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We consider the problem of portfolio selection within the classi-
cal Markowitz mean-variance framework, reformulated as a con-
strained least-squares regression problem. We propose to add to
the objective function a penalty proportional to the sum of the
absolute values of the portfolio weights. This penalty regularizes
(stabilizes) the optimization problem, encourages sparse portfo-
lios (i.e., portfolios with only few active positions), and allows
accounting for transaction costs. Our approach recovers as special
cases the no-short-positions portfolios, but does allow for short
positions in limited number. We implement this methodology on
two benchmark data sets constructed by Fama and French. Using
only a modest amount of training data, we construct portfolios
whose out-of-sample performance, as measured by Sharpe ratio,
is consistently and significantly better than that of the naive evenly
weighted portfolio.

penalized regression | portfolio choice | sparsity

I n 1951, Harry Markowitz ushered in the modern era of portfolio
theory by applying simple mathematical ideas to the problem
of formulating optimal investment portfolios (1). He argued that
single-minded pursuit of high returns constitutes a poor strategy,
and suggested that rational investors must, instead, balance their
desires for high returns and for low risk, as measured by variability
of returns.

It is not trivial, however, to translate Markowitz’s conceptual
framework into a portfolio selection algorithm in a real-world con-
text. The recent survey (2) examined several portfolio construction
algorithms inspired by the Markowitz framework. Given a rea-
sonable amount of training data, the authors found none of the
surveyed algorithms able to significantly or consistently outper-
form the naive strategy where each available asset is given an equal
weight in the portfolio. This disappointing performance is partly
due to the structure of Markowitz’s optimization framework.
Specifically, the optimization at the core of the Markowitz scheme
is empirically unstable: small changes in assumed asset returns,
volatilities, or correlations can have large effects on the output of
the optimization procedure. In this sense, the classic Markowitz
portfolio optimization is an ill-posed (or ill-conditioned) inverse
problem. Such problems are frequently encountered in other
fields; a variety of regularization procedures have been proposed
to tame the troublesome instabilities (3).

In this article, we discuss a regularization of Markowitz’s port-
folio construction. We will restrict ourselves to the traditional
Markowitz mean-variance approach. (Similar ideas could also be
applied to different portfolio construction frameworks considered
in the literature.) Moreover, we focus on one particular regular-
ization method, and highlight some very special properties of the
regularized portfolios obtained through its use.

Our proposal consists of augmenting the original Markowitz
objective function by adding a penalty term proportional to the
sum of the absolute values of the portfolio weights. This term is
known in the mathematical literature as an ¢; norm. We allow
ourselves to adjust the importance of this penalty with a “tun-
able” coefficient. For large values of this coefficient, optimization
of the penalized objective function turns out to be equivalent to
solving the original (unpenalized) problem under an additional
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positivity condition on the weights. As the tunable coefficient is
decreased, the optimal solutions are given more latitude to include
short positions. The optimal solutions for our penalized objec-
tive function can thus be seen as natural generalizations of the
“no-short-positions” portfolios considered in ref. 4. We show that
these regularized portfolios are sparse, i.e., they have few active
positions (few nonzero weights).

In addition to stabilizing the optimization problem (5) and
generalizing no-short-positions—constrained optimization, the ¢;
penalty facilitates treatment of transaction costs. For large
investors, whose principal cost is a fixed bid-ask spread, trans-
action costs are effectively proportional to the gross market
value of the selected portfolio, i.e., to the £; penalty term. For
small investors, volume-independent “overhead” costs cannot be
ignored, and thus transaction costs are best modeled via a combi-
nation of an ¢; penalty term and the number of assets transacted,;
minimizing such a combination is tantamount to searching for
sparse solutions (sparse portfolios or sparse changes to portfo-
lios), a goal that, we will argue, is also achieved by our use of an
£; penalty term.

We use the methodology to compute efficient investment port-
folios with two sets of portfolios constructed by Fama and French
as our assets: the 48 industry portfolios and the 100 portfolios
formed on size and book-to-market. Using data from 1971 to
2006, we construct an ensemble of portfolios for various values
of our tunable coefficient and track their out-of-sample perfor-
mances. We find a consistent and significant increase in Sharpe
ratio compared with the naive equal-weighting strategy. With the
48 industry portfolios as our assets, the best portfolios we construct
have no short positions. With the 100 portfolios as our assets, the
best portfolios constructed by our methodology do include short
positions.

We are not alone in proposing the use of regularization in the
context of Markowitz-inspired portfolio construction; ref. 6 dis-
cusses several different regularization techniques for the portfolio
construction problem, including the imposition of constraints on
appropriate norms of the portfolio weight vector. Our work* dif-
fers from ref. 6 in that our goal is not only regularization: we are
interested in particular in the stable construction of sparse portfo-
lios, which is achieved by ¢; penalization, as demonstrated by our
analysis and examples.

Sparse Portfolio Construction

We consider N securities, denoting their returns at time ¢ by
the N x 1 vector r; = (ris...,7n,)". We write E[r;] = p
for the vector of expected returns of the different assets, and
E[(r, — u)(r, — pn)T] = C for the covariance matrix of returns.
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(For the financial background and terminology used throughout
the article we refer the reader to ref. 9.)

A portfolio is defined as a list of weights w;, for assets i =
1,...,N, that represent the amount of capital to be invested in
each asset. We assume that one unit of capital is available and

require it be fully invested, i.e., Zf; 1 wi = 1. We collect the weights
inan N x 1 vector w = (wy,...,wy)". The normalization con-
straint on the weights can thus be rewritten as w' 1y = 1, with
1y the N x 1 vector in which every entry equals 1. The expected
return and variance, for portfolio w, are equal tow " and w' Cw,
respectively.

In the traditional Markowitz portfolio optimization, the objec-
tive is to find a portfolio that has minimal variance for a given
expected return p = w' u. More precisely, one seeks W satisfying:

W = argmin(w' Cw) such thatw' . = p,w' 1y = 1.
w
Since C = E[r;r,” |—pp ", this minimization is equivalent to
W =argminE[|p —w'r,|*] such that w'p = p,w 1y = L.
w

For the empirical implementation, we replace expectations by
sample averages. Set ;i = % Zthl r;; define R as the 7 x N matrix
of which row ¢ equals rtT , that is, R;; = (r;); = r;;. Given this
notation, we thus have the following optimization problem

_ .1 ~
W = argmin ?ler —Rw||% s.tw i =p,wly=1, [1]
w

where, for a vector a in R”, we denote by ||a||3 the sum "/, a2.

This problem requires the solution of a constrained multi-
variate regression involving many potentially collinear variables.
Although this problem is analytically simple, it can be quite chal-
lenging in practice, depending on the nature of the matrix R.
Specifically, the condition number—defined to be the ratio of the
largest to smallest singular values of a matrix—of R can effec-
tively summarize the difficulty we will face when trying to perform
this optimization in a stable way. When the condition number of
R is small, the problem is numerically stable and easy to solve.
However, when the condition number is large, a nonregularized
numerical procedure will amplify the effects of noise, leading to an
unstable and unreliable estimate of the vector w. As asset returns
tend to be highly correlated, the smallest singular value of R can be
quite small, leading to a very large condition number and thus very
unstable optimizations in a financial context. It is this sort of insta-
bility that likely plagues many of the algorithms reviewed in ref. 2.

To obtain meaningful, stable results for such ill-conditioned
problems, one typically adopts a regularization procedure. One
fairly standard approach is to augment the objective function of
interest with a penalty term, which can take many forms and ideally
should have a meaningful interpretation in terms of the specific
problem at hand. We propose here to add an ¢; penalty to the
original Markowitz objective function in Eq. 1. We thus seek to
find a vector of portfolio weights w that solves

witl =arg n})vin[”plr —Rwlj3 + [lwl)] [2]
such thatw'ft = p [3]
wily =1. [4]

Here, the ¢; norm of a vector w in RV is defined by |w|); :=
Zf\; 1 Iwil, and T is a parameter that allows us to adjust the rela-
tive importance of the ¢; penalization in our optimization. Note
that we absorbed the factor 1/T from Eq. 1 in the parameter .
The particular problem of minimizing an (unconstrained) objec-
tive function of the type given by Eq. 2 was named lasso regression
in ref. 10.
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Adding an ¢; penalty to the objective function in Eq. 1 has
several useful consequences:

* It promotes sparsity. The sparsifying effect arising from penaliz-
ing or minimizing ¢; norms has long been observed in statistics
(see e.g., ref. 11 and references therein). Minimization of ¢;-
penalized objective functions is now a widely used technique
when sparse solutions are desirable. Sparsity should also play
a key role in the task of formulating investment portfolios:
investors frequently want to be able to limit the number of posi-
tions they must create, monitor, and liquidate. By considering
suitably large values of t in Eq. 2, one can achieve just such an
effect within our framework.

* It regulates the amount of shorting in the portfolio designed
by the optimization process. Because of the constraint 4, an
equivalent form of the objective function in Eq. 2 is

lplr —Rwl3 +27 Y wil+1, [5]

i with w; <0

in which the last term is, of course, irrelevant for the opti-
mization process. Under the constraint 4, the ¢; penalty is
thus equivalent to a penalty on short positions. The no-short-
positions optimal portfolio, obtained by solving 1 under the
three constraints given not only by Eq. 3 and Eq. 4, but also the
additional restriction w; > Ofori =1,..., N, is in fact the opti-
mal portfolio for Eq. 5 in the limit of extremely large values of
7. As the high 7 limit of a sparsity-promoting framework, it is
completely natural that the optimal no-short-positions portfolio
should be quite sparse, as indeed also observed in practice (see
below). We note that the literature has focused on the stability of
positive solutions, but seems to have overlooked the sparsity of
such solutions. This may possibly be due to the use of iterative
numerical optimization algorithms and stopping criteria that
halt the optimization before most of the components have con-
verged to their zero limit. By decreasing 7 in the ¢;-penalized
objective function, one relaxes the constraint without removing
it completely; it then no longer imposes positivity absolutely,
but still penalizes overly large negative weights.

* It stabilizes the problem. By imposing a penalty on the size of
the coefficients of w in an appropriate way, we reduce the sensi-
tivity of the optimization to the possible collinearities between
the assets. In ref. 5, it is proved (for the unconstrained case)
that any ¢, penalty on w, with 1 < p < 2, suffices to stabilize
the minimization of Eq. 1 by regularizing the inverse problem.
The stability induced by the ¢, penalization is extremely impor-
tant; indeed, it is such stability property that makes practical,
empirical work possible with only limited training data. For
example, ref. 12 shows that this regularization method can be
used to produce accurate macroeconomic forecasts by using
many predictors.

* It incorporates a proxy for the transaction costs into the mini-
mization procedure. In addition to the choice of the securities
they trade, real-world investors must also concern themselves
with the transaction costs they will incur when acquiring and
liquidating the positions they select. Transaction costs in a lig-
uid market can be modeled by a two-component structure: one
that is a fixed “overhead,” independent of the size of the trans-
action, and a second one, given by multiplying the transacted
amount with the marketmaker’s bid—ask spread applicable to
the size of the transaction.

For large investors, the overhead portion can be neglected; in
that context, the total transaction cost paid is just Z{i 1 Silwil, the
sum of the products of the absolute trading volumes |w;| and bid—
ask spreads s; for the securities i = 1,...,N. We assume that
the bid-ask spread is the same for all assets and constant for a
wide range of transaction sizes. In that case, the transaction cost
is effectively captured by the ¢; norm of w. (Our method easily
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generalizes to asset-dependent bid—ask spreads—see the section
on possible generalizations.)

For small investors, the overhead portion of the transaction
costs is nonnegligible; for a very small investor, this portion may
even be the only one worth considering. If the transaction costs
are asset-independent, then the total cost is simply proportional
to the number K of assets selected (i.e., corresponding to nonzero
weights), a number sometimes referred to as ||w/||o, the £p norm of
the weight vector. Like an £; sum, this £, sum can be incorporated
into the objective function to be minimized; however, £y-penalized
optimization is computationally intractable when more than a
handful of variables are involved, because its complexity is essen-
tially combinatorial in nature, and grows superexponentially with
the number of variables. For this reason, one often replaces the
£y penalty, when it occurs, by its much more tractable (convex) ¢;
penalty cousin, which has similar sparsity-promoting properties.
In this sense, our ¢; penalization is thus “natural” even for small
investors.

Optimization Strategy

We first quickly review the unconstrained case, i.e., the minimiza-
tion of the objective function in Eq. 2, and then discuss how to
deal with constraints 3 and 4.

Various algorithms can be used to solve problem 2. For the
values of the parameters encountered in the portfolio construc-
tion problem, a particularly convenient algorithm is the homotopy
method (13, 14), also known as Least Angle Regression (LARS)
(15). This algorithm solves problem 2 for a range of 7, starting from
a very large value, and gradually decreasing 7 until the desired
value is attained. As T evolves, the optimal solution wi*) moves
through RV, on a piecewise affine path. To find the whole locus of
solutions for wl*! we need only find the critical points where the
slope changes. These slopes are thus the only quantities that need
to be computed explicitly, besides the breakpoints of the piecewise
linear (vector-valued) function. For every value of 7, the entries j
for which w; # 0, are said to constitute the active set A.. Typically,
the number of elements of A, increases as T decreases. However,
this is not always the case: at some breakpoints, entries may need
to be removed from A, (see, e.g., ref. 15).

When the desired minimizer contains only a small number K of
nonzero entries, this method is very fast: the procedure involves
solving linear systems of k equations with k unknowns, k being the
number of active variables, that increases until K is reached.

The homotopy/LARS algorithm applies to unconstrained ¢-
penalized regression. The problem of interest to us, however, is the
minimization problem 2 under the constraints 3 and 4, in which case
the original algorithm does not apply. The supporting information
(SI) Appendix shows how to modify the homotopy/LARS algo-
rithm to deal with a general ¢;-penalized minimization problem
with linear constraints, allowing us to find:

Wil = argmin [}y — Rw |3+ lwli ] [6]

where H is a prescribed affine subspace, defined by the linear
constraints. The adapted algorithm consists again of starting with
large values of 7, and shrinking 7 gradually until the desired value
is reached, monitoring the solution, which is still piecewise linear,
and solving a linear system at every breakpoint in r. Because of
the constraints, the initial solution (for large values of t) is now
more complex (in the unconstrained case, it is simply equal to
zero); in addition, extra variables (Lagrange multipliers) have to
be introduced that are likewise piecewise linear in 7.

In the particular case of the minimization problem 2 under the
constraints 3 and 4, an interesting interplay takes place between
Eq. 4 and the ¢;-penalty term. When the weights w; are all non-
negative, the constraint 4 is equivalent to setting ||w||; = 1. Given
that the ¢;-penalty term takes on a fixed value in this case, min-
imizing the quadratic term only (as in Eq. 1) is thus equivalent
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to minimizing the penalized objective function in Eq. 2, for non-
negative weights w;. This is consistent with the observation made
in ref. 4 that a restriction to nonnegative weights only can have a
regularizing effect on Markowitz’s portfolio construction.

The following mathematical observations have interesting con-
sequences. Suppose that the two weight vectors wlt1! and wl™2! are
minimizers for 2, corresponding to the values 7, and t,, respec-
tively, and both satisfy the two constraints 3 and 4. By using the
respective minimization properties of wl*1 and w!2J, we obtain

ot R )
< | p17 — Rw!™! ||§—|—t1||w”2J I,
ot R s o
< |1y — Rw'™! Hi-ﬁ-fz Wi+ (1 — w) w2

= oty —Rw S W (= m) (w2 = w0 ),

which implies that
(0] 7]
(m = ) (W], = w],) > 0. (7]
If all the w™ are nonnegative, but some of the w\™' are nega-
tive, then we have [w2!||; > | YN, W£T2]| =1land Wi =1,

implying |w®!||; > |wl®!||;. In view of Eq. 7, this means that
71 = 1. It follows that the optimal portfolio with nonnegative
entries obtained by our minimization procedure corresponds to
the largest values of 7, and thus typically to the sparsest solu-
tion (since the penalty term, promoting sparsity, is weighted more
heavily). This particular portfolio is a minimizer for 2, under the
constraints 3 and 4, for all = larger than some critical value tj. For
smaller 7 the optimal portfolio will contain at least one negative
weight and will typically become less sparse. However, as in the
unconstrained case, this need not happen in a monotone fashion.

Although other optimization methods could be used to compute
the sparse portfolios we define, the motivation behind our choice
of a constrained homotopy/LARS algorithm is the fact that we are
only interested in computing portfolios involving a small number
of securities and that we use the parameter t to tune this number.
Whereas other algorithms would require separate computations
to find solutions for each value of 7, a particularly nice feature
of our LARS-based algorithm is that, by exploiting the piecewise
linear dependence of the solution on 7, it obtains, in one run, the
weight vectors for all values of t (i.e., for all numbers of selected
assets) in a prescribed range.

Another strategy often used in constrained least-squares opti-
mization consists in reparametrizing the variables so as to auto-
matically satisfy the constraints; we chose not to do this, because
this would mess up the ¢; penalty.

Empirical Application

In this section we apply the methodology described above to
construct optimal portfolios and evaluate their out-of-sample per-
formance. We present two examples, each of which uses a universe
of investments compiled by Fama and French. In the first exam-
ple, we use 48 industry sector portfolios (abbreviated to FF48 in
the remainder of this article). In the second example, we use 100
portfolios formed on size and book-to-market (FF100). (These
portfolios are the intersections of 10 portfolios formed on size and
10 portfolios formed on the ratio of book equity to market equity.)
In both FF48 and FF100, the portfolios are constructed at the end
of June in their construction year. (See below for details.)

Example 1: FF48. By use of the above notation, r;, is the annualized
return in month ¢ of industry i, where i = 1,...,48. We evaluate
our methodology by looking at the out-of-sample performances of
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Evaluation Eq.weight w; >0  bin=8-16 bin=17-24 bin=25-32 bin=33-40 bin=41-48 FF48

period m S m S m S m S m S m S m S %10
07/76-06/06 17 61 27 17 41 41 16 40 40 14 40 34 12 43 28 12 47 26 12 54 22 2
07/76-06/81 29 66 44 23 48 49 20 41 50 18 39 46 19 40 49 22 43 50 23 50 46 .+ 8
07/81-06/86 18 58 31 23 41 57 25 42 58 23 44 52 24 46 52 23 50 46 22 56 39 g
07/86-06/91 572 7 9 45 20 8 43 18 7 44 15 4 47 9 4 51 7 557 8 96
07/91-06/96 18 41 44 16 26 62 15 26 57 13 27 47 12 33 36 12 41 30 11 52 21 5
07/96-06/01 11 67 17 16 40 40 16 41 38 9 42 22 3 50 6 2 54 4 061 0 < 4
07/01-06/06 18 60 30 13 43 30 13 42 30 12 41 29 10 38 28 10 37 27 12 43 27

1980 1990 2000
Time
) ) ) ) ) ) ) FF100
Evaluation  Eq. weight wi >0 bin=11-20  bin=21-30 bin=31-40 bin=41-50 bin=51-60 12

period m S m S m S m S m S m S m s 2
06/76-06/06 17 59 28 16 53 30 16 50 33 19 48 39 19 49 40 20 52 39 21 60 34 2’ 10
07/76-06/81 23 61 38 12 59 21 11 52 22 12 51 24 12 55 22 11 56 20 7 66 10 5 g
07/81-06/86 20 53 38 24 49 49 26 41 64 31 38 81 31 40 77 31 43 72 33 49 67 3
07/86-06/91 9 71 18 10 65 15 9 63 14 9 61 16 11 62 18 12 64 19 12 71 17 'E 6
07/91-06/96 18 34 53 19 31 61 20 29 70 22 25 8 20 28 73 22 31 70 25 36 67 2 4
07/96-06/01 16 63 26 18 52 35 18 53 35 23 52 44 29 47 61 31 50 62 34 63 54
07/01-06/06 12 64 19 11 55 21 11 53 22 15 51 29 13 51 26 13 56 23 14 64 22 1550

Fig. 1.

1990 2000
Time

Empirical results for FF48 (Upper) and FF100 (Lower). For each of the two examples, the table on the left lists the monthly mean return m, standard

deviation of monthly return o, and corresponding monthly Sharpe ratio S (expressed in %), for the optimal portfolios with equal weights for the N assets, for
binned portfolios, and for the optimal portfolio without short positions. The figures on the right show, for both examples, the number of assets Kpos. in WP,

the optimal portfolio without short positions, from year to year.

our portfolios during the past 30 years in a simulated investment
exercise.

For each year from 1976 to 2006, we construct a collection of
optimal portfolios by solving an ensemble of minimizations of the
objective function in Eq. 2 with constraints 3 and 4. For each time
period, we carry out our optimization for a sufficiently wide range
of 7 to produce an ensemble of portfolios containing different
numbers of active positions; ideally, we would like to construct
portfolios with K securities, for all values of K between 2 and 48.
As explained below, we do not always obtain all the low values of
K; typically, we find optimal portfolios only for K exceeding a min-
imal value Kyin, that varies from year to year (Fig. 1). To estimate
the necessary return and covariance parameters, we use data from
the preceding 5 years (60 months). At the time of each portfolio
construction, we set the target return, p, to be the average return
achieved by the naive, evenly weighted portfolio over the previous
5 years.

For example, our first portfolio construction takes place at the
end of June 1976. To determine R and i, we use the historical
returns from July 1971 until June 1976. We then solve the opti-
mization problem by using this matrix and vector, targeting an
annualized return of 6.60% (p = 0.0606), equal to the average
historical return, from July 1971 until June 1976, obtained by a
portfolio in which all industry sectors are given the equal weight
1/48. We compute the weights of optimal solutions w!*! for T rang-
ing from large to small values. We select these portfolios according
to some criterion we would like to meet. We could, e.g., target a
fixed total number of active positions, or limit the number of short
positions; see below for examples. Once a portfolio is thus fixed, it
iskept from July 1976 until June 1977, and its returns are recorded.
At the end of June 1977, we repeat the same process, using train-
ing data from July 1972 to June 1977 to compute the composition
of a new collection of portfolios. These portfolios are observed
from July 1977 until June 1978 and their returns are recorded.
The same exercise is repeated every year with the last ensemble
of portfolios constructed at the end of June 2005.

Once constructed, the portfolios are thus held through June
of the next year and their monthly out-of-sample returns are
observed. These monthly returns, for all the observation years
together, constitute a time series; for a given period (whether
it is the full 1976-2006 period, or subperiods), all the monthly
returns corresponding to this period are used to compute the
average monthly return m, its standard deviation o, and their ratio
m /o, which is then the Sharpe ratio measuring the trade-off, cor-
responding to the period, between returns and volatility of the
constructed portfolios.
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We emphasize that the sole purpose of carrying out the portfo-
lio construction multiple times, in successive years, is to collect
data from which to evaluate the effectiveness of the portfolio con-
struction strategy. These constructions from scratch in consecutive
years are not meant to model the behavior of a single investor; they
model, rather, the results obtained by different investors who would
follow the same strategy to build their portfolio, starting in differ-
ent years. A single investor might construct a starting portfolio
according to the strategy described here, but might then, in sub-
sequent years, adopt a sparse portfolio adjustment strategy such
as described in the next section.

We compare the performance of our strategy with that of a
benchmark strategy constituting an equal investment in each avail-
able security. This 1/N strategy is a tough benchmark because it
has been shown to outperform a host of optimal portfolio strate-
gies constructed with existing optimization procedures (2). To
evaluate the 1/N strategy portfolios for the FF48 assets, we like-
wise observe the monthly returns for a certain period (a 5-year
break-out period or the full 30-year period), and use them to com-
pute the average mean return m, the standard deviation o, and the
Sharpe ratiom/o.

We carried out the full procedure using several possible guide-
lines. The first such guideline is to pick the optimal portfolio wP°
that has only nonnegative weights w;, i.e., the optimal portfolio
without short positions. As shown in the previous section, this port-
folio corresponds to the largest values of the penalization constant
7; it typically is also the optimal portfolio with the fewest assets.
Fig. 1 reports the number of active assets of this optimal no-short-
positions portfolio from year to year. This number varies from a
minimum of 4 to a maximum of 11; note that this is quite sparse
in a 48-asset universe. The top table in Fig. 1 reports statistics to
evaluate the performances of the optimal no-short-positions port-
folio. We give the statistics for the whole sample period and for
consecutive subperiods extending over 5 years each, comparing
these with the portfolio that gives equal weight to the 48 assets.
The table shows that the optimal no-short-positions portfolio sig-
nificantly outperforms the benchmark both in terms of returns and
in terms of volatility; this result holds for the full sample period
as well as for the subperiods. Note that most of the gain comes
from the smaller variance of the sparse portfolio around its target
return, p.

A second possible guideline for selecting the portfolio construc-
tion strategy is to target a particular number of assets, or a particu-
lar narrow range for this number. For instance, users could decide
to pick, every year, the optimal portfolio that has always more than
8 but at most 16 assets. Or the investor may decide to select an

Brodie et al.
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Sharpe ratio, for the full period 1976-2006, for several portfolios: wP:, the

optimal portfolio without short positions (red); the “binned” portfolios (blue, the extent of the line covers the bin width); and the portfolios wX with a fixed
number K of active positions (green dots circled in black). In both cases wP® is indicated by a fat solid horizontal red bar, stretching from its minimum to
maximum number of assets (see also Fig. 1). In both examples, optimal sparse portfolios that allow short positions significantly outperform the evenly weighted

portfolio; in the FF100 case, they also significantly outperform the optimal no-sh

optimal portfolio with, say, exactly 13 assets. In this case, we would
carry out the minimization, decreasing t until we reach the break-
point value where the number of assets in the portfolio reaches
13. We shall denote the corresponding weight vector by w'3.

For a “binned” portfolio, such as the 8-to-16 asset portfolio,
targeting a narrow range rather than an exact value for the total
number of assets, we define the portfolio w31 by considering each
year the portfolios wX with K between 8 and 16 (both extremes
included), and selecting the one that minimizes the objective func-
tion in Eq. 1; if there are several possibilities, the minimizer with
smallest £; norm is selected. The results are summarized in Fig. 2,
which shows the average monthly Sharpe ratio of different portfo-
lios of this type for the entire 30-year exercise. For several portfolio
sizes, we are able to significantly outperform the evenly weighted
portfolio (the Sharpe ratio of which is indicated by the horizontal
line at 27%). Detailed statistics are reported in the upper table in
Fig. 1.

Notice that, according to this table, the no-short-positions port-
folio outperforms all binned portfolios for the full 30-year period;
this is not systematically true for the breakout periods, but even
in those breakout periods where it fails to outperform all binned
portfolios, its performance is still close to that of the best per-
forming (and sparsest) of the binned portfolios. This observation
no longer holds for the portfolio constructions with FF100, our
second exercise—see Fig. 2.

Example 2: FF100. Except for using a different collection of assets,

this exercise is identical in its methodology to that of FF48, so that

we do not repeat the full details here. The lower table and figure

in Fig. 1, and the right-hand figure in Fig. 2 summarize the results.
From the results of our two exercises we see that:

* Our sparse portfolios (with a relatively small number of assets
and moderate 7) outperform the naive 1/N strategy signifi-
cantly and consistently over the entire evaluation period. This
gain is achieved for a wide range of portfolio sizes, as indicated
in Fig. 2. Note that the best performing sparse portfolio we
constructed is not always the no-short-positions portfolio.

* When we target a large number of assets in our portfolio, the
performance deteriorates. We interpret this as a result of so-
called “overfitting.” Larger target numbers of assets correspond
to smaller values of 7. The ¢; penalty is then having only a neg-
ligible effect and the minimization focuses essentially on the
variance term. Hence, the solution becomes unstable and is
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ort-positions portfolio.

overly sensitive to the estimation errors that plague the original
(unpenalized) Markowitz optimization problem 1.

Numerical experiments showed that this overall behavior is
quite robust with respect to the choice of the target return.

Possible Generalizations

In this section, we describe, in brief, some extensions of our
approach. It should be pointed out that the relevance and useful-
ness of the ¢; penalty is not limited to a stable implementation of
the usual Markowitz portfolio selection scheme described above.
Indeed, there are several other portfolio construction problems
that can be cast in similar terms or otherwise solved through the
minimization of a similar objective function. We now list a few
examples:

Partial Index Tracking. In many situations, investors want to cre-
ate a portfolio that efficiently tracks an index. In some cases, this
will be an existing financial index whose level is tied to a large
number of tradable securities but which is not yet tradable en
masse as an index future or other single instrument. In such a
situation, investors need to find a collection of securities whose
profit-and-loss profile accurately tracks the index level. Such a
collection need not be a full replication of the index in question;
indeed, it is frequently inconvenient or impractical to maintain a
full replication.

In other situations, investors will want to monetize some more
abstract financial time series: an economic time series, an investor
sentiment time series, etc. In that case, investors will need to find
a collection of securities that is likely to remain correlated to the
target time series.

Either way, the investor will have at his disposal a time series of
index returns, which we will write as a 7’ x 1 column vector, y. Also,
the investor will have at his disposal the time series of returns for
every available security, which we will write as a 7 x N matrix R,
as before.

In that case, an investor seeking to minimize expected tracking
error would want to find

W = argmin||y —RwH;.
w
However, this problem is simply a linear regression of the tar-

get returns on the returns of the available assets. As the avail-
able assets may be collinear, the problem is subject to the same
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instabilities that we discussed above. As such, we can augment our
objective function with an ¢; penalty and seek instead

wil = argmin [y — Rw| 5+ lwll1],

subject to the appropriate constraints. This simple modification
stabilizes the problem and enforces sparsity, so that the index can
be stably replicated with few assets.

Moreover, one can enhance this objective function in light of
the interpretation of the ¢; term as a model of transaction costs.
Let s; is the transaction cost (bid—ask spread) for the ith security.
In that case, we can seek

witl = argmin Iy —RW”;-FT Zsi|wi|
1

By making this modification, the optimization process will “pre-
fer” to invest in more liquid securities (low s;) whereas it will
“avoid” investments in less liquid securities (high s;). A slightly
modified version of the algorithm described above can cope with
such weighted ¢; penalty and generate a list of portfolios for a wide
range of values for 7. For each portfolio, the investor could then
compare the expected tracking error per period (% ly—Rw||3) with
the expected cost of creating and liquidating the tracking portfo-
lio (3_; silwil). The investor could then select a portfolio that suits
both his risk tolerance and cost constraints.

Portfolio Hedging. Consider the task of hedging a given portfolio
using some subset of a universe of available assets. As a concrete
example, imagine trying to efficiently hedge out the market risk
in a portfolio of options on a single underlying asset, potentially
including many strikes and maturities. An investor would be able
to trade the underlying asset and any options desired. In this con-
text, it would be possible to completely eliminate market risk by
negating the initial position. However, this may not be feasible
given liquidity (transaction cost) constraints.

Instead, an investor may simply want to reduce his risk in a
cost-efficient way. One could proceed as follows: Generate a list
of scenarios. For each scenario, determine the change in the value
of the existing portfolio. Also, determine the change in value for a
unit of each available security. Store the former in a M x 1 column
vectory and store the latter in a M x N matrix, X. Also, determine
a probability, p; fori = 1,...,M of each scenario, and store the
square root of these values in a diagonal M x M matrix, P. These
probabilities can be derived from the market or assumed subjec-
tively according to an investor’s preference. As before, denoting
by s; the transaction costs for each tradable security, we can seek

Wi = argmin | [IP(y + Xw)I3 + 1 Y _silwi]
w .
1

As before, the investor could then apply one of the algorithms
above to generate a list of optimal portfolios for a wide range of
values of 7. Then, just as in the index tracking case, the investor
could observe the attainable combinations of expected mark to
market variance (|P(y +Xw)|13) and transaction cost (3_; s;|w;|).
One appealing feature of this method is that it does not explicitly
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determine the number of assets to be included in the hedge port-
folio. The optimization naturally trades off portfolio volatility for
transaction cost, rather than imposing an artificial cap on either.

Portfolio Adjustment. Thus far, we have assumed that investors
start with no assets, and must construct a portfolio to perform a
particular task. However, this is rarely the case in the real world.
Instead, investors frequently hold a large number of securities and
must modify their existing holdings to achieve a particular goal.
In this context, the investor already holds a portfolio w and must
make an adjustment A,. In that case, the final portfolio will be
w-+ Ay, but the transaction costs will be relevant only for the adjust-
ment Ay. The corresponding optimization problems is given by

Al = argngin [Ilolr — R(W + A3 + Tl Awlli]
34

s.t. AjE=0 and Ajly=0.

It is easy to modify our methodology to handle this situation.

Conclusion

We have devised a method that constructs stable and sparse port-
folios by introducing an ¢; penalty in the Markowitz portfolio
optimization. We obtain as special cases the no-short-positions
portfolios that also comprise few active assets. To our knowledge,
such a sparsity property of the nonnegative portfolios has not been
previously noticed in the literature. The portfolios we propose can
be seen as natural extensions of the no-short-positions portfolios
and maintain or improve their performances while preserving their
sparse nature as much as possible.

We have also described an efficient algorithm for computing the
optimal, sparse portfolios, and we have implemented it using as
assets two sets of portfolios constructed by Fama and French: 48
industry portfolios and 100 portfolios formed on size and book-
to-market. We found empirical evidence that the optimal sparse
portfolios outperform the evenly weighted portfolios by achieving
a smaller variance; moreover, they do so with only a small num-
ber of active positions, and the effect is observed over a range of
values for this number. This shows that adding an ¢; penalty to
objective functions is a powerful tool for various portfolio con-
struction tasks. This penalty forces our optimization scheme to
select, on the basis of the training data, few assets forming a stable
and robust portfolio, rather than being “distracted” by the insta-
bilities because of collinearities and responsible for meaningless
artifacts in the presence of estimation errors.

Many variants and improvements are possible on the simple
procedure described and illustrated above. This goes beyond the
scope of the present article which was to propose a methodology
and to demonstrate its validity.
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