Skip to main content
. 2008 Jul 1;24(13):i86–i95. doi: 10.1093/bioinformatics/btn145

Table 2.

The comparison of classification accuracy for three feature selection methods, MIFS, MRMR and SVM-RFE (denoted as RFE), on 12 datasets

Dataset Cancer code N Method Number of Features
4 8 16 40 60 80 100 150 250 500 862
MIFS 0.696 0.765 0.811 0.819 0.814 0.819 0.821 0.824 0.814 0.815
poor4 A,B,C,D 803 MRMR 0.734 0.772 0.778 0.794 0.791 0.799 0.814 0.814 0.819 0.802 0.809
RFE 0.567 0.644 0.681 0.706 0.746 0.771 0.794 0.814 0.821 0.821
MIFS 0.527 0.59 0.615 0.622 0.64 0.654 0.659 0.645 0.649 0.633
poor6 A,B,C,D,E,F 815 MRMR 0.542 0.576 0.588 0.589 0.581 0.596 0.61 0.596 0.610 0.635 0.633
RFE 0.337 0.37 0.431 0.531 0.551 0.564 0.578 0.593 0.608 0.635
MIFS 0.338 0.394 0.433 0.469 0.470 0.488 0.496 0.513 0.53 0.486
poor8 A,B,C,D,E,F,G,H 764 MRMR 0.335 0.408 0.454 0.467 0.469 0.482 0.47 0.474 0.489 0.465 0.472
RFE 0.259 0.274 0.303 0.39 0.423 0.435 0.457 0.456 0.456 0.475
MIFS 0.621 0.687 0.755 0.784 0.802 0.816 0.816 0.809 0.808 0.806
fair4 B,D,I,J 812 MRMR 0.598 0.685 0.728 0.777 0.796 0.789 0.784 0.777 0.783 0.786 0.798
RFE 0.466 0.527 0.608 0.693 0.753 0.753 0.771 0.786 0.787 0.806
MIFS 0.587 0.698 0.754 0.814 0.822 0.825 0.827 0.82 0.82 0.807
fair6 B,C,D,E,F,I 880 MRMR 0.593 0.698 0.767 0.772 0.786 0.807 0.802 0.807 0.801 0.804 0.792
RFE 0.504 0.64 0.696 0.761 0.775 0.78 0.781 0.78 0.797 0.816
MIFS 0.536 0.641 0.684 0.7 0.736 0.733 0.727 0.735 0.732 0.713
fair8 B,C,D,E,H,I,K,L 767 MRMR 0.54 0.653 0.681 0.721 0.707 0.712 0.715 0.704 0.698 0.695 0.72
RFE 0.398 0.528 0.616 0.677 0.687 0.688 0.702 0.70 0.701 0.709
MIFS 0.586 0.673 0.763 0.773 0.782 0.78 0.783 0.774 0.778 0.767
good4 B,D,H,M 794 MRMR 0.609 0.681 0.755 0.761 0.779 0.78 0.78 0.77 0.772 0.761 0.755
RFE 0.543 0.61 0.656 0.711 0.718 0.74 0.732 0.735 0.767 0.749
MIFS 0.455 0.551 0.593 0.645 0.709 0.716 0.724 0.697 0.7 0.694
good6 D,J,K,L,N,O 867 MRMR 0.427 0.532 0.621 0.667 0.68 0.69 0.677 0.687 0.675 0.664 0.696
RFE 0.339 0.437 0.517 0.597 0.638 0.653 0.66 0.682 0.674 0.698
MIFS 0.373 0.477 0.567 0.659 0.674 0.676 0.665 0.673 0.666 0.655
good8 D,E,H,J,K,N,P,Q 827 MRMR 0.336 0.461 0.527 0.615 0.634 0.647 0.644 0.646 0.649 0.661 0.652
RFE 0.258 0.346 0.424 0.508 0.53 0.581 0.605 0.624 0.632 0.654
MIFS 0.650 0.754 0.763 0.817 0.829 0.832 0.829 0.821 0.838 0.82
best4 A,D,E,R 1158 MRMR 0.667 0.757 0.775 0.785 0.789 0.793 0.798 0.791 0.784 0.802 0.803
RFE 0.596 0.659 0.708 0.753 0.766 0.789 0.776 0.791 0.803 0.817
MIFS 0.497 0.568 0.699 0.731 0.767 0.765 0.763 0.77 0.75 0.755
best6 A,D,E,H,O,R 1095 MRMR 0.497 0.568 0.688 0.73 0.731 0.725 0.746 0.739 0.748 0.74 0.75
RFE 0.449 0.499 0.587 0.667 0.71 0.712 0.727 0.729 0.736 0.749
MIFS 0.427 0.543 0.635 0.726 0.737 0.733 0.735 0.732 0.735 0.727
best8 A,D,E,F,H,K,L,R 1016 MRMR 0.434 0.563 0.652 0.704 0.7 0.714 0.712 0.7 0.693 0.704 0.707
RFE 0.342 0.429 0.532 0.641 0.648 0.687 0.694 0.723 0.719 0.724
MIFS 0.524 0.612 0.673 0.713 0.732 0.736 0.737 0.734 0.735 0.723
Avg N/A N/A MRMR 0.518 0.606 0.664 0.696 0.702 0.709 0.71 0.707 0.707 0.706 0.716
RFE 0.422 0.497 0.563 0.636 0.662 0.679 0.69 0.7 0.708 0.721

The best accuracy obtained for each dataset is highlighted in bold. Term N denotes the number of cases. The cancer codes are explained in Table 1.