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ABSTRACT

Motivation: Optimizing HIV therapies is crucial since the virus rapidly
develops mutations to evade drug pressure. Recent studies have
shown that genotypic information might not be sufficient for the
design of therapies and that other clinical and demographical factors
may play a role in therapy failure. This study is designed to assess the
improvement in prediction achieved when such information is taken
into account. We use these factors to generate a prediction engine
using a variety of machine learning methods and to determine which
clinical conditions are most misleading in terms of predicting the
outcome of a therapy.

Results: Three different machine learning techniques were
used: generative-discriminative method, regression with derived
evolutionary features, and regression with a mixture of effects.
All three methods had similar performances with an area under
the receiver operating characteristic curve (AUC) of 0.77. A set
of three similar engines limited to genotypic information only
achieved an AUC of 0.75. A straightforward combination of the three
engines consistently improves the prediction, with significantly better
prediction when the full set of features is employed. The combined
engine improves on predictions obtained from an online state-of-
the-art resistance interpretation system. Moreover, engines tend to
disagree more on the outcome of failure therapies than regarding
successful ones. Careful analysis of the differences between the
engines revealed those mutations and drugs most closely associated
with uncertainty of the therapy outcome.

Availability: The combined prediction engine will be available from
July 2008, see http://engine.euresist.org

Contact: rosen@il.ibm.com

1 INTRODUCTION
1.1 Treating HIV patients

Most of the antiretroviral compounds used to treat HIV patients
belong to one of three classes: protease inhibitors (PI), nucleotide
reverse transcriptase inhibitors (NRTI) and non-nucleotide reverse
transcriptase inhibitors (NNRTI). Mutations in the target protein
confer resistance to the drug targeting that protein. Although various
HIV subtypes exist, our study focuses on subtype B, which is
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prevalent in Europe. Today, highly active antiretroviral therapy,
known as HAART, is commonly used for treating HIV patients.
A typical HAART comprises three to four carefully selected drugs
from at least two different drug classes. This approach is designed
to minimize the probability that the virus will develop escape
mutations.

1.2 The EuResist dataset

The EuResist integrated database (IDB) combines the ARCA
database (Italy),! AREVIR database (Germany; Roomp et al.,
2006) data coming from the Karolinska Infectious Diseases and
Clinical Virology Department (Sweden), and a smaller dataset from
Luxembourg. The EuResist database comprises records of 18K
different patients and 65 K different therapies, of which 3K therapies
contain genotype information. The information for the 18K different
patients includes demographic data records such as gender, race
and age, with the anonymization of patients data carried out before
the data is stored in the IDB. Clinical measures of the disease
state, such as viral load (VL) and CD4+ cell counts, are collected
for each patient and for some of the therapies around a treatment
switch. Sequence information of HIV protease (PRO) and reverse
transcriptase (RT) obtained from genotypic resistance tests are also
provided. A standard datum (SD) format was designed to define
the characteristics of successful and failing therapies, respectively
(minimal treatment length, handling of overlapping therapies, etc.).
The SD format is also used to define which genotype and VL
tests serve as baseline measures and are therefore associated with a
therapy switch, and which follow-up VL is associated with a therapy
outcome (8 weeks from the start of a therapy). Each therapy with
a baseline and a follow-up VL is labeled a success if there is a
drop of 2 log in VL or a drop below detection level (500 copies
per milliliter); otherwise, the therapy is labeled as a failure. This
process of generating a standard datum was motivated by the need
to develop an online engine that performs as a decision support
system and can recommend a drug combination for a patient. To
this end, a minimal requirement for a prediction engine is defined
containing the genotypic sequence for the two viral target proteins;
the remaining information is treated as optional or maximal set of
features.

'http://www.hivarca.net/
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1.3 Mutations

The HIV virus has a high mutation rate. In principle, all (about
10000) positions in the viral genome are candidates for mutations.
In particular, the related 99 amino acid positions of the PRO and the
440 amino acid positions of the RT have high mutation rates. This
leads to an exceedingly high dimension. A prediction engine taking
the whole relevant protein sequence into account is likely to suffer
from the curse of dimensionality. One possibility of circumventing
this problem is to make use of a predefined list of mutations expected
to have the most significant effect on the therapy’s outcome. The
International Aids Society (IAS) maintains a constantly updated
reference mutation list, known as IAS mutations, of the mutations
of PRO and RT sequence (and additional new viral target proteins)
that are known to play a role in drug resistance (Johnson et al.,
2007). Indeed, if we count the number of such mutations in our
data, separating failure therapies from successful ones, the baseline
genotype of failing therapies has on the average 3.1+1.4 IAS
mutations, while successful therapies have 2.2+1.2 (Fig. 1). Finally,
we find a highly significant correlation between the number of IAS
mutations and successful therapies (using an indicator variable with
1 for successful therapy and O for failure), correlation of —0.32
(with P-value < 10~39). In our prediction engines described below,
the list of IAS mutation was a natural candidate feature and in some
of the engines this is the set of features picked for representing the
protein sequences.

1.4 Related work

As soon as resistance to antiretroviral drugs was discovered, the need
for tools to detect drug resistance arose. The majority of available
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Fig. 1. Number of IAS mutations in HIV genotypes submitted to drug
therapies.

Interpretation Systems (IS) work with hand-crafted tables (such as
the IAS list) for every drug compiled by experts. These tables are
used to classify the virus as susceptible or resistant to a single
drug. These rules are built using expert knowledge from clinical
experience and recently they incorporate experimentally generated—
genotype—phenotype information. Some IS are completely data-
driven rather than based on expert knowledge. For example,
geno2pheno (Beerenwinkel et al., 2003) and VirtualPhenotype
(Vermeiren et al., 2007) apply machine learning methods to predict
in vitro drug resistance from the viral genotype. Recently published
(data-driven) tools are able to predict in vivo response to a
combination of antiretroviral drugs rather than single compounds.
In Larder et al. (2007), committees of Artificial Neural Networks
are used to predict the change in VL after treatment start, apart from
information about the viral sequences and the intended regimen,
CD4+ counts, baseline VL and four treatment history indicators
that are used as input features. This approach was trained and
validated on 1150 and 100 treatment change episodes, respectively.
Geno2pheno-THEO by Altmann et al. (2007), another online tool,
predicts the success probability of a putative treatment based on
sequence information and the estimated genetic barrier of the viral
variant to resistance against every drug in the combination therapy.
However, geno2Pheno-THEO does not make use of information
about the patient or other available clinical markers. In comparison
to these two systems, our approach is able to predict the success
probability of a regimen as well as the change in VL. Most
important, our prediction system makes use of the fact that it
employs three different highly optimized individual systems to
provide a more robust prediction, i.e. one with a smaller variance
in prediction accuracy and AUC scores, allowing us to gain
further insight in the treatment—outcome relationship as this study
demonstrates.

2 MATERIALS AND METHODS

We trained three separate engines. Each can be viewed as being composed of
two layers, with a layer of feature generation and selection embedded within
a discriminative method such as logistic regression, support vector machines
(SVMs) or random forests. As logistic regression, compared with the other
methods, requires much less parameter tuning efforts and performs similarly
to the other two in the tests we carried out, we use logistic regression for the
top layer and the engines differ in the type of features derived. We use the
following three approaches:

1. Evolutionary models
2. Generative models

3. Mixture of effects

Given a core set of features selected by one of the methods above, we devoted
extensive studies to figure out what other features, and in what format, should
be added to the core set of extracted features to achieve a separate good
performing engine. The result is a set of three engines—evolutionary engine
(EV), a generative discriminative (GD) engine and a mixture of effects engine
(ME).

Each of the engines is trained twice, once with the restriction that only
drugs in the regimen and genotype information about the two viral targets are
available (minimal feature set) and once with no such restriction (maximal
feature set). In addition to these six engines aimed at binary classification, the
prediction of the label of a therapy (success/failure), we train three engines
with a target of predicting the drop in VL, i.e. regression (the minimal feature
set is less adequate for this target of predicting change of VL as it requires
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not employing baseline VL). Each of these three additional engines uses
the same set of derived features as those used for classification, obtains the
baseline VL and predicts the drop of the VL. To simplify the discussion
hereafter we focus on the classification case. Models and methods are very
similar in the regression case. We provide results for all cases.

Each labeled therapy in the IDB contains information about antiretroviral
drugs administered to the patient in the past, the drugs of the current therapy
and past and current genotypic data. The additional demographic and clinical
data types provided are listed in Table 1. There are 3023 such therapies
of which 10% are set aside for testing purposes and 2722 are used for
training. The test set is composed of a random selection of 10% of the
failing therapies and 10% of the successful therapies and is neither used for
feature selection nor for model selection. In addition, there are 17K labeled
therapies that do not have a related genotype. In this article they are referred
to as the incomplete labeled set. The engines generate predictions of a label
to a therapy and provide the probability of therapy success. Later they are
combined together to provide a single prediction.

2.1 Raw features in the IDB

All features defined in the SD, except for current and past drugs and
genotype, are shown in Table 1. The table shows the minimal and maximal
values for each of the features, the correlation with the therapy label, and
the related P-value. We also apply the Kolmogorov—Smirnov (KS) test
to check which features are distributed differently in the failure therapies
and in the successful ones (second P-value in the parenthesis). In cases
where the feature is categorical we use the yx2-test instead. All P-values are
adjusted with Bonferroni correction. The three measures—correlation, its
related P-values and a P-value for rejecting the null hypothesis that there
is no association between the values of the feature and success/failure—
are derived for all therapies in the training set/incomplete labeled set
(third/fourth column, respectively). The features are sorted by correlation
in ascending order. The first item is the number of past treatment lines;
the more therapy switches in the patient’s history, the more likely the
current therapy will fail. The second, ‘RISKID’ stands for the infection risk
group; this seems to be an indicator of whether a therapy will succeed or
not. Although medically there is no reason that the manner of infection
will impact response to treatment per se, it is known that intravenous
drug abusers can experience less effective therapy due to lower adherence
to the regimen or interplay with drug they abuse. Gender IDs stand for
mail/female/undifferentiated/unknown; it does not seem to be directly related
to the success/failure of a therapy.

Note that the two bottom rows in the table with the highest correlation
are not defined as optional features in the SD. One row stands for the
DATABASEID. The databases have different ratios of success/failure.
This most likely occurs because some of the databases collect records
of patients who visit clinic centers known to be specialized in HIV

Table 1. IDB data fields

treatments and represent harsher cases as compared to ‘regular’ hospitals.
This results in a high correlation between the DATABASEID and the
success/failure. In order to be able to generalize for any patient, this
feature was never exposed to the engines. Similarly, the field ALL
TREATMENTS RECORDED is ignored. Value ‘1’ in this field stands
for the event that the patient’s record is complete with regards to past
treatments, ‘0’ stands for incomplete. The correlation in the table means
that not knowing the patient’s history records is an indication that the
therapy is more likely to fail. This presumably mirrors scenarios in
which patients change from a local clinic to a specialized clinic due
to acute disease condition (and hence having partial records in the new
clinic).

The standard datum drugs are listed in Table 2. The number of therapies in
which each of the antiretroviral drugs is administered is provided in the ‘Occ’
column. The number in the brackets stands for the number of therapies from
the incomplete labeled set in which the drug occurs. We derive the success
rate as obtained from the training set (and as obtained from the incomplete
labeled set) for cases where that drug is administered (‘SR with’, second
column) and for cases where the therapy does not contain the specific drug
(‘SR without’, third column). The consistent lower success rate of the training
set comparing with the incomplete labeled set is due to the bias by which
the training set is selected—therapies that present a greater challenge than
ususal and hence genotypic sequence is tested. We also provide P-values of
x2-tests of whether the success/failure rate of a therapy is similar when the
drug is part of the HAART and when it is missing. P-values lower than 0.05
are provided after adjustment of Bonferroni correction.

2.2 Evolutionary engine

This engine focuses on the development and use of evolutionary features.
As stated before, one major obstacle in HIV-1 treatment is the virus’s escape
from drug therapy by developing resistance mutations. In order to accurately
predict the outcome of an antiretroviral therapy information about viral
evolution has to be presented to the underlying statistical learning method.
Our representation of the viral evolution is based on mutagenetic trees.
Briefly, the mutagenetic tree is reconstructed from all pairwise probabilities
of defined events. Here, these events are occurrences of drug resistance
mutations in the viral genome. Hence, a mixture of reconstructed mutagenetic
trees represents possible resistance pathways along with probabilities for
the development of the participating mutations. Using these trees we can
compute the so-called genetic barrier to drug resistance by calculating
the probability of the virus not to develop further mutations leading to a
complete phenotypic resistance to that drug. A complete resistance pattern
is observed if on average viruses with that mutational pattern exceed a certain
level of phenotypic drug resistance. Here the cut-offs used by geno2pheno
(Beerenwinkel et al., 2003) were applied. In previous work Altmann et al.
(2007) could show that using the genetic barrier significantly improves the

Field [min max] Corr (training data) Corr (full labeled set)
NUMBER OF PAST TREATMENT LINES [028] —0.26 (8.0x 1072, 1.1 x 10~%7) —0.15 (0, 0)

RISKID [16)2 —0.04 (-, 43x107% —0.03 (1.3x1073,0)
GENDERID [1472 -0.02 (-, -) 0.00 (-, -)

AGE [1102] 0.01 (-, -) 0.04 (1.0x 1077, 5.6x10~1)
BASELINE VL [34 7656900] 0.01 (-, 6.8 x 10711) 0.01 (-, 0)

BASELINE CD4 [0 4411] 0.06 (-, -) 0.15 (0, 0)

BASELINE CD4 PERCENT [0 70] 0.06 (-, 9.0x 1073) 0.17 (0, 0)

ALL TREATMENTS RECORDED [01)2 0.10 (9.3x107%,5.4x1073) 0.12(7.2x1074,0)
DATABASEID [1 472 0.12 (7.4x107%, 1.5x 10710) 0.17 (0, 0)

P-values are provided in parenthesis only if they are below 0.05, — stands for higher values.

4Categorical data, the xz—tesl, second in parenthesis, is more informative.
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Table 2. Drugs and the associated success rate

Drug Class Occ SR with SR without x2-test

DDC NRTI 28 (343) 0.36 (0.43) 0.67 (0.69) )

APV PI 77 (344) 0.36 (0.40) 0.68 (0.69) 2.8x107° (0)
SQV PI 195 (1560) 0.50 (0.49) 0.68 (0.70) 4.4x107° (0)
RTV PI 130 (1035) 0.56 (0.57) 0.67 (0.69) - (1.1x10712)
DA4T NRTI 715 (5949) 0.57 (0.60) 0.70 (0.72) 4.6x107° (0)
NFV PI 235 (2329) 0.57 (0.65) 0.68 (0.69) - (=)

IDV PI 193 (2322) 0.58 (0.67) 0.68 (0.69) - (=)

DDI NRTI 864 (4943) 0.59 (0.60) 0.70 (0.71) 1.2x 1073 (0)
NVP NNRTI 308 (2221) 0.63 (0.68) 0.67 (0.69) - (=)

ABC NRTI 484 (3755) 0.67 (0.75) 0.67 (0.67) - (0)

TDF NRTI 1053 (4711) 0.70 (0.73) 0.65 (0.67) — (9.8x10710)
TC3 NRTI 1676 (13168) 0.70 (0.71) 0.63 (0.64) 2.8x 1073 (0)
RTVB PI 1600 (6868) 0.72 (0.74) 0.61 (0.66) 6.6x 1077 (0)
LPV PI 1108 (4156) 0.73 (0.73) 0.64 (0.67) 1.3x107% (2.9x10710)
ATV PI 271 (1643) 0.73 (0.81) 0.66 (0.68) )

EFV NNRTI 526 (3524) 0.73 (0.78) 0.66 (0.67) )

FPV PI 118 (449) 0.74 (0.73) 0.67 (0.69) - (=)

AZT NRTI 970 (7536) 0.76 (0.74) 0.63 (0.65) 1.0x 10711 (0)
FTC NRTI 242 (1194) 0.80 (0.88) 0.66 (0.67) 1.6x1073 (0)

— stands for P-value higher than 0.05, 0 stands for P-value lower than 10~20 and SR stands for the success rate with and without the drug.

prediction of therapy response. Thus, the genetic barrier to drug resistance
is computed for every single drug in the putative regimen given the viral
sequences, and is together with other features, like indicators for single
drugs in the treatment, the viral genotype as represented by indicators for
TAS mutations, the treatment history, second order interactions between these
features and the baseline VL input to a logistic regression (linear regression
for the regression task). To select the features used in the final engine, a
simple feature selection approach based on SVMs was applied. The approach
works in three steps: first, the cost parameter of a linear SVM is optimized by
maximizing the AUC (correlation for regression) in a 10-fold cross validation
setting; second, 25 different linear SVMs are generated by five repetitions of
5-fold cross-validation using the optimized cost parameter; third, all features
having a mean z-score larger than two were kept for use in the final model.

2.3 GD engine

This engine develops and applies generative models of the interactions
between current and history antiretroviral drugs. It is well known that
subsequent use of previously employed and closely related drugs may be
inefficient (see e.g. Piliero, 2003; Siliciano, 2001). Generative models are
powerful when some expert knowledge for guidance of the design of the
network is available (Pearl, 1988). In this case we have 20 drugs naturally
divided into three classes, PI, NRTI and NNRTI. A number of candidate
networks containing nodes representing the drugs individually and/or the
drug classes are tested using 10-fold cross-validation with 20 divisions on a
large training set. The data available for training is the incomplete labeled set
along with the training dataset, a total of about 20000 therapies. The network
selected is shown in Figure 2. Root node and all leaves are binary nodes
standing for success/failure, existence/not existence of a drug in current
therapy, respectively. The three nodes in the middle are discrete nodes that
stand for the count of number of history drugs adhered by the patient, a
separate count per drug class. Each of these three nodes is a parent to the
drugs from the related class. This Bayesian network, with no other features
like genotype, yields an AUC of 0.716 & 0.001, it outperforms a Naive Bayes
network trained with six leaves—count for history and current drugs (AUC
of 0.698 £ 0.002) and many other alternative networks.

This core generative engine generates a prediction of success/failure, a
number in the range [0 1] that is used as a trained feature. On top of it

a second layer of discriminative engine is trained. The second layer engine
uses logistic regression, and all candidate features from the data are tested for
their contribution to this second layer. The features selected to stand for the
genotype mutations are mutations with high correlation with success/failure,
20/25 mutations of PRO/RT in the baseline genotype and five mutations
appearing in history genotype, see the Appendix for more details. The final
list of features used in the generative discriminative engine contains, in
addition to the above features, the 20 compounds, baseline VL and number
of past treatment lines.

In a similar process a generative discriminative engine is developed for
the case of the minimal feature set. The best performing Bayesian network is
similar to the one in Figure 2, except that the middle layer with history drugs
is replaced by an indicator that is 0/1 if the drug belongs/does not belong to a
drug class. This Bayesian network alone results with AUC of 0.672 & 0.001,
it outperforms a naive Bayes network trained with 20 leaves that stand for the
drugs (AUC of 0.654 4 0.001) and a logistic regression engine trained on the
same features (AUC of 0.662 £ 0.001). The top layer of logistic regression
engine trained on clinical genomic data with the 20 drugs, 20/25 mutations
selected based on correlation with VL drop of PRO/RT results in AUC of
0.744 £ 0.003. This performance improves when to that the single Bayesian
network trained feature is added—AUC of 0.749 4 0.003.

2.4 Mixture of effects engine

This engine takes second- and third-order variable interactions into account.
The mixed-effects engine explores logistic regression for classification of
virological success and multiple linear regression for regression of actual VL
change.
Second- and third-order variable interactions were set up taking into
account the following mixed effects:

. drug x mutations
. mutations X mutations
. drug x drug

. drug x drug x mutations

[ N S

. drug x drug x drug
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Fig. 2. Bayesian network used in the GD engine.

The following are additional features included in the engine: information of
past treatments, using either a continuous exponentially decreasing function
or a binary indicator for each drug class; epidemiological information (such
as risk factor, country of infection, age, sex, ...); clinical markers (viral RNA
load and CD4+ cell counts) and viral subtypes [assessed through BLAST
(Altschul et al., 1990) scores on a reference data base of viral subtypes].

The engine was fed with the clinical, epidemiological and all genomic
data (more than 500 mutations), with the mixed effects added (thousands
of interaction variables). The modeling required a strong effort in feature
selection, since the input attribute space ranged from hundreds to thousands
of variables. The feature selection techniques used were: (i) filters, using
univariable analysis ()2-rank-sum tests) and correlation-based feature
selection (CFS; Hall, 1998); (ii) embedded methods, using AIC selection
(Akaike, 1974) and ridge shrinkage (Hoerl, 1962; Le Cessie et al., 1992).

For both classification and regression, 10-fold cross-validation was
executed multiple times, in order to obtain a Gaussian distribution that could
be compared with a z-statistic (adjusted for sample overlap and multiple
testing), useful in model comparison or model selection (Nadeau et al.,
2000). The models were tested using different feature spaces and different
loss functions (accuracy, AUC).

2.5 Results

Prediction results of the regression engines are provided in Table 3. Averaged
correlation between actual and predicted change in log(VL) as obtained from
the 10-fold cross-validation test (and SD) are provided for the training and
the test datasets (first two columns); the same partition of 10-folds is used
with each of the engines. Means squared error of the predictions are also
provided.

Prediction results of the six classification engines are provided in Table 4.
AUC and accuracy, i.e. 1-misclassification error, on the training dataset are
derived from 10-fold cross-validation tests, SD is provided in parentheses.
Results on simple combinations of engines are also provided. Note the
consistent decrease in SD when AUC and accuracy measures of combinations
of engines are derived, this means that an engine that is a resultant of
a combination of the three engines provides a more robust prediction. In
Figure 3 we compare the failures and successes of the three engines (training
and test data altogether) separately for the case where the therapy failed
and for the case where the therapy succeeded. When a single engine is

Successful Therapies
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OEV wrong
W All correct B GD wrong
O ME wrong
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EME wrong WAIl correct

B GD wrong
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2

EEV correct
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Fig. 3. Comparison of success/failure of the three engines.

referred as correct (wrong) in the figure it means that the other two are wrong
(correct). We find two interesting effects: (a) all engines tend to provide the
same wrong answer on failure therapies more than on successful ones and
(b) inconsistency among engines on failure therapies is much larger than
the cases of successful therapies. We discuss these observations in the next
section.

A combined engine is derived by taking the average probability of
successful therapy obtained from each of the engines. It seems to have the
best performance as measured by accuracy and AUC (Table 4). The accuracy
of this combined engine when a maximal feature set used is significantly
higher than when a minimal set feature set is used. A paired 7-test results in a
P-value of 0.00013/0.048 on training/test dataset, respectively. The P-value
on the test set is reduced because fewer samples are available.

Furthermore, we compare the performance of the three engines and the
combined engine with Stanford’s online available (http://hivdb.stanford.edu)
Interpretation System (IS) version 4.3.2 (De Luca et al., 2006).This system
is widely used to classify a virus to be resistant against single drugs. Unlike
in other expert algorithms individual scores are assigned to mutations in the
genotype. The scores are derived from publications and from genotype—
phenotype data. In this way the stanford system can be seen as an
expert-derived linear regression model for resistance against single drugs.
Comparison to a system that predicts therapy response to a combination
of drugs was not possible, since the system by Larder et al. (2007), is not
freely available. We extracted the nucleotide sequences for the test data from

Table 3. Log VL prediction results

Model Correlation Mean squared error
Train Test Train Test
GD 0.658 (0.023) 0.657 0.586 2.519
EV 0.679 (0.020) 0.678 0.602 2.745
ME 0.664 (0.023) 0.642 0.863 1.723
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Table 4. Binary prediction results

Model AUC Accuracy
Train Test Train Test

Minimal feature set

GD 0.747 (0.027) 0.744 0.745 (0.024) 0.724
EV 0.766 (0.030) 0.768 0.754 (0.031) 0.748
ME 0.758 (0.019) 0.745 0.748 (0.031) 0.757
Combined minimal
Min 0.771 (0.020) 0.765 0.746 (0.027) 0.761
Max 0.760 (0.023) 0.765 0.742 (0.030) 0.731
Median 0.773 (0.020) 0.766 0.759 (0.027) 0.766
Mean 0.777 (0.020) 0.772 0.760 (0.024) 0.744
Majority 0.683 (0.023) 0.660 0.759 (0.027) 0.738
Product 0.776 (0.020) 0.772 0.759 (0.025) 0.744
Oracle* 0.914 (0.015) 0.911 0.842 (0.025) 0.844
Maximal feature set
GD 0.768 (0.025) 0.760 0.752 (0.028) 0.757
EV 0.789 (0.023) 0.804 0.780 (0.032) 0.751
ME 0.762 (0.021) 0.742 0.754 (0.030) 0.757
Combined maximal
Min 0.792 (0.021) 0.793 0.760 (0.030) 0.764
Max 0.779 (0.021) 0.779 0.757 (0.030) 0.741
Median 0.789 (0.029) 0.786 0.768 (0.029) 0.761
Mean 0.794 (0.019) 0.793 0.780 (0.028) 0.781
Majority 0.697 (0.027) 0.683 0.768 (0.029) 0.761
Product 0.794 (0.019) 0.795 0.780 (0.027) 0.771
Oracle* 0.917 (0.013) 0.920 0.850 (0.022) 0.860

*Assuming that miraculously the combined engine knows to pick the engine with best
result.

our Integrated Database and computed drug resistance with Stanford system.
For 299 of the 301 sequences a classification with respect to drug resistance
for both RT and PRO targeting drugs could be computed and were therefore
used in the analysis. Four of the 299 considered treatments included the
NRTI ddC which is not rated by the IS, and were thus excluded from the
analysis. For the remaining 295 treatments the classifications ‘Susceptible’,
‘Potential Low-Level’, ‘Low-level’, ‘Intermediate’ and ‘Resistant’ given by
the IS for every single drug were mapped to 1,1,0.5,0.5 and 0, respectively.
This mapping refers ‘fully active’, ‘intermediate active’, and ‘not active’.
The grouping was performed as suggested on the website of the online tool.
The treatment score is then defined as the sum of the scores for drugs used
in the treatment. This approach is frequently applied and termed Genotypic
Susceptibility Score (GSS; Rhee et al., 2003)

In Figure 4 the AUC curves of engines trained with a minimal and maximal
set of features are provided. It shows that the combined engine slightly
outperforms the performance of Stanford system when trained on minimal
features and significantly outperforms the system when engines are trained
with full set of features.

3 DISCUSSION

The comparison between the engines performance has lead to the
two observations mentioned above.

Regarding the first observation, it should be noted that noisy
examples are probably more prevalent in the failure cases than in the
successful therapies. To assess this, we carried out the following test.
Recall that a label is defined by the SD via a follow-up VL measure.
In particular if multiple VL tests are provided, the one closest to
8 weeks from the therapy switch determines the label of the therapy
where the test needs to be in the time window 4—12 weeks in order
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Fig. 4. ROC curves for prediction engines on test data.

to be considered as a follow-up VL. In the training (test) set 350 (35)
failing therapies are predicted to be successful by all three engines.
Once during the course of therapy 145 (16) of these achieve a VL
measure below 500 copies per mililiter Of the remaining 550 (64)
failing cases in the training (test) set 100 (13) have a VL measure
below 500 copies per mililiter once during the course of the therapy.
A Fisher’s exact test results in a P-value of 4.8 x 10~14 (0.011) on
the training (test) set. Hence, the difference is highly significant.
Our suspicion is that this behaviour is related to low adherence;
it is known that law adherence disrupts the effectivity of HAART
treatments, (see, e.g. Conway, 2007).

Regarding the second observation, we were interested in finding
what are the features most related to disagreement between engines.
Thus, we divide the 3K train/test therapies into the 592 cases where
the engines provide different answers for the prediction and the 2431
cases where the engines provide identical prediction. We tested the
correlation between individual drugs and individual mutations to an
indicator of agreement/disagreement of the three engines. This is
carried out to identify drugs and mutations that are most confusing,
i.e. influence engines in different ways. We also use the x2-test to
check which features are distributed in the identical prediction case
differently than in the different prediction case. In Table 5 we provide
results with the lowest P-value after adjustment with Bonferroni
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Table 5. Drugs and mutations most related to inconsistency among engines

Feature Agreement/disagreement  Success/failure

D4T —0.14 3x1072,4x1078) —0.12(9x 1077, 1 x1072)

DDI —0.13 (1x1077,1x107%) —0.10 3x 1073, -)

SQvV —0.12(2x107%,2x107%) —0.10 (1x1072,-)

NFV —0.11 (6x107%,5x1073) -0.06 (—,-)

# IAS mutations —0.24 (0, 0) -0.32 (0, 0)

PRO L9OM —0.13 (4x 1077, ) —0.22 (0,3x10712)

PRO L10I —0.09 2x 102, -) -0.21 (0,3x10713)

PRO M461 —-0.08 (-, -) -0.19 (0,3x 1073)

RT T215Y —0.18 (0,3.4x 10~ -0.23 (0, 0)

RT M41L —0.15 (5x 1071, 1x107%) -0.20 (0,0)

RT M184V —0.14 2x 10719, 7% 1078) -0.13 3x 1077, 4x107°)

RT D67N —0.14 2x1072,6x10™%) -0.16 (7x 10714, 8x1077)
RT K219Q —0.12 (2x107°, -) -0.08 (-, -)

RT K70R —0.11 (6x 1073, ) —0.08 (-, -)

RT L210W -0.10 (1x 1073, -) -0.20 (-0,9.4x 10~ 1)

RT T215F -0.10 2x 1073, 5) -0.10 3x 1073,

RT V118I —0.09 (4x 1072, -) —0.17 2x 10713, 4x 107%)

correction, values higher than 0.05 are not provided (indicated by—).
For completeness we also provide correlation, P-value and x2-test
tested against indicator of failure/success of the therapy. Note that
the four drugs, D4T, DDI, SQV and NFV, found as most correlated
with disagreement among engines, are those drugs whose success
rate is unbiased. In other words, their success rate in the training
data is around 0.5, Table 2. Interestingly, all mutations found are
from the list of IAS mutations. Moreover, the three PRO mutations
appearing in the table are among those most involved in cross-
resistance within the PI class and the RT mutations listed in the
same table comprise the thymidine analog mutations well known to
mediate cross-resistance to all the NRTIs, (see, e.g. Gallant et al.,
2003). These mutations seem to be related to therapies for which
selecting antiretroviral compounds is most challenging.

4 CONCLUSION

The combination of three engines with different core technologies
results in a robust predictor that outperforms the most widely
used system available online. This novel combined engine is
designed to provide a recommendation for a HAART therapy,
given the genotype. The recommendation is expected to improve
as more features are provided. The system scans through known
combinations and provides the most promising therapies based on
the likelihood of success as derived by the combined engine. Toxicity
issues and interactions with other drugs consumed by the patient are
not within the scope of the system. The system is designed to provide
decision support when expert knowledge is required for using the
system recommendation. The system is planned to be deployed and
available online by the end of June 2008.
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APPENDIX: MUTATIONS SELECTION BASED ON
CORRELATIONS

The original feature space of the mutations is the product of the
number of positions times the 20 amino acids. Each of these
components is an indicator, 1 if mutation occurs, 0 otherwise. We
tested for each of these components its correlation with the therapy
outcome. If multiple mutations are found at the same position (due
to subpopulations of the virus), components for all mutations, (and
maybe also for the wild-type) are 1.

The 20 PRO mutations with highest (absolute value of)
correlations, sorted from the highest correlation (0.29) to lowest
correlation (0.11): 154V, V82A, L90M, L10I, 184V, A71V, M46I,
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L33F, G73S, QSS8E, L63P, 1541, L10F, K20R, G73T, V82T, 154M, K70R, K103N, L741, L228H, S162D, T215N, Y181C, V75V, F77L,

K43T, V82F, 147V. F116Y.
The 25 RT mutations with highest (absolute value of) correlations, Top five mutations appearing in history genotype, followed by
sorted from the highest correlation (0.22) to lowest correlation the value of correlation with therapy outcome: RT M41L, (0.19)

(0.07): T215Y, M41L, L210W, V1181, D67N, H208Y, M184YV, PRO L10I, (0.19) PRO L90M, (0.19) PRO 154V, (0.18) PRO
E44D, T69D, T215F, T39A, K101Q, M184M, V75M, K219Q, L63P, (0.17).
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