see that the

stochastic process in question is a renewal process, in which

the time intervals between successive forward moves are

independent random variables. We may regard this universal

prediction of the non-lookahead case as a null hypothesis,

and use randomization tests for serial correlation such as

those discussed in Manly (18) to see whether the null

hypothesis may be rejected. Rejection of the null hypothesis

would not prove the validity of the look-ahead model, but it

would rule out a large number of non-lookahead alternatives.

DISCUSSION AND CONCLUSIONS

Because our chemical kinetic model assumes the simulta-

neous incorporation of nucleotides along with unidirectional

forward translocation of the RNA polymerase, our model is

most easily visualized in terms of powerstroke mechanisms

such as those of Yin and Steitz (11) and Gong et al. (12).

We emphasize, however, that our model is agnostic as to

physical mechanism, and deals only with chemical kinetic

events such as binding, unbinding, and covalent linkage of

bases to the nascent RNA chain (which we regard as being

synchronous with forward motion of the RNA polymerase

enzyme).

We argue that backward translocation is uncommon for

several reasons: 1), the breaking of a covalent bond of the

nascent RNA chain is energetically unfavorable; 2), at

certain sites, the folding of the nascent RNA chain into

a hairpin provides a backstop that prevents the nascent

RNA chain from moving backward; and 3), backward trans-

location occurs only under special circumstances, namely

during transcriptional arrest, transcriptional termination, or
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a complete absence of rNTPs (19,20). Our proposed model

is best supported by the experimental work of Gong et al.

(12), which disputes backward translocation and supports

the idea of presorting rNTPs on template DNA sites

upstream of the active site.

The nature of pauses in the motion of RNA polymerase has

been much debated. Pausing is important to understand

because it enables synchronization of enzymatic events and

regulates the overall speed of transcription. Recent single mole-

cule experiments on transcriptional elongation (14,19,21,22)

have all reached different results and conclusions concerning

the nature of pausing. Forde et al. (21) has hypothesized that

elongation is a bipartite mechanism, in which the RNA poly-

merase backtracks followed by a conformational change of

the polymerase complex, which results in an arrested molecule

incapable of being rescued by an assisted mechanical force. Bai

et al. (7,23) have hypothesized that pausing is the result of

backward translocations along the DNA. Neuman et al. (19)

and Shaevitz et al. (24) have hypothesized that a structural

rearrangement within the RNA polymerase enzyme is the

cause of short pausing. Based on the latter experiments

(19,24), the majority of pausing has been shown to be short

and ubiquitous, and is not the result of backtracking along

the DNA; instead, it is thought that the polymerase enters an

off-pathway state of pause (25). Longer pauses (those>20 s),

on the other hand, occur much less frequently and are hypoth-

esized to occur by an entirely different mechanism.

In the look-ahead model, the statistics of the motion of

RNA polymerase may be described as follows. Consider the

limit in which the forward rate constant is very fast. Then

RNA polymerase moves forward every time that the first

site within the look-ahead window becomes occupied. The

distribution of the waiting time for this to occur will be expo-

nential with a rate constant that may be sequence-dependent.

Once a forward step does occur, it may be immediately fol-

lowed by one or several additional forward steps, depending

on how many adjacent sites within the look-ahead window

happened to be filled at the moment when the first site is filled.

Put another way, the RNA polymerase slides the length of the

adjacently filled sites within the window of activity. Such

sliding is consistent with the inchworm model (26) of tran-

scriptional elongation that was popular during the 1980s.

The inchworm model has never been formally ruled out (19).

An interesting property of the look-ahead model that we

have not yet fully explored is the potential role of the look-

ahead feature in preventing transcription errors. Assuming

that there is a nonzero probability of incorporating an incor-

rect nucleotide covalently into the nascent RNA chain, it

becomes important to reduce the probability of such an incor-

rect base being present at the site where it would be incorpo-

rated. This may be accomplished by having a high off-rate for

incorrect basepairings, and by allowing sufficient time for this

off-rate to be effective. The look-ahead model provides this

possibility (in contrast to a model that only involves binding

followed by a covalent linkage).
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Using the master-equation formulation of our model, we

performed parameter estimation to both synthetic and actual

data. Our computational experiments involving parameter

fitting to synthetic data show that original parameters can

be recovered, even when the synthetic data, generated using

the Gillespie method, are noisy. The amount of noise that is

introduced in this way decreases inversely as the square-root

of the number of runs that are used to generate the synthetic

data. By varying the number of runs, we are able to assess the

influence of this type of noise on the parameter estimation

process. The scenario considered here, in which the synthetic

experimental data are corrupted by noise, is more realistic

than the noise-free case. Note, in particular, that we are not

simply adding arbitrary noise to the data, but instead are

considering a type of noise that is intrinsic to the physical

process under consideration. Moreover, our computational

experiments show that the number of individuals runs neces-

sary to recover the original parameters from noisy synthetic

data is not prohibitive, but instead is a feasible number to do

in an actual experiment.

We have also performed parameter estimation studies

based on two different types of actual experimental data.

The first kind of data that we employed concerns the mean

velocity of RNA polymerase as a function of the ambient

rNTP concentrations, varied one at a time (7). The best fits

of the predictions of the look-ahead model to such data are

achieved with the window sizes w ¼ 1 and w ¼ 2. The

second kind of data that we used is the statistical distribution

of the waiting times between forward moves of the RNA

polymerase enzyme (15). These data were obtained with

the ambient rNTP concentrations chosen to be equally rate-

limiting, an important condition which simplifies the anal-

ysis of the look-ahead model. The fit of the predictions of

the model to these data clearly rules out the window size

w ¼ 1 and is excellent for the window size w ¼ 4. In this

connection, it should be noted that Abbodanzieri et al. inter-

pret their own data as being consistent with a secondary site

for rNTP binding, a suggestion that seems to be in accord

with the look-ahead concept.

All of the parameter fitting in this article has been done

under the assumption that the unbinding rates from the sites

within the look-ahead window are negligible. This assump-

tion was made primarily to avoid the proliferation of param-

eters that would otherwise result. We have, however, briefly

considered the opposite assumption, i.e., that the binding/

unbinding of rNTP to sites within the look-ahead window

are in rapid equilibrium. The rapid equilibrium assumption

makes the size of the look-ahead window irrelevant, so

one may as well consider w ¼ 1, and theoretical results are

relatively easy to derive. In particular, it is easy to predict

the form of the waiting time distribution for comparison

with the experimental data of Abbodanzieri et al. (15). We

have done this for the special case in which the ambient

rNTP concentrations have been adjusted to make kfpoccupied

the same for all of the different rNTP. Note that these
assumptions imply that each of the rNTP concentrations is

equally rate-limiting, as in the experiment reported in Abbo-

danzieri et al. (15). In this special case of rapid equilibrium,

the theoretical waiting time distribution is a simple exponen-

tial, which is inconsistent with the experimental data (15).

Because our parameter fitting results give different

answers for the window size, we have proposed two addi-

tional experiments to help resolve this issue. In both cases,

we have shown that the proposed method of determining

the window size is effective when applied to synthetic

data. Since these proposed experiments have not yet been

done, actual data are not available.

The first of the proposed experiments is based on the

observation that when the rNTP concentrations are manipu-

lated in a specific way, all four of the on-rates become equal

and the relationship between the mean velocity of RNA

polymerase and the common on-rate can be expressed in

terms of certain universal curves, a different one for each

window size. These curves relate dimensionless variables

and do not involve any adjustable parameters, so it should

be possible to determine the window size by seeing which

of the universal curves best fits the data.

In a second proposed experiment, we suggest using satu-

rating concentrations of all four rNTPs so that the mean

velocity of the RNA polymerase, expressed in basepairs

per second, will be equal to the parameter kf of the model.

The reason this should determine the window size is that

different hypothesized window sizes lead to different predic-

tions of kf, so an independent determination of kf will tell

which of these predictions is correct.

A limitation of the parameter fitting done in this article is

that it has involved only a special case of the look-ahead

model. This special case is characterized by the following

additional assumptions, as well as those of the look-ahead

model itself. 1), Only correct Watson-Crick basepairing is

allowed. 2), The forward rate is assumed to be independent

of which nucleotide is being incorporated into the growing

RNA chain. 3), We assume that the off-rates can all be

neglected.

Quite possibly, one or more of these limitations is respon-

sible for the discrepancy that remains between model predic-

tions and experimental results, even when we have made

a best fit of the parameters of the model. Note, for example,

that our velocity histograms computed with best-fit parame-

ters are narrower than those obtained experimentally (see

Fig. 5). This might not be the case if incorrect Watson-Crick

basepairing were allowed, for example. Such issues will be

the subject of future research.

The above described limitations are to some extent over-

come, however, by our proposed experiment to rule out

a large class of non-lookahead models. The discussion of

this proposed experiment is based upon the full model of

this article, without the simplifying assumptions that were

made to facilitate parameter fitting, and also without relying

on the use of equally rate-limiting rNTP concentrations.
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Within this large class of models, we identify a subset that

we refer to as non-lookahead models, and we note how all

of these can potentially be ruled out by a statistical test

involving rejection of the null hypothesis that the time inter-

vals between successive forward moves on RNA polymerase

are independent random variables.

An important question not considered in this article is the

structural basis for our proposed look-ahead model. As dis-

cussed in Vassylyev et al. (27), there is structural evidence

for a preinsertion site that is distinct from the catalytic site

of RNA polymerase. Noncovalent binding and selection of

the correct rNTP occurs at the preinsertion site, and hydro-

lysis and linkage to the nascent RNA chain occurs at the

catalytic site. This hypothesis, described in Vassylyev

et al. (27), is similar, but not identical to the look-ahead

model with a window size w ¼ 2. The differences are that

in the look-ahead model of this article it is possible for an

rNTP to bind directly to the catalytic site (if that site should

happen to be empty) as well as to the preinsertion site.

Another difference, perhaps consistent with Vassylyev

et al. (27) but not discussed there, is the possibility of parallel

processing that exists in the look-ahead model: the preinser-

tion site can fill while the catalytic site is occupied. Strong

qualitative evidence in favor of such parallel processing

comes from the experimental fact that the measured proba-

bility density of the waiting time for a forward move is

monotone decreasing (15), so that the most likely waiting

time is zero. This cannot be the case if two (or more) kinetic

steps must occur serially for each forward step of the RNA

polymerase molecule. As reported herein, our best fit to

the data in Abbodanzieri et al. (15) occurs with a look-ahead

model whose window size is 4. We are not aware of any

structural data that would support a window size >2,

however, so this leaves a discrepancy between kinetic and

structural evidence that needs to be resolved.

Finally, it is important to keep in mind that the data to

which our proposed model predictions are compared in

this article come from experiments on prokaryotic RNA

polymerase. There is no reason why the look-ahead model

should not be applicable to eukaryotic RNA polymerases;

indeed, one might reasonably expect larger window sizes

in the eukaryotic case. It is therefore exciting to note that

single-force microscopy has recently been applied to the

study of transcriptional elongation by eukaryotic RNA poly-

merase (28). This opens up the possibility that the model

described here will have a new domain of applicability.

Indeed, by fitting the model both to the prokaryotic and to

the eukaryotic RNA polymerases, one should be able to learn

more about the differences between these two classes of

related enzymes.
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