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All-Atom Contact Model for Understanding Protein Dynamics
from Crystallographic B-Factors
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ABSTRACT An all-atom local contact model is described that can be used to predict protein motions underlying isotropic
crystallographic B-factors. It uses a mean-field approximation to represent the motion of an atom in a harmonic potential
generated by the surrounding atoms resting at their equilibrium positions. Based on a 400-ns molecular dynamics simulation
of ubiquitin in explicit water, it is found that each surrounding atom stiffens the spring constant by a term that on average scales
exponentially with the interatomic distance. This model combines features of the local density model by Halle and the
local contact model by Zhang and Brüschweiler. When applied to a nonredundant set of 98 ultra-high resolution protein
structures, an average correlation coefficient of 0.75 is obtained for all atoms. The systematic inclusion of crystal contact contri-
butions and fraying effects is found to enhance the performance substantially. Because the computational cost of the local
contact model scales linearly with the number of protein atoms, it is applicable to proteins of any size for the prediction of
B-factors of both backbone and side-chain atoms. The model performs as well as or better than several other models tested,
such as rigid-body motional models, the local density model, and various forms of the elastic network model. It is concluded
that at the currently achievable level of accuracy, collective intramolecular motions are not essential for the interpretation of
B-factors.
INTRODUCTION

Advances in x-ray crystallography and NMR spectroscopy

have allowed the determination of a large number of protein

structures, as is reflected in the rapid growth of the Protein

Data Bank (PDB) (1). Although most proteins adopt a highly

specific average three-dimensional structure, they also

exhibit significant amounts of fluctuations that play an

important role in protein function. For the protein backbone,

for example, heteronuclear NMR relaxation spectroscopy

yields time-resolved dynamic information about reorienta-

tional motions of bonds, such as the backbone amide N-H

bonds (2,3). Amino acid side-chain dynamic information

from NMR, on the other hand, is much more sparse, with

the exception of methyl-bearing side chains (4).

X-ray crystallography provides information about protein

mobility through Debye-Waller temperature factors, or

B-factors, for both backbone and side-chain atoms (5). The

B-factor is a measure of the uncertainty of the atomic

position, which includes the effects of noise due to model

errors and lattice defects, in addition to the positional vari-

ance of thermal protein motion. The amount of noise is

generally lowest for the highest-resolution structures (<1 Å).

There is significant interest in reproducing experimental

protein dynamics data by computational methods to assess

the quality of the latter. Among computational methods,

molecular dynamics (MD) computer simulations provide

the most comprehensive view of protein motions (6). Exper-
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imental dynamics parameters serve as useful benchmarks

for the assessment of molecular mechanics force fields,

sampling of conformational space, and computational

protocols (7). The sampling issue can be bypassed, at the

cost of accuracy, by using normal-mode analysis where the

force field in the vicinity of the native state is replaced by

its multivariate quadratic expansion. This allows the compact

representation of protein dynamics by the superposition of

motional fluctuations along normal modes with individual

amplitudes (8–13).

More recently, a new class of coarse-grained harmonic

models known as elastic network models (ENM) (14) has

been developed that includes Gaussian network models

(GNM) (15), anisotropic network models (16–18), and

a combination of the two (19). In these models, the interac-

tions between amino acids that lie within a given cutoff

distance, rc, are modeled as Hookean springs. The resulting

eigenmodes yield a description of the protein fluctuations in

terms of collective motions. These models have been tested

against experimental protein B-factors as benchmarks,

typically yielding at least qualitative agreement with experi-

ment. ENM also provides directional information about

internal motions (20,21). An ENM-based model that

achieves the best B-factor prediction so far is the chemical

network model (CNM) (22), which employs the closest

distance between two residues, rather than their Ca-Ca

distance, as well as different spring constants between

bonded and nonbonded residue pairs. For a set of 98 high-

resolution protein structures, an average Pearson correlation

coefficient between predicted and experimental B-factors of

0.75 was obtained. Reorientational generalizations of ENM,
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which are the reorientational contact-weighted ENM (23)

and the network of coupled rotators (24), were successfully

used for the reproduction of NMR spin-relaxation-derived

N-H order parameters.

In all these models, calculation of motional amplitudes

involves inversion of a Kirchhoff or Hessian matrix, which

makes them computationally expensive when the number

of residues is large. Due to their coarse-grained nature, the

calculation of B-factors of atoms other than Ca atoms,

including functionally important side-chain atoms, is not

readily possible.

It has long been recognized that B-factors not only report

on intramolecular motions but are also sensitive to the

presence of rigid-body motions (25). A model termed trans-

lation, librations, and screw (TLS), proposed recently (26),

uses 10 fitting parameters for each protein and produces

a relatively high average correlation coefficient with respect

to experimental B-factors (>0.8).

Halle (27) introduced a fundamentally different interpreta-

tion of crystallographic B-factors, the local density model

(LDM), which relates the B-factors to local atom density.

It assumes that each atom moves in a quadratic potential of

mean force (PMF) generated by the neighboring atoms fixed

at their equilibrium positions. All neighboring atoms that lie

within a cutoff distance of ~7.35 Å of a given atom

contribute equally to the effective force constant of this

atom. Thus, the atom with the largest neighbor-atom density

will have the lowest B-factor.

NMR S2 order parameters (28) describe the reorientational

restrictions of bond vector fluctuations and thereby can be

viewed as the reorientational counterpart to B-factors (29).

It has been empirically demonstrated that backbone N-H

1-S2 values are closely related to a contact sum that consists

of terms with an exponential distance dependence between

the surrounding atoms and the amide proton itself and

carbonyl oxygen of the preceding amino acid (30). S2

order parameters of side-chain methyl groups can be

modeled similarly well by an extended local contact model

(LCM) (23).

Here, we develop a model that combines features of the

LDM and LCM for the prediction of B-factors for all atoms

and analyzes a 400-ns MD trajectory of ubiquitin to test basic

assumptions that go into this model. We then apply the

model to a set of 98 crystal structures used previously (22)

and compare the results with different models.

THEORY AND METHODS

PDB set

All B-factor prediction calculations were applied to a set of 98 highest-

resolution x-ray crystal structures previously used by Kondrashov et al.

(22). This is a nonredundant set of protein structures that represents all major

SCOP families. All of its members have at least 50 residues in a single chain

with resolution %1 Å. For protein systems with more than one asymmetric

unit, only the experimental B-factors from the first unit were used. For the
back-calculation, the unit cell was surrounded by 26 nearest-neighbor cells

to include crystal contact contributions between asymmetric units inside the

unit cell and between different unit cells. The B-factors calculated in this

way were then averaged over the asymmetric units for comparison with

experiment. Only one side-chain conformation per amino acid was used.

Local contacts between proteins and cofactors and ligands were included,

whereas all contacts with water molecules were discarded.

MD trajectory

A 400-ns MD trajectory of ubiquitin in explicit SPC/E water at 300 K was

performed using the AMBER9 package (31) with the AMBER99SB force

field (32), as described previously (33). A total of 400,000 snapshots at

a time increment of 1 ps are used to calculate a PMF(rij) between Ca atoms

of amino acids 1 and 70 and all heavy atoms, where rij is the distance

between the two atoms. An effective force constant between Ca atoms

and all other heavy atoms was determined from the variance s2
ij of rij, calcu-

lated over the trajectory according to

fij ¼ kBT=s2
ij; (1)

where kB is the Boltzmann constant.

Local contact model for crystallographic B-factor
prediction

The PMF of atom i at equilibrium position ri,0, defined with respect to the

center of mass, is assumed to take the quadratic form

ViðriÞ ¼
1

2
fiðri � ri;0Þ2; (2)

where ri denotes the position of the atom i. The force constant, fi, is deter-

mined from the interactions with all surrounding atoms j according to

fi ¼
X
jsi

fij; (3)

where

fij ¼ a exp
�
� rij=r0

�
þ b: (4)

The isotropic crystallographic B-factor of atom i is then determined by

Bi ¼
8p2

3

�
s2

i;x þ s2
i;y þ s2

i;z

�
¼ 8p2s2

i ¼
8p2kBT

fi

; (5)

where kB is Boltzmann’s constant and T is the absolute temperature. Hence,

this model for the prediction of B-factors contains the three global parame-

ters r0, a, and b. As it turns out, b has only a modest effect on the results and

can therefore be neglected, and a is an overall scaling factor, which does not

affect the correlation coefficients between calculated and experimental

B-factors. This leaves the interaction distance r0 as the only essential

parameter in this local contact model for the prediction of crystallographic

B-factors (LCMB). It is sufficient to calculate the force constant between

atom pairs within a certain cutoff. We use a cutoff of 15 Å in this work,

as the effect of cutoff turns out to be negligible as long as it is >10 Å. To

speed up the computation of the pairwise atomic distances, a classical cell

subdivision algorithm (34) is employed, which renders the computational

cost proportional to the number of protein atoms.

End effects

In proteins for which the N- and C-termini of proteins are not part of an

a-helix or b-strand structure, the termini often exhibit fraying effects,

manifested in an increase of their B-factors. This effect is included here

by multiplying the calculated B-factors of the first and last residues by

a factor of 1.5, the second and second-to-last by a factor of 1.4, and the third
Biophysical Journal 96(8) 3074–3081
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and third-to-last by a factor of 1.3, respectively. The LCMB with the termini

treated in this way is termed the eLCMB.

GNM

The Gaussian network model was implemented in its standard form (15),

where the variation Drij of an atom pair distance rij ¼ j rj � ri j is assumed

to obey a Gaussian distribution

W
�
Drij

�
¼ ðg=pÞ3=2

exp
�
� gDr2

ij

�
: (6)

Here, g is the force constant of the Hookean potential. In this model, the

elements of the Kirchhoff matrix are given by

Gij ¼

8>><
>>:
�g isj and rij %rc

0 isj and rij > rc

�
P
jsi

Gij i ¼ j

9>>=
>>;; (7)

where rc is the cutoff distance that defines the interaction range. The mean-

square fluctuations of the atoms are readily evaluated using

Bi ¼ 8p2kBT

g

"Xn�1

k¼ 1

l�1
k qkq

T
k

#
ii

¼ 8p2kBT

g

�
G�1
�

ii
; (8)

where lk is the eigenvalue of G to eigenmode qk.

TLS model

The translation, libration, and screw (TLS) model was implemented as

described recently (26). In this model, ri is given by

ri ¼ c þ u � ðri;0 � c0Þ: (9)

Here, c0 is an arbitrarily chosen reference point, and c derives from c0 by

translational motion. It follows for the B-factor that

Bi ¼
8p2

3
ðhri , rii � ri;0 , ri;0Þ: (10)

The total number of fitting parameters is 10, which can be determined by

singular value decomposition. For ~10% of the proteins, this leads to

FIGURE 1 Force constants, fij, as a function of distance, rij, between all

pairs of Ca atoms derived from a 400-ns MD trajectory of ubiquitin. The

black dots are extracted directly from the MD simulation, whereas the

vertical bars are averages over 2-Å distance intervals. The solid line is

a least-squares fit given by the exponential function of Eq. 12.
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unphysical fitting results (i.e., a rotation tensor that is not positive (26)),

and hence these proteins were not included in subsequent statistical analyses.

A simplified version of the TLS model is obtained when translational and

screw motions are removed and only isotropic rotation is allowed about the

center of mass, which leads to the following distance dependence of the

B-factors:

Bi ¼ a jri;0j2: (11)

Rotational amplitude, a, is the only fitting parameter of this rotation-only

model (ROM).

RESULTS

MD results

The 400-ns MD trajectory of ubiquitin was analyzed in terms

of the fluctuation amplitudes (variances s2
ij) of interatomic

distances between Ca atoms and all heavy atoms, which

were converted into effective force constants fij according

to Eq. 1. Fig. 1 shows fij as a function of the average distance

rij. The vertical bars represent averages over 2-Å intervals

starting at 4 Å, and the solid line is the fit to the vertical

bars using the exponential function

f ij

�
rij

�
¼ 39:3 � exp

�
� rij=1:9

�
þ 0:3 (12)

(in units of kg$s�2 or nN/nm, with rij expressed in Å).

Although individual force constants can considerably

deviate from the average, especially for some of the smaller

distances (<8 Å), the average force constants approximate

very well the relationship of Eq. 4 (Ca-Ca pairs with

a distance <4 Å have force constants that are ~10 times

larger than the average force constant found for the 4- to

6-Å interval and were not included in the fit).

To test the quality of this approximation, we calculated the

Ca B-factors from the above model using the force constants

extracted from the MD simulation (Fig. 1, dots), as well as

the force constant derived from the best exponential fit

(Eq. 12) and compared them with the B-factors directly

calculated from MD simulations. The Pearson correlation

coefficients, R, are 0.55 and 0.66, respectively, with the

main discrepancies found for residue 8 and both termini.

The corresponding Spearman correlation coefficients, which

are more robust with respect to outliers, are 0.87 and 0.80,

respectively. Hence, the MD simulation validates the basic

assumptions underlying the LCMB (Eqs. 2–5). In the next

section, the LCMB is tested against experimental B-factors.

eLCMB backbone Ca results

The eLCMB was next applied to the 98-protein set. When r0

is set to 1.9 Å, the average Pearson correlation coefficient

between predicted and experimental Ca B-factors is 0.72.

The correlation can be further improved by optimizing r0.

For r0 ¼ 3 Å, an optimal average correlation coefficient of

R ¼ 0.74 � 0.1 is found. When r0 is optimized for each

protein individually, its mean � SD is r0 ¼ 3 � 1.1 Å.
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Also, inclusion of the offset of 0.3 in Eq. 12 has a minimal

effect and therefore will be neglected. The B-factor correc-

tion of the N- and C-terminal Ca triples has a more noticeable

effect: without this correction, the correlation is 0.72 for

r0 ¼ 3 Å.

Crystal packing interactions make a significant contribution

to the calculated B-factors (35). Without the inclusion of

crystal packing effects, the average correlation coefficient is

0.64. A comparison of the performance of LCMB with and

without crystal contact contributions for all 98 proteins is

given in Fig. 2. It shows that for 81 of the 98 proteins, the

prediction improves when crystal contacts are included. The

kind of improvement of the B-factor prediction brought about

by the inclusion of crystal contacts is exemplified for the 56-

kDa cholesterol oxidase (PDB code 1N4W). Fig. 3, b and c,

shows the predicted B-factors with and without crystal

contacts, respectively, together with the experimental B-

factors. The correlation coefficients are 0.84 (Fig. 3 b) and

0.72 (Fig. 3 c), respectively. The intermolecular interactions

between two asymmetric units within the unit cell are dis-

played in Fig. 3 a. The protein fragment colored in yellow

around residue 380 of the black unit makes extensive contacts

with the orange part around residue 35 of the gray unit.

These crystal contacts reduce the B-factors of the interacting

regions, as indicated in Fig. 3, b and c. Other crystal contacts

not shown in Fig. 3 a are presented in Fig. S1 in the Supporting

Material.

Due to its simplicity, the LCMB is applicable not only to

Ca atoms, but also to any other atom in the protein. When the

FIGURE 2 Effect of including crystal contacts on the LCMB model

performance for a set of 98 ultra-high resolution protein structures. The

Pearson correlation coefficients between predictions and experiment are

plotted along the x and y axes for Ca B-factors without and with, respec-

tively, the inclusion of crystal contacts.
LCMB is applied to all main-chain and all side-chain atoms

of the 98-protein set, an average correlation of 0.74 is

obtained in the absence of B-factor correction of the N- and

FIGURE 3 Illustration of the effectof crystal contacts on Ca crystallographic

B-factors in the eLCMB for the 56-kDa protein cholesterol oxidase (1N4W).

(a) Parts of two copies of the protein (black and gray) in the crystal, with the

segments that make extensive crystal contacts colored in yellow (around amino

acid 380) and orange (around amino acid 35), respectively. (b and c) Predicted

(red dots) and experimental (blue dots) B-factors, with (b) and without (c) the

inclusion of crystal contacts. The predicted values are uniformly scaled and

shifted to optimally superimpose on the experimental values.
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C-terminal residues for r0¼ 2 Å. After B-factor adjustment of

the N- and C-terminal residues, R improves to 0.75. In Fig. 4,

predicted and experimental B factors of Cb, Cg, and Cd side-

chain atoms are depicted, with correlation coefficients of

FIGURE 4 Experimental (blue triangles) and predicted (red crosses)

B-factors of the side-chain atoms of the 56-kDa protein cholesterol oxidase

(1N4W) by eLCMB including the effects of crystal contacts for Cb (a), Cg

(b), and Cd (c) atoms, respectively.
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0.80, 0.75, and 0.77, respectively. The inclusion of crystal

packing effects is critically important for all-atom B-factor

predictions: when crystal packing effects are not taken into

account, the average R drops to 0.65 for the protein set

used here.

A number of modifications of the eLCMB were made to

test whether its performance can be further improved. In

particular, contributions from atoms within the same amino

acid were treated separately, as were contributions from

atoms of residues that precede or succeed in sequence the

residue that contains the atom of interest. None of these

modifications yielded any further increase in the average

correlation coefficient.

DISCUSSION

Crystallographic B-factors of high-resolution crystal struc-

tures provide a wealth of experimental information at atomic

resolution about the motional disorder of proteins. This

explains why B-factors are frequently used to test motional

models of proteins.

A key issue is the distinction between overall motion and

intramolecular dynamics. The most general rigid-body

motional model is the TLS model (25), which interprets the

B-factors by combining overall anisotropic rotational, transla-

tional, and screw motions. It was recently combined with

a random-walk model for the three N- and C-terminal resi-

dues, and an overall correlation was found that was notably

high (26). For the protein set used in this work, the average

correlation coefficient is 0.8. It must be kept in mind,

however, that this model uses 10 fitting parameters compared

to one actual fitting parameter (namely the overall scaling

factor) for the LCMB. Although 10 is well below the number

of Ca atoms of the proteins considered, residues with

increased B-factors tend to cluster into groups of consecutive

residues. These clusters are relatively localized in space, and

they typically do not vastly outnumber the fitting parameters

of the TLS model. To test the possibility of overfitting in the

TLS model, a plane with random orientation was laid for each

protein through the protein’s center of mass, and the TLS

model was fitted only to the atoms on one side of the plane.

The fitting parameters were then used to predict the B-factors

of the other protein half. The procedure was applied for 360

randomly chosen planes for each protein. An average correla-

tion coefficient of 0.5 is obtained for the back-calculated

B-factors. This strongly suggests that the TLS model is, to

a significant degree, susceptible to overfitting.

A simplified version of the TLS model with a single fitting

parameter is the rotation-only model (ROM) (Eq. 11), which

allows isotropic rotation about the protein’s center of mass

only (i.e., no translational and screw motion). For the protein

set used here, the ROM produces an average correlation

coefficient of 0.56. In ROM, the predicted B-factors increase

quadratically with the distance of the residue from the

protein center (Eq. 11). ROM captures some of this trend,
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presumably because protein regions that exhibit increased

experimental B-factors are often close to the protein surface.

On the other hand, the TLS and ROM models explain neither

the effect of local crystal packing on B-factors nor the some-

times sizeable differences between B-factors of atoms

belonging to the same residue. This suggests that intramolec-

ular disorder and dynamics are the dominant contributors to

the B-factors for most systems. This conclusion is consistent

with a MD study of staphylococcal nuclease in a crystalline

environment, which found that ~70% of the B-factor contri-

butions are due to internal motion (36).

In the original LDM work (27), an improved agreement

with experiment was found when crystal contacts were

included. When applied to a set of 972 proteins, an average

correlation coefficient of 0.51 was reported for the LDM, and

this improves to 0.61 when 1/r-distance weighting is used

(37). When the LDM is applied to the 98-protein set used

in this work, the average correlation coefficient is 0.62

without and 0.68 with the inclusion of crystal contacts.

The LCMB introduced here combines features of LDM

with the contact model (30). The latter was developed for

the prediction of NMR order parameters and it also uses

a contact sum with terms that follow the exponential-distance

weighting of Eq. 4. The LDM and LCMB both represent

mean-field approaches of protein dynamics, since they

predict motions on a site-by-site basis with the other protein

atoms fixed at their average positions. Therefore, these

models neither invoke nor predict collective motions among

protein atoms. The inclusion of fraying effects at the protein

termini in the eLCMB model is an exception.

FIGURE 5 Comparison of correlation coefficients obtained from the

CNM and eLCMB models for a 98-protein set. The two models have very

similar overall performance, but distinct performance for individual proteins.
By contrast, elastic network models naturally provide

a collective description of protein dynamics in terms of

a superposition of motion along orthogonal normal modes.

The B-factor prediction by the GNM produces, for the

present protein set, a correlation of R ¼ 0.59. The inclusion

of crystal packing effects positively affects the GNM perfor-

mance. For example, when crystal packing effects are

combined with the chemical network model (22), R ¼ 0.75

is obtained. Fig. 5 compares the CNM correlation coeffi-

cients (22) with the corresponding correlation coefficients

of the eLCMB. The two models have virtually identical

overall performance, although the performance can differ

significantly for individual proteins.

In the mean-field approximation underlying the LCMB,

the distance dependence of the pairwise atomic interaction

strength is derived from an all-atom MD simulation. We

calculated the corresponding PMFs of the Ca atoms from

the GNM model of ubiquitin with a 7.5-Å cutoff. For this

purpose, we generated a canonical ensemble with 100,000

snapshots according to the quadratic energy function defined

by the GNM model (Eq. 6) and calculated the pairwise

distance-dependent force constant in analogy to the treat-

ment of the MD trajectory (see Fig. S2), which yields

a distance dependence for the force constants of

f ij

�
rij

�
¼ 7:3 � exp

�
� rij=9:7

�
þ 2:1 (13)

(in units of kg$s�2 or nN/nm, with rij expressed in Å). As is

the case with the MD-derived relationship (Eq. 12), Eq. 13

shows an exponential distance dependence. It differs from

the MD-derived relationship, however, in terms of both the

size of the offset, which is quite large, and the decay constant

in the exponent, which favors contributions from atoms that

are farther away. It is important to note that the GNM under-

estimates the force constant between sequential Ca atoms by

~10-fold. This explains the better performance of the CNM,

which employs a 10-fold-increased force constant between

neighboring residues and thereby substantially improves

the correlation with experiment (22).

Besides the correlation coefficient, the variability of the

overall scaling factors of the predicted versus experimental

B-factors is another measure of the quality of the model.

For a given protein, the overall scaling factor, s, is obtained

by minimizing the mean-square difference
P

i (s � Bpre,i �
Bexp,i)

2, where the sum is over all Ca atoms. One might

expect that for a given dynamics model the overall scaling

factors, s, are similar for different proteins. To test this, we

selected the proteins from the list whose x-ray diffraction

data were collected at the same temperature, namely at

100 K. As shown in Fig. S3, for eLCMB, there is no clear

correlation between the scaling factor, s, and protein size.

The standard deviation of the scaling factors for the eLCMB

is 30%, whereas it is 40% for the GNM. On the other hand,

the overall scaling factor of the ROM shows a clear depen-

dence on protein size, with smaller proteins having larger
Biophysical Journal 96(8) 3074–3081
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scaling factors, suggesting that in a crystalline environment,

smaller proteins have larger rigid-body rotational amplitudes

on average. Combining ROM with eLCMB by treating

ROM (Eq. 11) as an additive term to Eq. 5 yields an opti-

mized R value of 0.751, which slightly improves the correla-

tion obtained by the eLCMB alone. When considering all

atoms, on the other hand, the combination of ROM with

eLCMB does not improve the correlation.

The eLCMB is computationally efficient. In its simplest

implementation, its computational cost scales with O(N2),

where N is the number of protein atoms. For larger proteins,

the use of cell subdivision with appropriate cutoffs permits

computational scaling by O(N). By contrast, the ENM

models involve the inversion of a Kirchhoff or Hessian

matrix of dimension M or 3M, which scales with O(M3),

where M is the number of amino acids. For the 54-kDa

protein cholesterol oxidase (1N4W), the eLCMB calculation

with crystal contacts included takes on a 2.4 GHz opteron

AMD processor <1 s.

A second advantage of the eLCMB is its applicability to

all atoms of a protein, including all side-chain atoms. Protein

side-chain atoms play a prominent role in protein function by

their involvement in protein-protein and protein-ligand

interactions. Therefore, rapid assessment of the atomic

mobility of these entities and their changes upon complex

formation is a useful complement to structural investigations.

This study demonstrates that, based on B-factors alone, it

is difficult to judge whether ENM-type or LDM/LCMB-type

models are physically more meaningful. The fact that

a mean-field approximation, such as the local contact model,

reproduces B-factors on a par with the CNM, which is now

considered the most accurate ENM model, suggests that

collective motions are not essential for the interpretation of

B-factors at the level of accuracy achievable at the present

time. Mean-field models represent an attractive alternative

to collective motional models. This finding is consistent

with recent results obtained with the reorientational

contact-weighted ENM for the prediction of protein back-

bone order parameters (23). This model provides an

improvement over the local contact model mainly for protein

regions that undergo significant fraying effects. Similar to

the modeling of the chain termini applied here, these can

be treated without invoking a full ENM approach.

CONCLUSION

The extended local contact model is a mean-field approach to

protein dynamics whose average pairwise atomic distance

PMF is consistent with MD results. This model shows

good agreement between predicted and experimental

B-factors, comparable to that of a refined GNM model.

The inclusion of crystal-contact effects is essential for ob-

taining accurate prediction in both types of models. This

may have important implications also for the interpretation

of dynamics data of protein crystals obtained by other
Biophysical Journal 96(8) 3074–3081
methods, such as solid state NMR. Its computational effi-

ciency makes the eLCMB model applicable to backbone

and side-chain atoms of small and large proteins alike.
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