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Rationale: Air pollution by particulate matter (PM) has been associ-
ated with cardiovascular deaths, although the mechanism of action
is unclear. One proposed pathway is through disturbances of the
autonomic control of the heart.
Objectives: We tested the hypothesis that such disturbances are
mediated by PM increasing oxidative stress by examining the associ-
ation between PM and the high-frequency (HF) component of heart
rate variability as modified by the presence or absence of the allele
for glutathione-S-transferase M1 (GSTM1) and the use of statins,
obesity, high neutrophil counts, higher blood pressure, and older
age.
Methods: We examined the association between particles less than
2.5 �M in aerodiameter (PM2.5) and HF in 497 participants in the
Normative Aging Study, using linear regression controlling for co-
variates.
Main Results: A 10-�g/m3 increase in PM2.5 during the 48 h before
HF measurement was associated with a 34% decrease in HF, 95%
confidence interval (�9%, �52%), in subjects without the allele,
but had no effect in subjects with GSTM1 present. Among GSTM1-
null subjects, the use of statins eliminated the effect of PM2.5. Obesity
and high neutrophil counts also worsened the PM effects with or
without GSTM1.
Conclusion: The effects of PM2.5 on HF appear to be mediated by
reactive oxygen species. This may be a key pathway for the adverse
effects of combustion particles.

Keywords: genetic polymorphisms; heart rate variability; oxidative
stress; particles

A large body of evidence has demonstrated that particulate air
pollution (PM) is associated with short-term changes in the risk
of death (1–6). An early study showed the risk of dead-on-arrival
deaths associated with particles was three times that for all deaths
(7). This suggests a predominant effect on sudden deaths from
arrhythmias and myocardial infarctions. Subsequent studies have
confirmed that PM is associated with myocardial infarctions (8, 9),
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hospital admissions for cardiovascular disease (10, 13), dis-
charges of implantable defibrillators (14), and electrocardio-
graphic disturbances (15).

How airborne particles can be producing these responses in
still unclear. However, particles have been linked with changes
in intermediate markers, such as clotting factors (16, 17) and
increased atherosclerosis (18).

Airborne particles have also been associated with changes in
heart rate variability (HRV) (15, 19). The parasympathetic and
sympathetic stimulation of the heart produces variations in the
time intervals between normal heartbeats; analysis of this vari-
ability is therefore an estimate of cardiac autonomic regulation.
HRV is a noninvasive measure that independently predicts car-
diovascular mortality in patients with and without underlying
cardiovascular disease (20, 21). Hence, disturbances in HRV
may represent one pathway by which particles might be associ-
ated with sudden death.

Overall, studies have generally found significant associations
with HRV in elderly subjects, but weaker associations in younger
subjects (22), suggesting that age-related decreases in toxic de-
fenses play a role in susceptibility. In a recent review (22), we
found the only consistent PM association was with the high-
frequency (HF) components of HRV, either HF in the frequency
domain, or root mean squared differences between adjacent
RR intervals (rMSSD) or proportion of adjacent NN intervals
differing by more than 50 ms (PNN50) in the time domain. In
contrast, low frequency was not associated with particles in four
of five studies. This suggests a paramount effect on the parasym-
pathetic nervous system. This may be because the vagus nerve
innervates the lung.

Various mechanisms by which particles exert these effects
have been proposed (23). Reactive oxygen species (ROS) have
been mentioned as a potential pathway for the adverse effects
of particles (24, 25). ROS have established importance in the
pathogenesis of cardiovascular diseases (26). Exposure to urban
particles increased ROS in a dose-dependent manner in the lung
and heart of living animals (27). It is unclear what role ROS
may play in explaining the effects of particles on autonomic
endpoints, such as defibrillator discharge and HRV. This ques-
tion may be addressed by examining the effects of particles on
HRV in populations with different host defenses to an oxidative
stress challenge. Genetic polymorphisms have been linked to
important differences in such defenses.

Glutathione pathways play a key role in cellular defenses
against ROS (28). Glutathione-S-tranferases (GSTs) are a family
of enzymes involved in the metabolism of ROS and xenobiotic
compounds.

Genetic polymorphisms of the GSTs are common, and have
been shown to modify the response to air pollutants (29). The
GSTM1 gene is deleted in approximately half of the white popu-
lation (the polymorphic “null” genotype), and lack of the
GSTM1 protein has been associated an enhanced nasal allergic
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response to diesel exhaust particles (30). Children who are
GSTM1-null and are exposed to environmental tobacco smoke
had elevated odds of developing asthma (31), and the GSTM1-
null genotype interacts with tobacco smoke in increasing the
risk of coronary disease (32).

Drugs that modify oxidant defenses may also influence suscep-
tibility to particle-induced ROS. Statins are a widely prescribed
class of drugs originally developed for their lipid-lowering proper-
ties, but they have been shown to have substantial antiinflamma-
tory and antioxidant activity as well (33). In addition to lowering
C-reactive protein concentrations (34), statins have been shown
to decrease superoxide production (35), increase release of nitric
oxide (NO) (36), which is an antioxidant as well as a vasodilator,
and reduce markers of oxidative stress in APOE�1/�1 mice (37).

We examined the association of fine-particulate air pollution
of less than 2.5 �M in aerodynamic diameter (PM2.5) on the HF
HRV of elderly subjects living in the Boston metropolitan area,
and how that association varied by GSTM1 genotype or statin
use. In addition, because statins have important effects beyond
their antioxidant properties, we examined whether obesity or
elevated neutrophil count, which are associated with inflamma-
tion and oxidative stress, also modified the association. Finally,
we examined two more generic markers of susceptibility, older
age or higher blood pressure, as modifiers of the PM effect. This
study was reviewed and approved by the institutional review
boards of all of the participating institutions.

METHODS

Study Population

The Normative Aging Study is a longitudinal study established by the
Veterans Administration in 1961, enrolling 2,280 men from the greater
Boston area who were free of known chronic medical conditions (38).
Beginning in 2000, during each participant’s regularly scheduled evalua-
tion, HRV was measured. Further details have been described pre-
viously (22). That study examined a range of air pollutants and measures
of HRV, but did not look at genetic or other factors related to oxidative
stress. It found the most consistent associations with PM2.5, and with
HRV measures indicative of a parasympathetic effect (HF, rMSSD).

HRV Measurement

HRV was measured for 7 min in a sitting position using a two-channel
(five-lead) ECG monitor (Trillium 3000; Forest Medical, East Syracuse,
NY). Only normal-to-normal (NN) beat intervals were included in the
analysis. We used the best 4-consecutive-min intervals for the HRV
calculations, and computed the HF (0.15–0.4 Hz) component of HRV
using software complying with guidelines (39). Subjects with irregular
ECG patterns that interfere with HRV estimation were excluded.

GSTM1 Genotyping. The assay consists of polymerase chain reaction
amplification of exons 4 and 5 of the GSTM1 allele. Because this polymor-
phism is a gene deletion, polymerase chain reaction product indicates
the presence of one or more copies of the gene. Further details are in
the online supplement.

Air Pollution and Weather Data

Continuous PM2.5 was measured at a monitoring site 1 km from the
exam site, using the Tapered Element Oscillating Microbalance
(TEOM, model 1400A; Rupprecht & Pataschnick, Albany, NY), with
a season-specific correction to compensate for the loss of semivolatile
mass (40). Weather measurements were obtained from the airport
weather station.

To control for outdoor weather, we used apparent temperature,
defined as a person’s perceived air temperature, given the humidity
(41). We used the average of PM2.5 concentrations in the 48 h before
examination as our exposure index, because that exposure period has
been most consistently associated with sudden death (4, 5).

Statistical Methods

HRV was log10-transformed to improve normality and stabilize the
variance. The following variables were chosen a priori and included in
the linear regression analysis: age, cigarette smoking, body mass index,
diastolic blood pressure, fasting blood glucose, alcohol consumption
(� 2 drinks/d), use of �-blockers, angiotensin-converting enzyme inhibi-
tors, and/or calcium channel blockers, season, room temperature, and
average apparent temperature 48 h before the HRV measurement.
We used a spline with 3 degrees of freedom to account for potential
nonlinearity in the relationship between apparent temperature and
HRV. After 14 subjects with missing values of covariates were excluded,
497 subjects were available for the analyses.

Stratified regression models examined subjects with and without the
GSTM1 gene, with and without statin use, and by the four possible
combinations of genotype and statin use. Stratified analyses were also
done, in turn, by the four possible combinations of GSTM1 gene and
by whether or not the subjects were in the most adverse quartile of
neutrophil count, blood pressure, or age, or whether they had a body
mass index above 30.

RESULTS

Table 1 shows the demographic and clinical characteristics and
HRV measurements of the subjects, as well as environmental
variables. The study participants were all male, and their average
age was 72.7 yr (SD, 6.6 yr). The correlation between tempera-
ture and particle concentrations was modest (0.35).

In a model including all subjects, and the covariates listed
above, a 10-�g/m3 increase in PM2.5 was associated with a 27%
decrease in HF (95% confidence interval, �8%, �42%). Note
that the interquartile range for PM2.5 in these data was 7 �g/m3.
When stratified by GSTM1 status, no relationship of PM2.5 and
HF was seen in persons with the gene, whereas a significant
association (34% decrease; 95% confidence interval, �9%, �52%)

TABLE 1. DESCRIPTIVE STATISTICS OF THE VARIABLES
(MEAN [SD] OR NUMBER [%])

Variable All Subjects (n � 497 )

Age, yr 72.7 (6.6)
Body mass index, kg/m2 28.3 (4.1)
Diastolic blood pressure, mm Hg 75.7 (9.4)
Heart rate, beat/min 70.7 (6.7)
Fasting blood glucose, mg/dl 108.0 (29.0)
Cholesterol, mg/dl 197.0 (37.6)
HDL, mg/dl 49.7 (13.5)
Smoking status, n (%)

Never smoker 160 (32.2)
Former smoker 311 (62.6)
Current smoker 26 (5.2)

Alcohol intake (� 2/day), n (%) 96 (19.3)
Hypertension, n (%) 335 (67.4)
Use of �-blocker, n (%) 163 (32.8)
Use of Ca-channel blocker, n (%) 70 (14.1)
Use of ACE inhibitor, n (%) 100 (20.1)
Use of statins, n (%) 179 (36)
Neutrophil count (% of cells) 62 (8.8)
Heart rate variability

Log10 HF, ms2 1.9 (0.66)
Environmental variables

PM2.5, �g/m3 11.4 (8.0)
Apparent temperature, �C 11.4 (9.9)
Room temperature, �C 24.5 (1.4)

Definition of abbreviations: ACE � angiotensin-converting enzyme; HDL � high-
density lipoprotein; HF � high frequency; PM2.5 � particulate matter less than
2.5 �M in aerodiameter.

Values are listed as mean (SD) or numbers (%).
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Figure 1. The estimated covariate-adjusted percentage decrease in the
high-frequency (HF) component of heart rate variability (and 95% confi-
dence interval) that is associated with a 10-�g/m3 increase in concentra-
tions of particles less than 2.5 �M in aerodiameter (PM2.5) is shown for
persons with (G0) and without (G1) the deletion of the GSTM1 gene
(left side), and for persons with (S1) and without (S0) statin use (right
side). The covariates controlled were age, cigarette smoking, body mass
index, diastolic blood pressure, fasting blood glucose, alcohol consump-
tion, use of �-blockers, use of angiotensin-converting enzyme inhibitors,
use of calcium channel blockers, season, room temperature, and out-
door temperature. The numbers below the labels are the number of
subjects in each analysis.

was seen in subjects with the GSTM1 null deletion (Figure 1).
Similarly, when stratified by statin use, only subjects not taking
statins evidenced diminished HF in the presence of elevated
PM2.5 (Figure 1). When the data were analyzed by strata of both
GSTM1 status and statin use, GSTM1-null subjects who were
taking statins were protected against the effect of PM2.5, which
was only present in subjects with the gene deletion who were
not taking statins (Figure 2, Table 2).

The two other potential effect modifiers that we hypothesized
were more strongly related to oxidative stress showed similar
patterns of effect modification (Table 2). For subjects with obe-
sity or higher neutrophil counts, there was some effect of parti-

Figure 2. The estimated covariate-adjusted percentage decrease in the
HF component of heart rate variability (and 95% confidence interval)
associated with a 10-�g/m3 increase in PM2.5 concentrations is shown
for persons who are (S1) and are not (S0) taking a statin, with (G0) or
without (G1) the deletion of GSTM1. The covariates controlled are as
in Figure 1. The number of subjects in each category is listed below the
category label.

cles, even with the GSTM1 gene, and an enhancement of the
PM2.5 effect for persons both without the gene and with the other
oxidative stress–related effect modifier. In contrast, older age
did not modify the PM2.5 effect in subjects with or without the
gene. Higher blood pressure was intermediate, showing some
indication of a PM2.5 effect in subjects with the gene, and a
modest enhancement of the effect in subjects without the gene.

DISCUSSION

We found that the association between PM2.5 and reduced HF
is only evident in persons missing the allele for GSTM1 or in
persons likely to have greater than average baseline systemic
inflammation and oxidative stress, such as in obese individuals.
Furthermore, among GSTM1-null subjects, statins were protec-
tive against the effects of PM2.5. In nonobese subjects, we saw
effect modification by GSTM1, but the response was almost
doubled in obese subjects who were GSTM1 null. Being in the
upper quartile of neutrophil counts also substantially increased
the PM2.5 effect in subjects who were GSTM1 null.

These results suggest that the confluence of two factors re-
sulting in increased levels of or impaired defenses against oxida-
tive stress results in even greater response to particles.

Although GSTM1, obesity, increased neutrophils, and statins
involve several physiologic pathways, the striking observation
that statins counter the susceptibility to PM2.5-associated reduc-
tions in HF conferred by the GSTM1 deletion, and that the
genotype interacts with obesity and increased neutrophil counts,
suggests there exists a common mechanism of action. It seems
likely that ROS (a common mechanism of action of these mod-
ifiers) plays an important role in this response. Obesity is known
to increase systemic inflammation and oxidative stress, and in-
creased neutrophil count is also a marker of systemic inflamma-
tion. That subjects with those conditions had a response to PM2.5

even in the presence of GSTM1, but an enhanced response in
its absence, also suggests a central role of inflammation and
oxidative stress in the autonomic effects of PM2.5.

TABLE 2. EFFECT OF A 10-�g/m3 INCREASE IN PM2.5 ON
HIGH FREQUENCY BY STRATA OF GSTM1 AND OTHER
POTENTIAL EFFECT MODIFIERS

Change 95% Confidence
Category (% ) Interval n

GSTM1 null, no statin �34.0 �53.0, �7.20 162
GSTM1 null, statin �6.4 �66.5, 161.9 81
GSTM1 present, no statin �3.6 �40.5, 56.2 117
GSTM1 present, statin �3.2 �50.0, 87.2 81
GSTM1 null, high neutrophils* �55.7 �88.0, 63.1 64
GSTM1 null, normal neutrophils† �36.1 �55.2, �8.7 179
GSTM1 present, high neutrophils* �49.6 �86.4, 86.1 51
GSTM1 present, normal neutrophils† 17.6 �20.0, 73.0 147
GSTM1 null, obese‡ �57.3 �88.0, 52.0 61
GSTM1 null, not obese§ �31.0 �50.6, �3.6 182
GSTM1 present, obese‡ �34.2 �77.9, 96.5 54
GSTM1 present, not obese§ 7.5 �29.7, 64.3 144
GSTM1 null, older* �37.0 �64.9, 13.0 63
GSTM1 null, younger† �33.1 �55.3, 0.3 180
GSTM1 present, older* �7.6 �57.1, 98.8 49
GSTM1 present, younger† �0.3 �41.6, 70.1 149
GSTM1 null, higher blood pressure* �47.3 �81.0, 45.7 59
GSTM1 null, lower blood pressure† �34.9 �54.7, �6.5 184
GSTM1 present, higher blood pressure* �21.1 �76.4, 164.4 48
GSTM1 present, lower blood pressure† �8.7 �40.0, 38.9 150

* Upper 25th percentile of the distribution in the study population.
† Lower 75% of the distribution in the study population.
‡ Obesity: body mass index of 30 kg/m2 or greater.
§ Body mass index � 30 kg/m2.
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Particles increase ROS production, perhaps in a catalytic fash-
ion via redox cycling (24, 25, 27). A recent follow-up to the study
that showed particles induced ROS in the lung and heart (27)
found that administration of N-acetyl cysteine, a glutathione pre-
cursor, blunted that effect (42). Those results suggest an important
role of the glutathione pathway in the defense against urban
particles.

Particles induce proinflammatory mediators such as cytokines
in the lungs (24, 43), and increase extracellular calcium influx,
possibly through activation of calcium channels in the plasma
membrane (44). Recently, particle exposure has been shown to
increase circulating levels of asymmetric dimethylarginine, an
endogenous inhibitor of NO synthase that is associated with
impaired vascular function and increased risk for cardiovascular
events (45). This suggests that NO concentrations may be im-
paired after particle exposure. This fits in well with the observa-
tion that statins, which blocked the effects of PM2.5 in this study,
enhance NO release. In general, all three PM-associated impair-
ments have been linked with an increase in sympathetic and a
reduction in vagal tone (46–48).

Nevertheless, we cannot rule out the importance of other
pathways in the modification of the PM2.5 effects. Statins are
associated with lower risk of arrhythmic events (49) and in-
creased HF component of HRV (50). The mechanisms of this
antiarrhythmic properties are unclear, but may include enhanced
NO synthase (51), decreased endothelin-1 (52), or other path-
ways not yet understood. Similarly, obesity affects many meta-
bolic pathways, and does not merely increase inflammation.

We have also demonstrated that questions of mechanism of
action of environmental agents, often considered the domain
of toxicology, can also be addressed in humans using gene by
environment, gene by drug by environment, and gene by pheno-
type by environment interactions. Although there are limitations
to this approach, the ability to study the species of interest
in the exposure range of interest makes it a valuable tool for
examining mechanisms of environmental toxins.

There are a number of limitations to this analysis. First, we
have used PM2.5 concentrations at a single monitoring site as a
surrogate for recent exposure to PM2.5. A recent study comparing
personal exposures to monitoring at the same site, in several
panels of subjects, reported a high longitudinal correlation be-
tween the monitor’s readings and personal exposure (53). In
addition, PM2.5 concentrations have been shown to be spatially
homogeneous over the Boston area, suggesting that this is a
reasonable approximation, and the error is likely to be nondiffer-
ential (53). Other genes affect responses to ROS, and our find-
ings suggest that these also may play a role in individual response
to air pollution–induced morbidity and/or mortality. We believe
our current findings provide further evidence that ROS are an
important pathway for particle toxicity.
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