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ABSTRACT

Motivation: In genetic studies of complex diseases, haplotypes
provide more information than genotypes. However, haplotyping is
much more difficult than genotyping using biological techniques.
Therefore effective computational techniques have been in demand.
The individual haplotyping problem is the computational problem
of inducing a pair of haplotypes from an individual’s aligned SNP
fragments. Based on various optimal criteria and including different
extra information, many models for the problem have been proposed.
Higher accuracy of the models has been an important issue in the
study of haplotype reconstruction.
Results: The current article proposes a highly accurate model
for the single individual haplotyping problem based on weighted
fragments and genotypes with errors. The model is proved to be NP-
hard even with gapless fragments. Based on the characteristics of
Single Nucleotide Polymorphism (SNP) fragments, a parameterized
algorithm of time complexity O(nk22k2 +mlogm+mk1) is developed,
where m is the number of fragments, n is the number of SNP sites,
k1 is the maximum number of SNP sites that a fragment covers (no
more than n and usually smaller than 10) and k2 is the maximum
number of the fragments covering a SNP site (usually no more than
19). Extensive experiments show that this model is more accurate in
haplotype reconstruction than other models.
Availability: The program of the parameterized algorithm can be
obtained by sending an email to the corresponding author.
Contact: jxwang@mail.csu.edu.cn

1 INTRODUCTION
The different DNAs between two individuals’ genomes account for
about 0.5% of the whole genome sequence (Levy et al., 2007), and
these differences make the two individuals different from each other
in figures, diseases susceptibilities and other phenotypes. A single
nucleotide polymorphism (SNP) is a change of a single nucleotide
in a given position of the genome sequence with a frequency
not <1% in a given population. There are millions of SNPs in
the human genome (The International HapMap Consortium, 2005;
Venter et al., 2001). SNPs are believed to be the major genetic cause
to human phenotypic variability.

It is widely accepted that at a given SNP site, there are only
two possible nucleotides, one usually occurs in more than 90%
individuals of a population and is called major allele, and the other
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is called minor allele. For briefness, a SNP is represented by 0, or 1,
instead of a nucleotide (A, C, G or T), where ‘0’ denotes the major
allele (at the SNP site), and ‘1’ denotes the minor allele.

The human genome is made up of 23 pairs of chromosomes. A
sequence of SNP alleles on one of a pair of chromosomes is called a
haplotype, which can be denoted by a string over {0, 1}. A sequence
of conflated (unordered pair of) SNP alleles at each SNP site of a
pair of homologous chromosomes is called a genotype. A genotype
can be represented by a string over {0, 1, 2}, where ‘0’ (resp. ‘1’)
indicates that both SNPs are ‘0’ (resp. ‘1’) at the same SNP site of
the pair of chromosomes, and ‘2’ indicates that at the same SNP site,
the SNP on one of the pair of chromosomes is ‘0’, while on the other
of the pair is ‘1’.

In Figure 1, the haplotypes of the individual are (A, C, G, T)
and (G, C, C, T), which can be denoted by ‘0100’ and ‘1110’.
The genotype is (A/G, C/C, G/C, T/T), which can be denoted by
‘2120’.

In finding susceptibility loci for complex diseases, haplotype-
based methods are more powerful and robust than the methods
based on individual SNPs (Akey et al., 2001). However,
determining haplotypes using biological techniques is both time
consuming and expensive, and is much harder than determining
individual SNPs or genotypes. Therefore, to reduce the cost of
determining haplotypes, effective computational methods have been
in demand.

There have been many computational models for the haplotyping
problem (Adkins, 2004; Bonizzoni et al., 2003; Zhang et al., 2006),
and they generally fall into two classes: individual haplotyping
and population haplotyping. The individual haplotyping problem is
concerned with assembling a pair of haplotypes from an individual’s
aligned DNA fragments, while the population haplotyping problem
is to infer the haplotypes of a sample of people in a population from
their genotypes.

This current article is focused on the individual haplptyping
problem and aimed at studying highly accurate model and
developing effective computational algorithms for the problem. The
article is organized as follows. In Section 2, we introduce the
individual haplotyping problem and propose a new model based on
weighted SNP fragments and genotype with errors. We prove that
the individual haplotyping problem under this model is NP-hard.
To effectively solve the problem under this model, we develop
in Section 3 an exact parameterized algorithm for the problem.
Section 4 presents experimental results and discussions. The article
is concluded by Section 5.
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2 FORMULATION AND PROBLEMS

2.1 The individual haplotyping problem
For large-scale haplotyping, a set of aligned SNP fragments from a
pair of chromosomes can be generated by DNA shotgun sequencing
or other sequencing experiments. The individual haplotyping
problem (Lancia et al., 2001) is aimed at partitioning the set of
SNP fragments into two subsets, each determining a haplotype.

To formulate the problem, we introduce some notations and
concepts, similar to those used in Xie and Wang (2007).

In the following discussion, m aligned SNP fragments coming
from a pair of chromosomes with n SNP sites are represented by an
m×n SNP matrix M over the alphabet {0, 1, −}, in which each row
corresponds to a fragment and each column corresponds to a SNP
site. The SNP allele of the ith fragment at the jth SNP site is denoted
by the entry Mi,j of M at the ith row and the jth column, and the
entry Mi,j takes value ‘−’ if either the ith fragment does not cover
the jth SNP site or the corresponding SNP allele of the ith fragment
cannot be determined with enough confidence.

We say that the ith row covers the jth column if either Mi,j �= ‘−’,
or there are two indices k and r such that k < j<r and both Mi,k and
Mi,r are not ‘−’.

The set of (ordered) rows covering the jth column is denoted by
Rs(j). The first column that the ith row covers is denoted by l(i), and
the last column that the ith row covers is denoted by r(i).

As an example, in the SNP matrix in Figure 2, row 2 covers
columns 2, 3, 4, 5 and 6, and Rs(5)={1,2,4,7}.

If Mi,j takes the value ‘0’ and Mk,j takes the value ‘1’, or Mi,j
takes the value ‘1’ and Mk,j takes the value ‘0’, we say that the ith
row and the kth row of M conflict at the column j. If two rows of
M do not conflict at any column, we say that they are compatible.

If the rows of a SNP matrix M can be partitioned into two subsets
such that the rows in each subset are all compatible, then we say
that the SNP matrix M is feasible.

Obviously, a SNP matrix M is feasible if and only if there are two
haplotypes such that every row of M is compatible with one of the
two haplotypes. In this case, we say that the SNP matrix M can be
derived from the two haplotypes.

Since a row of M comes from one of a pair of chromosomes,
if there are no DNA sequencing errors, we can always derive M
from the haplotypes of the pair of chromosomes. However, DNA
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Fig. 2. A SNP matrix.

sequencing errors are unavoidable and it is hard to decide which
copy of chromosome a SNP fragment comes from. This has made
the individual haplotyping problem complicated.

Based on different optimal criteria, various computational models
have been proposed for the problem. Some typical models
include (Lancia et al., 2001; Lippert et al., 2002): Minimum fragment
Removal (MFR), Minimum SNPs Removal (MSR) and Minimum
Error Correction (MEC). Among these models, MEC is considered
to have most biological meaning. MEC is also called Minimum
Letter Flips (MLF) (Greenberg et al., 2004) and has been extended
to include different extra information.

A DNA sequencer can provide a confidence level for each base,
which is the probability that the base was correctly read (Zhao et al.,
2005). The confidence levels for an m×n SNP matrix M can be
represented as an m×n weight matrix W , in which the element Wi,j
of W at row i and column j is the confidence level of the value Mi,j .
We also define Wi,j =0 if Mij = ‘−’. By including a weight matrix,
Greenberg et al. (2004) introduced the weighted minimum letter flips
(WMLF) model, and Zhao et al. (2005) formulated it as follows:

Weighted Minimum Letter Flips (WMLF): Given a SNP matrix M
and the corresponding weight matrix W , flip a number of elements
in M (‘0’ into ‘1’ and vice versa) so that the resulting matrix is
feasible and the sum of the elements in W corresponding to the
flipped elements in M is minimized.

An individual’s genotype can be phased relatively easily. Wang
et al. (2005) extended the MEC model as follows:

MEC with Genotype Information (MEC/GI): Given a SNP matrix
M and a genotype G, flip a minimum number of elements in M
(‘0’ into ‘1’ and vice versa) so that the resulting matrix can be
derived by two haplotypes that make up the genotype G.

In general, WMLF and MEC/GI are superior to MEC (or MLF)
in the accuracy of haplotype reconstruction. However, WMLF does
not take genotype information into account, and MEC/GI does not
consider the errors in a genotype and the confidence levels of DNA
bases. In fact, there are always genotyping errors. In order to improve
the accuracy of haplotype reconstruction, we propose a new model
in the next subsection.

2.2 WMLF incorporating genotyping uncertainty
There are two broad categories of genotyping errors (Kang et al.,
2004): operational errors and genotype scoring errors. Recently, the
operational errors have decreased significantly in high-throughput
genotyping due to biological technology advances. On the other
hand, genotype scoring errors are still a significant challenge for
automated scoring softwares (Kang et al., 2004), and research on
kernel algorithms for genotype scoring remains a hot spot (Carvalho
et al., 2007; Xiao et al., 2007). Limited by scoring softwares,
genotyping errors are unavoidable (Kang et al., 2004; Zhu, 2006).
Therefore, incorporating genotyping uncertainty will help the
process of reconstructing haplotypes.

To incorporate genotyping uncertainty, Kang et al. (2004)
introduced GenoSpectrum. Considering n SNPs of a individual, a
GenoSpectrum F is a 3×n matrix as given in Figure 3, where for
each j, 1 ≤ j ≤ n, f0,j, f1,j, f2,j are the likelihood that the individual’s
genotype at the jth SNP site is 0, 1 and 2, respectively.
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Genotype 0: f0,1 f0,2 … f2,n

Genotype 1: f1,1 f1,2 … f1,n

Genotype 2: f2,1 f2,2 … f2,n

Fig. 3. GenoSpectrum.

Let H[j] and G[j] denote the jth character of a haplotype H and
a genotype G, respectively.

Definition 1. Let M be an m × n SNP matrix and let F be a 3 × n
GenoSpectrum. The most likely genotype GM,F of M with respect to
F is defined to be the genotype whose values satisfy the following
conditions for all j:

GM,F [j]=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k :k maximizes fk,j, if Mi,j = ‘−’ for all i;
2, if there are Mi,j and Ml,j

such that Mi,j =0 and
Ml,j =1;

Mi,j : Mi,j �= ‘−’, otherwise.

Roughly speaking, GM,F [j] gives an index h so that the value fh,j
shows the degree of consistency of the jth column of the SNP matrix
M and the jth column of the GenoSpectrum F. In particular, if all
elements in the jth column of M are ‘−’, then the SNP matrix M
provides no information for the jth SNP site. Thus, the largest value
fk,j in the jth column of F, where k =GM,F [j], shows the degree of
confidence that the ‘most likely’ genotype of the jth SNP site is k. If
there are both 0’s and 1’s in the jth column of M, then GM,F [j]=2
and the value f2,j is the degree of confidence that the jth column in
the SNP matrix M and the jth column in the GenoSpectrum F are
consistent. Finally, if the jth column in the SNP matrix M contains
exactly one value q from {0,1}, then GM,F [j]=q and the value fq,j
is the degree of confidence that the jth column in the SNP matrix M
and the jth column in the GenoSpectrum F are consistent.

Definition 2. Let M be an m × n SNP matrix and let F be a
3 × n GenoSpectrum. The distance d(M, F) between M and F is
defined as follows:

d (M,F)=
n∑

j=1

(1−fGM,F [j],j),

By the above discussion on the most likely genotype GM,F of M
with respect to F, we can see, intuitively, that the distance d (M,F)
measures the degree of inconsistency between the SNP matrix M
and the GenoSpectrum F.

Definition 3. Let M be an m × n SNP matrix, W be an m × n
weight matrix corresponding to M, F be a 3 × n GenoSpectrum,
gw be a weighted coefficient, S be an element subset of M (i.e.
S ⊆{Mi,j|1≤ i≤m,1≤ j≤n}), and M ′ be the SNP matrix derived
from M by flipping the elements in S. The flipping cost of S based
on gw, M, W and F is defined as follows:

C(S)=gw ·d(M ′,F)+
∑

Mi,j∈S

Wi,j.

Since the value d (M ′,F) measures the degree of inconsistency
between the SNP matrix M ′ and the GenoSpectrum F, the flipping
cost C (S) of a subset S of elements in the SNP matrix M is measured

in terms of two metrics: the degree of inconsistency between the
resulting SNP matrix M ′ and the GenoSpectrum F (i.e. d (M ′,F)),
and the degree of confidence that is decreased during flipping the
elements in S (i.e.

∑
Mi,j∈S Wi,j). The weighted coefficient gw is used

to adjust the relationship between these two metrics.
Based on Definitions 2 and 3, the following equation holds true:

C(S)=
n∑

j=1

(
gw (1−fGM′ ,F [j],j)+

∑
i:Mi,j∈S

Wi,j

)

=ngw +
n∑

j=1

(
−gw fGM′ ,F [j],j +

∑
i:Mi,j∈S

Wi,j

)
(1)

In the following, we propose a new computational model for the
individual haplotyping problem.

WMLF/GS:
(Weighted Minimum Letter Flips with GenoSpectrum)

Given an m×n SNP matrix M, an m×n weight matrix W , a
3×n GenoSpectrum F and a weighted coefficient gw, find a subset
S of elements in M and flip the elements in S (‘0’ into ‘1’ and vice
versa) so that the resulting matrix is feasible and the flipping cost
of the subset S based on gw, M, W and F is minimized.

It is easy to see that when the weighted coefficient gw is set to 0,
the WMLF/GS problem degenerates into the WMLF problem.

Let WMLF/GS(gw,M,W ,F) denote a solution to the WMLF/GS
problem, i.e. an element subset S of M that minimizes C (S) under
the condition that after flipping the elements in S, M is feasible.

Theorem 1. The WMLF/GS problem is NP-hard even if its SNP
matrix is gapless.

Proof. The WMLF problem can be reduced from the weighted
max-cut problem, which is a well-known NP-hard problem (Zhao
et al., 2005). Similarly, the WMLF/GS problem can be reduced from
the weighted max-cut problem.

The weighted max-cut problem is defined as follows: given a
undirected graph G= (V ,E) and a positive edge weight function
w :E →R+, find a partition (V1,V2) of V such that the sum of the
weights of the edges with one end in V1 and the other end in V2 is
maximized. For briefness, the sum of the weights of the edges with
one end in V1 and the other end in V2 will be called the cut weight
of (V1,V2), and the weight of an edge (i,j) is denoted by w(i,j).

As an example, consider the graph G in Figure 4(a). Let V1 =
{1,4} and V2 ={2,3}. Then the cut weight of (V1,V2) is 0.5+0.2+
0.3+0.6=1.6. It can be easily verified that this cut has a maximum
weight.

Given a undirected graph G= (V ,E) with n vertices and a positive
edge weight function w, where, without loss of generality, the
vertices are named as 1, 2, ... , n. We can construct an n×n SNP
matrix M and a n×n weight matrix W as follows:

Mi,j =
{

0 if i= j,

1 if i �= j;

Wi,j =

⎧⎪⎨
⎪⎩

0 if i �= j and (i, j) �∈E,

w(i,j) if i �= j and (i, j)∈E,

1+∑(k,j)∈E w(k,j) if i= j.
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Fig. 4. (a) A weighted graph. (b) A SNP matrix corresponding to the weighted graph in (a), with weighted values given in brackets. (c) A GenoSpectrum
corresponding to the weighted graph in (a).

The 3×n GenoSpectrum F can be constructed as follows: for
j=1,...,n, f0,j = f1,j =0, f2,j =1. Let gw be any positive number.

According to the rules above, the SNP matrix M and the
corresponding matrix W constructed from the undirected weighted
graph G in Figure 4a are given in Figure 4b (with the weight values
given in the brackets), and the GenoSpectrum F is given in Figure 4c.

In general, for the SNP matrix M constructed above, the ith row
represents the ith vertex of G, and a partition of V corresponds to
a partition (S1 =V1,S2 =V2) of the rows of M. Let k be 1 or 2.
To make the rows in Sk compatible with each other and minimize
the sum of the weights of the flipped elements, for each row i∈Sk ,
all the elements of other rows in Sk at column i should flip from
1 to 0, in order not to conflict with row i at column i. Therefore,
the minimum sum of the weights of the flipped elements is equal to∑

i,j∈Sk,i �=j Wi,j . Consequently, we have:

∑
i, j∈S1,i �=j

Wi, j+
∑

i, j∈S2,i �=j

Wi, j

=
∑

i, j∈V1,(i, j)∈E

w(i, j)+
∑

i, j∈V2,(i, j)∈E

w(i, j)

=
∑

(i, j)∈E

w(i, j)−
∑

i∈V1, j∈V2,(i, j)∈E

w(i, j)

−
∑

i∈V2,j∈V1,(i, j)∈E

w(i, j).

Let the set of the flipped elements above be S. After flipping the
elements in S the distance between M and F is 0. Therefore, C(S)
is minimized if and only if the cut weight of (V1,V2) is maximized.
This completes the proof of the theorem. �

In fact, most models for the individual haplotyping problem
are NP-hard. To obtain exact solutions to these models, some
dynamic programming and branch-and-bound algorithms have been
proposed. For larger problem instances, these exact algorithms
become infeasible, and heuristic algorithms have been used instead.
However, heuristic algorithms usually cannot ensure accuracy.
Recently, fixed-parameter tractability theory has been used to design
practical exact algorithms for certain NP-hard problems with great
success. For the MFR and MSR problems, Xie et al. (2007) and Xie
and Wang (2007) have proposed parameterized algorithms by taking
the advantage of the characters of SNP fragments. In the following
section, we will use the technique to develop a parameterized
algorithm for the WMLF/GS problem.

3 METHODS
In Xie and Wang (2007) and Xie et al. (2007), we have observed the
following properties of DNAsequence fragment data. Due to technical limits,
the sequencing instruments such as ABI 3730 and MageBACE in most
big sequencing centers can only sequence DNA fragments whose length
is usually not more than 1200 nucleotide bases. Since the SNP density is
about 1 SNP per 1 kb, the maximum number of SNP sites that a fragment
can cover is small.

Moreover, in DNA sequencing experiments, the fragment coverage
is also small. In both Celera’s whole-genome shotgun assembly of the
human genome and the human genome project of the International Human
Genome Sequencing Consortium, the fragment average coverage is about
five (International Human Genome Sequencing Consortium, 2001; Venter
et al., 2001). Although the fragment covering rate varies along the whole
genome, the fragment coverage plot in Huson et al. (2001) about the fragment
data of the human genome project of Celera’s shows that the number of
fragments covering a site is bounded by 19. Therefore, compared with the
total number of fragments, the number of fragments that cover a SNP site is
very small.

Based on the observations above, as in Xie and Wang (2007), we introduce
the (k1,k2) parameterized condition.

Definition 4. The (k1,k2) parameterized condition: a single fragment
covers at most k1 SNP sites, and the number of fragments that cover a SNP
site is bounded by k2.

As to the corresponding SNP matrix M, the (k1,k2) parameterized
condition means that each row of M covers at most k1 columns and each
column of M is covered by at most k2 rows.

For an m×n SNP matrix M, the parameters k1 and k2 can be obtained
by scanning all rows of M. In the worst case, k1 =n and k2 =m. But as to
the fragment data of Celera’s human genome project, k2 is no more than
19 (Huson et al., 2001).

3.1 A parameterized algorithm for WMLF/GS
In this subsection, the SNP matrix M is preprocessed as follows: sort the
rows in M in ascending order such that for any two rows i1 and i2, if i1 < i2,
then l(i1)≤ l(i2), which is similar to the preprocessing in Xie et al. (2007)
and Xie and Wang (2007).

For a solution to the WMLF/GS problem for a SNP matrix M, after flipping
the corresponding elements, all the rows of M can be partitioned into two
classes H0 and H1, such that every two rows in the same class are compatible.

Definition 5. Let R be a subset of rows in a SNP matrix M. A partition
function P on R maps each row in R to one of the values {0,1}.

Suppose that R contains h>0 rows, a partition function P on R can be
denoted by an h-digit binary number in {0,1}, where the ith digit is the P
value of the ith row in R. If R=∅, we also define a unique partition function
P, which is denoted by −1.
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Recall that Rs(j) denotes the set of rows in the SNP matrix M that cover
the jth column. For briefness, a partition function defined on Rs(j) is called
a partition function at column j. For a SNP matrix M satisfying the (k1,k2)
parameterized condition, there are at most 2k2 different partition functions
at column j.

Let R be a set of rows of the matrix M, and P be a partition function on R.
For a subset R′ of R, the partition function P′ on R′ obtained by restricting
P on the subset R′ is called the projection of P on R′, and P is called an
extension of P′ on R.

For briefness, let M(j) denote the set of all non-empty elements from
column 1 to column j in M, and M[:,j] ( W [:,j], or F[:,j] ) denotes the SNP
matrix (resp. the weighted matrix, or the GenoSpectrum) consisting of the
first j columns of M (resp. W , or F).

Definition 6. Fix a j. Let P be a partition function on a row set R. Defined
VE [P,j] to be any subset S of elements of M that satisfies the following
conditions:

(1) For each element Mr,k in S, 1≤k ≤ j.
(2) After flipping the elements of S, there is a partition (H0,H1) of all

rows in M such that any two rows in the same class do not conflict at any
column from 1 to j, and for any row i∈R, row i is in the class Hq if and only
if P(i)=q, for q∈{0,1}.

Definition 7. Fix a column index j. Let gw be a weighted coefficient,
M ′ =M[:,j], W ′ =W [:,j], F ′ =F[:,j], P be a partition function at column
j, and the collection of all possible subsets VE [P,j] be V . Defined
E[P,j]=minS∈V C(S) and SE [P,j] to be any subset in V that satisfies
C(SE [P,j])=E[P,j], where C(S) and C(SE [P,j]) are the flipping costs of
S and SE [P,j], respectively, based on gw, M ′, W ′, and F ′.

From Definitions 6 and 7, it is easy to verify that the following equation
holds true:

WMLF/GS(gw,M,W ,F)=SE [P,n], (2)

where P is a partition function at column n that minimizes E[P,n].
Given a VE [P,j], let M ′ be the SNP matrix derived from M[:,j] by flipping

the elements in VE [P,j], and Vl
E [P,j] be the set of the elements of M that

are in column l and in VE [P,j]. Let Cl(Vl
E [P,j]) denote

∑
i:Mi,l∈Vl

E [P,j]Wi,l −
gwfGM′ ,F[:,j][l],l , where GM ′,F[:,j][l] is the value at column l of the most likely

genotype of M ′, and fGM′ ,F[:,j][l],l is the value of the element in F[:,j] at
row GM ′,F[:,j][l] and column l. From Equation (1), the flipping cost of
VE [P,j] based on gw, M[:,j], W [:,j] and F[:,j] can be calculated as follows:
C(VE [P,j])= j ·gw +∑j

l=1 Cl(Vl
E [P,j]).

Given a partition function P at column j, the rows covering column j can
be partitioned into (H0,H1) by P according to the following rule: for each
row i∈Rs(j), i∈Hq if P(i)=q. In order to make the rows in the same class
not conflict at column j, the values at column j of some rows may have to be
flipped. For q∈{0,1}, let vq =0 or 1. For any row i∈Hq, if Mi,j =vq, Mi,j is
to be flipped. In consequence, we obtain a set Flips of flipped elements, and
Cj(Flips)=∑q=0,1

∑
i:i∈Rs(j),P(i)=q,Mi,j=vq

Wi,j −gwfGM′ ,F[:,j][j],j , where M ′ is
the SNP matrix derived from M[:,j] by flipping the elements in Flips.
Obviously, M ′ is feasible.

Let g(v0,v1) be a map such that: if v0 =v1 =0, g(v0,v1)=1; if v0 =v1 =1,
g(v0,v1)=0; and if v0 �=v1, g(v0,v1)=2. Based on Definition 1, It is easy to
see that GM ′,F[:,j][j]=g(v0,v1).

For k,v=0,1, let w(P,j,k,v) denote∑
i:i∈Rs(j),P(i)=k,Mi,j=v

Wi,j .

Let Minor(P,j,0) and Minor(P,j,1) denote the value of v0 and
the value of v1 that minimize w(P,j,0,v0)+w(P,j,1,v1)−gwfg(v0,v1),j ,
respectively. Let Flips(P,j) denote the set of the flipped elements {Mi,j |
Mi,j =Minor(P,j,P(i))}.

Fix a P and a j, it is obvious that Cl(Vl
E [P,j]) is the minimum if and only

if Vl
E [P,j]=Flips(P,j). Therefore, the following equations hold true.

SE [P,1]=Flips(P,1) (3)

E[P,1]=gw +C1(Flips(P,1)) (4)

Figure 5 gives a function CompFlipsW (j,P,Flips,C) to compute
Flips(P,j) and Cj(Flips(P,j)), whose time complexity is O(k2) for a SNP
matrix M satisfying the (k1,k2) parameterized condition.

In order to present our algorithm, we need to extend the above concepts
from one column to two columns as follows. Let the set of all rows that cover
both columns j1 and j2 be Rc(j1,j2).

Definition 8. Fix a j. Let gw be a weighted coefficient, M ′ =M[:,j],
W ′ =W [:,j], F ′ =F[:,j], P′ be a partition function on Rc(j,j+1),
and the collection of all possible subsets VE [P′,j] be V . Defined
B[P′,j]=minS∈V C(S) and SB[P′,j] to be any element in V that satisfies
C(SB[P′,j])=B[P′,j], where C(S) and C(SB[′,j]) are the flipping costs of S
and SB[P′,j], respectively, based on gw, M ′, W ′ and F ′.

Given a j and a partition function P′ on Rc(j,j+1). If E[P,j] and SE [P,j]
are known for each extension P of P′ on Rs(j), B[P′,j] and SB[P′,j] can be
calculated by the following equations:

B[P′, j]= min
P:P is an extension of P′ on Rs(j)

(E[P, j]) (5)

SB[P′,j]=SE [P,j], where P minimizes E[P,j] (6)

Inversely, for any partition function P on Rs(j), because Rc(j−1, j) is a
subset of Rs(j), the project P′ of P on Rs(j) is unique. When SB[P′,j−1] and
B[P′, j−1] are known, E[P, j] and SE [P, j] can be calculated according to
the following equations, whose correctness can be proved similarly as that
for Equations (3) and (4).

SE [P, j]=SB[P′, j−1]∪Flips(P, j) (7)

E[P, j]=B[P′,j−1]+gw +Cj(Flips(P, j)) (8)

Based on Equations (2)–(8), the solution to the WMLF/GS problem for
a SNP matrix M can be obtained as follows: first, E[P,1] and SE [P,1]

Fig. 5. CompFlipsW.
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are obtained according to Equations (3) and (4) for all partition functions
P at column 1; second, B[P′,1] and SB[P′,1] can be obtained by using
Equations (5) and (6) for all partition functions P′ on Rc(1,2); third, E[P,2]
and SE [P,2] can be obtained by using Equations (7) and (8) for all partition
functions P on Rs(2); and so on. Finally, E[P,n] and SE [P,n] can be obtained
for all partition functions P at column n. Once E[P,n] and SE [P,n] for all
possible P are known, a solution to the WMLF/GS problem for M can
be obtained by using Equation (2). See Figure 6 for the details of our
P-WMLF/GS algorithm.

Theorem 2. If an m×n SNP matrix M satisfies the (k1,k2) parameterized
condition, the P-WMLF/GS algorithm solves the WMLF/GS problem in time
O(nk22k2 +mlogm+mk1) and space O(mk12k2 +nk2).

Proof. Given an m×n SNP matrix M satisfying the (k1,k2) parameterized
condition, consider the following data structure: each row keeps the first and
the last column that the row covers, i.e. its left and right value, and its values at
the columns from its left column to its right column. In such a data structure,
M takes space O(mk1). It is easy to see that Rs takes space O(nk2), H takes
space O(n), E and B take space O(2k2 ) and SE and SB take space O(mk12k2 ).
In summary, the space complexity of the algorithm is O(mk12k2 +nk2).

Now we discuss the time complexity of the algorithm. In Step 1, sorting
takes time O(mlogm). All Rss can be obtained by scanning the rows only
once, which takes time O(mk1). For any column j, because no more than
k2 rows cover it, H[j]≤k2, the function CompFlipsW takes time O(k2),
and Step 2 takes time O(k22k2 ). In Step 3.1, scanning Rs(j) and Rs(j+1)
simultaneously can obtain Nc and Bits, and takes time O(k2). Step 3.2 takes
time O(2k2 ), and Step 3.3 takes time O(k22k2 ). In Step 3.5, for each P′, there
are 2H[j]−NC extensions of P′ on Rs(j). Given P′, an extension of P′ can be

Fig. 6. P-WMLF/GS algorithm.

obtained by a bit-or operation in time O(1), because after the sorting in Step 1,
the rows that cover column j, but do not cover column j−1 are all behind the
rows in Rc(j−1,j). In all, Step 3.5 takes time O(k22Nc 2k2−Nc ). Then Step 3
is iterated n−1 times and takes time O(nk22k2 ). Step 4 takes time O(2k2 ). In
summary, the time complexity of the algorithm is O(nk22k2 +mlogm+mk1).
This completes the proof of the theorem. �

4 EXPERIMENTAL RESULTS
We compare three models WMLF/GS, MEC/GI and WMLF for the
individual haplotyping problem. For WMLF/GS, we adopt our P-
WMLF/GS algorithm; for MEC/GI, we adopt Wang et al.’s genetic
algorithm GA-MEC/GI (Wang et al., 2005); and for WMLF, we
adopt Zhao et al.’s dynamic clustering algorithm DC-WMLF (Zhao
et al., 2005). In the experiments, we compare the running time and
the reconstruction rate of haplotypes (Wang et al., 2005) of these
three algorithms. The reconstruction rate of haplotypes is defined as
the ratio of the number of the SNP sites that are correctly inferred
out by an algorithm to the total number of the SNP sites of the
haplotypes.

The haplotype data can be obtained by two methods (Wang et al.,
2005): the first is to get real haplotypes from public domain, and
the second is to generate simulated haplotypes by computers. In
our experiments, the real haplotypes were obtained from the file
genotypes_chr1_CEU_r21_nr_fwd_phased.gz,1 which was issued
in July 2006 by the International HapMap Project (2005). The file
contains 120 haplotypes on chromosome 1 of 60 individuals of the
CEU with each haplotype containing 193 333 SNP sites. From the
60 individuals, select a individual at random. Then beginning with
a random SNP site, a pair of haplotypes of a given length can be
obtained from the haplotypes of the selected individual.

The simulated haplotypes can be generated as follows (Panconesi
and Sozio, 2004; Wang et al., 2005). At first a haplotype h1 of
length n is generated at random, then another haplotype h2 of the
same length is generated by flipping every character of h1 with a
probability of d.

As to fragment data, to the best of our knowledge, real DNA
fragments data in the public domain are not available, and references
Wang et al. (2005) and Panconesi and Sozio (2004) used computer-
generated simulated fragment data. After obtaining a pair of
real or simulated haplotypes, in order to make the generated
fragments have the same statistical features as the real data, a
widely used shotgun assembly simulator Celsim (Myers, 1999)
is invoked to generate m fragments whose lengths are between
lMin and lMax. At last the output fragments are processed to
plant reading errors with probability es and empty values with
probability p.

In our experiments, the parameters are as follows: fragment
coverage rate c=10, the difference rate between two haplotypes
d = 20%, the minimal length of fragment lMin=3, the maximal
length of fragment lMax=7 and empty values probability p=2%.

The weight matrix W corresponding to the fragments is generated
by the method of Zhao et al. (2005): the entries of w are normally
distributed with mean µ and variance σ 2 =0.05. For a correct SNP
site, µ=0.9, and for an error SNP site, µ=0.8.

The genotype without error can be obtained from the pair of
haplotypes produced above. Since the genotyping error in biological

1From http://www.hapmap.org/downloads/phasing/2006-07_phaseII/phased/
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assay is about 1% (Xiao et al., 2007), we plant some errors in the
genotype (Zhu, 2006) by changing the value of every char of the
genotype with a probability eg as follows: if the value is ‘0’ or
‘1’, it is changed to ‘2’; if the value is ‘2’, it is changed to ‘0’ or
‘1’ randomly. The GenoSpectrum F is generated as follows. For
the column j at which the genotype is k: when k is correct, if
k =0 (or 1), f0,j (or f1,j) is normally distributed with mean µ=0.9

and variance σ 2 =0.05, f1,j (or f0,j) = 0, f2,j =max(0,1−f0,j) (or
max(0,1− f1,j); if k =2, f2,j is normally distributed with mean

µ=0.9 and variance σ 2 =0.05, and f0,j and f1,j , are normally

distributed with mean µ=0.05 and variance σ 2 =0.05; when k is
error, suppose the correct genotype at column j is i, then fk,j and fi,j
are normally distributed with variance 0.05 and means 0.8 and 0.2,
respectively. For the remained element of F at column j, let it be
max(0,1− fi,j − fk,j).

We ran our experiments on a Linux server (4 Intel Xeon 3.6GHz
CPU and 4GByte RAM) with the length of haplotype n, the number
of fragments m (m=2×n×c/(lMax+lMin)), the reading error
probability es and the genotype error eg varied. The data of the
following tables and figures are the average over 100 repeated
experiments.

To select a appropriate weighted coefficient gw, we change gw
from 0 to 6.5, and examine the haplotype reconstruction rate of
P-WMLF/GS on the simulated data with n=80, es and eg be
randomly selected from 0 to 5%. The experiment result is illustrated
by Figure 7. Figure 7 shows that when gw =2.5, i. e. 1/4 of c,
P-WLMF/GS achieves the highest haplotype reconstruction rate. In
the following experiments, we set gw =2.5.

When es varies from from 3 to 7% and eg varies from 0 to
7%, we test the three algorithms on both the real haplotype data
and the simulated haplotype data with n=100 and m=200. The
experiment results are presented in Table 1, in which the experiment
results on the real haplotype data are put outside brackets, and the
experiment results on the simulated haplotype data are enclosed in
brackets. As shown in Table 1, the haplotype reconstruction rate of
WMLF/GS and MEC/GI are decreasing with the increasing of es
and eg. Since WMLF does not consider the genotype information,
its haplotype reconstruction rate is not related with eg, but is
decreasing with the increasing of es. Although there are errors
planted in the genotype information, the false-genotype alleles
are much less than the true-genotype alleles, and the positive
impact suppresses the negative impact of the genotype information.

Table 1. Comparison of the haplotype reconstruction rate of the algorithms with es and eg varying

Haplotype reconstruction rate (%)

eg es =3% es =5% es =7%

(%) WMLF/GS MEC/GI WMLF WMLF/GS MEC/GI WMLF WMLF/GS MEC/GI WMLF

0 94.6 (94.7) 90.5 (90.7) 80.5 (80.4) 94.2 (94.0) 89.6 (90.5) 79.8 (80.1) 93.6 (93.7) 90.1 (90.3) 80.1 (79.6)
3 94.3 (93.8) 90.2 (89.5) 81.1 (80.3) 92.1 (93.7) 88.3 (89.3) 80.2 (80.0) 92.1 (93.1) 88.6 (88.9) 79.0 (79.5)
5 95.0 (93.8) 89.6 (88.7) 80.0 (80.5) 93.5 (93.2) 89.7 (88.5) 79.3 (80.0) 91.6 (92.6) 87.5 (87.4) 80.0 (79.7)
7 93.9 (93.3) 87.5 (88.7) 79.8 (80.9) 92.9 (93.2) 88.4 (87.9) 79.9 (80.2) 92.8 (93.0) 87.4 (87.3) 80.1 (80.0)

The data not enclosed in brackets are the experiment results on the real haplotype data, and the date enclosed in brackets are the experiment results on the simulated haplotype data.
All experiments are repeated 100 times with n=100 and m=200.

For using the genotype information, MEC/GI gets higher haplotype
reconstruction rate than WMLF, which is illustrated in Table 1.
Anyway, the experiment results on both the real and the simulated
haplotype data show consistently that, in the reconstruction rate
of haplotypes, WMLF/GS model is about 4% more accurate than
MEC/GI model and is about 12% more accurate than WMLF
model.

As shown in Figure 8, when es =eg =5%, the experiments
on both the real and the simulated haplotype data with n
increasing from 20 to 120 also show that P-WMLF/GS is the most
accurate algorithm in haplotype reconstruction rate. In Figure 8,
the left Y -axis shows the reconstruction rate of haplotypes, and
the right Y -axis shows the running time. Figure 8a shows the
experiment results on the real haplotype data, and Figure 8b
shows the experiment results on the simulated haplotype data.
When n increases, the haplotype reconstruction rate of the three
algorithms decreases, and their running time increases accordingly.
In Figure 8a, when n=20, the haplotype reconstruction rates of
P-WMLF/GS, GA-MEC/GI and WMLF are 96.6, 93.0 and 84.9%,
respectively; and their running time are 1.3, 0.4 and 0.0007 s. When
n increases to 120, their haplotype reconstruction rates decrease
to 93.5, 88.1 and 79.8%; and their running time increases to
10.2, 6.5 and 0.008 s. The experiment results in Figure 8b are
similar. Although P-WMLF/GS is the slowest among the three

Fig. 7. The performance of P-WMLF/GS with gw varying.
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(a) On the real haplotype data

(b) On the simulated haplotype data

Fig. 8. The performance comparison of the algorithms when n increases.

algorithms, with the fragment coverage rate fixed, the running
time of P-WMLF/GS is a linear function of n, which is very
acceptable. The running time of P-WMLF/GS is about 10 s when
n=120.

5 CONCLUSION
Haplotyping plays an increasingly important role in some regions
of genetics such as locating of genes, designing of drugs
and forensic applications. The typical computational models of
individual haplotyping problem are MFR, MSR, MEC and the
variations of MEC. By including the confidence levels a DNA
sequencer provides and the genotyping uncertainty, the current
article proposes a new computational model WMLF/GS, and
proves it to be NP-hard. Based on the fact that the maximum
number of fragments covering a SNP site is small (usually
no more than 19, Huson et al. (2001)), the current article
proposed a parameterized algorithm P-WMLF/GS to solve the
WMLF/GS problem. With the fragment maximum length k1 and
the maximum number k2 of fragments covering a SNP site,

the P-WMLF/GS algorithm can solve the WMLF/GS problem
in time O(nk22k2 +mlogm+mk1) and in space O(mk12k2 +nk2).
Extensive experiments show that WMLF/GS has higher haplotype
reconstruction rate than other models, and that P-WMLF/GS
algorithm is practical.
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