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ABSTRACT

Motivation: Classification of tissues using static gene-expression
data has received considerable attention. Recently, a growing
number of expression datasets are measured as a time series.
Methods that are specifically designed for this temporal data can
both utilize its unique features (temporal evolution of profiles) and
address its unique challenges (different response rates of patients in
the same class).

Results: We present a method that utilizes hidden Markov models
(HMMs) for the classification task. We use HMMs with less states
than time points leading to an alignment of the different patient
response rates. To focus on the differences between the two classes
we develop a discriminative HMM classifier. Unlike the traditional
generative HMM, discriminative HMM can use examples from both
classes when learning the model for a specific class. We have tested
our method on both simulated and real time series expression data.
As we show, our method improves upon prior methods and can
suggest markers for specific disease and response stages that are
not found when using traditional classifiers.

Availability: Matlab implementation is available from
http://www.cs.cmu.edu/~ thlin/tram/

Contact: zivbj@cs.cmu.edu

1 INTRODUCTION

Several methods have been developed for classifying tissues
using gene-expression data. Starting with the seminal work of
Golub et al. (1999) which used ‘ideal profiles’ to classify acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)
cancer samples, researchers have been developing and applying
classification methods to a wide range of diseases using expression
data (Alizadeh et al., 2000; Baranzini et al., 2005). Recently, some
of these methods have been commercialized, creating expression-
based diagnostic and treatment suggestion tools (van 't Veer et al.,
2002).

To date most of the research on classifying expression data
focused on static (snapshot) datasets. While these are appropriate
for many cases (most notably diagnostics) they are less appropriate
for longer term follow-up. Consider for example transplant patients.
For these patients physicians need to determine if and when their
body starts rejecting the new organ in order to start treatment
with immunosuppressing drugs. Another example are patients who
have been admitted to the hospital following an accident and
are monitored for organ failures. In these and other scenarios
classification is improved if one can take into account not only the
current state of the patient but also its past state and the changes that
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have occurred over time. Indeed, large scale efforts are under way
to collect and analyze such time series expression datasets so that
they can be better utilized in clinical settings (Inflammation, 2008).

A unique challenge for clinical time series expression
classification is to account for the patient-specific rate of disease
development or treatment response (Kaminski and Bar-Joseph,
2007; Sterrenburg et al., 2004; Weinstock-Guttman et al., 2003).
While the overall trajectory of the expression profile may be similar
between patients, different patients may progress at different speeds.
Thus, a classifier for these time series datasets should be able to
take into account the varying response rates. This makes methods
that treat the input data as static, such as support vector machines
(SVM) with default kernels, less appropriate for this task.

To address these issue we present a method that can both classify
the time series expression datasets and account for the differences
in patient rates. Our method uses hidden Markov models (HMM:s)
to represent the expression profiles of the two classes. The HMMs
we use contain fewer states for each class than the actual number of
time points. Using the probabilistic transitions between these states
results in alignment of patients to the model and can account for
the varying rates of progress. We further extend the model to learn
discriminative HMMs (Gopalakrishnan et al., 1991; Normandin
et al., 1994; Woodland and Povey, 2002) in which the parameters are
chosen to maximize the difference between the two classes. Finally,
we use feature selection to reduce the model complexity. The two
resulting models are then used to classify new time series expression
data based on the likelihood of the data given in the models.

We have tested our method on simulated and real time-series
expression datasets. For all cases we show that our HMM-based
classifiers achieve large improvements over methods that have been
suggested in the past for this task.

1.1 Related work

There has been a lot of previous work on classifying static expression
datasets. In addition to the work of Golub ef al. (1999) mentioned
above, many other classifiers including SVMs (Furey et al., 2000),
principle component analysis (Bicciato et al., 2003) and K nearest
neighbor (KNN; Nutt et al., 2003) were suggested for this task.
More recently a few methods for classifying time series
expression data were presented. Baranzini er al. (2005) used an
exhaustive search strategy to identify genes for a Bayes classifier
of time series expression data of multiple sclerosis (MS) patients’
response to interferon-g (IFNS). While their goal was to classify
time series data, their method only used the first time point, so it
could not take advantage of the full set of data available. Borgwardt
et al. (2006) used SVM with specialized kernels that accounted for
temporal data. A Kalman Filter was trained generatively for each
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class, and then the kernel was computed using the trained parameters
of the two Kalman Filters. While their methods utilized the entire
time series it does not account for the rate differences discussed
above, which may lead to inaccuracies.

A number of methods have been suggested for aligning time
series datasets to overcome these rate differences. These either
rely on dynamic programming (Aach and Church, 2001) or on
continuous representation of expression data (Bar-Joseph et al.,
2003). However, these methods were primarily developed for
clustering expression data. It is not clear how to use these methods
for classification of time series data.

HMMs have been used to cluster time series expression
data (Schliep et al., 2005), to model dynamic regulatory
networks (Ernst ef al., 2007), to align Liquid Chromatography—
Mass Spectrometry time series (Listgarten et al., 2004), and to
identify timing differences in time series expression data (Yoneya
and Mamitsuka, 2007). However, we are not aware of any method
that used these models for classifying time series data. Interestingly,
each of these different applications used a different number of
states w.r.t. the number of time points measured. Schliep et al.’s
clustering model used fewer states than time points. Ernst ez al.’s
regulatory networks model used the same number of states as time
points and Listgarten er al. used more states than time points for
modeling Mass Spectrometry time series data. In this article we
have investigated all three options as we discuss in Section 4. On the
other hand, Yoneya and Mamitsuka’s timing difference model used
two type of states. Control states have self-loops similar to Schliep
et al.’s model; feature states can jump over control states, similar
to Listgarten et al.’s model. This special state space is designed to
infer the ordering between conditions, but not designed to model a
gene—expression profile.

HMMs are typically trained generatively using maximum
likelihood estimation (MLE). For classification tasks, generative
training only utilizes the positive examples for each class, while
discriminative training can utilize positive and negative examples.
Here we extended a discriminative training method that was
originally developed for speech recognition: the maximum mutual
information estimate (MMIE; Gopalakrishnan er al, 1991). We
discuss this method in more detail in the following Section.

2 HMMS FOR ALIGNING TIME SERIES GENE
EXPRESSION

To account for different and varying response rate of each patient,
we use HMMs. Using HMMs we align a patient’s time series
gene expression to a common profile. For a classification task we
generate two such HMMs, one for good responders and one for poor
responders. Conceptually, a hidden state in our HMM correspond to
a phase in the treatment response. Since different patients progress
at different rates, they enter these states at different times and may
stay in one state for more than one time point.

The emission distribution of gene expression in each state is
modeled by a multivariate Gaussian distribution whose dimension
equals the number of genes used by the classifier. To avoid
overfitting, the covariance matrix is assumed to be diagonal. We
considered three state space topologies, all being left-right models
that conform to the temporal ordering as shown in Figure 1. The first
topology is a left-right model with self-loops, i.e. a state indexed i
has transitions to i or i+ 1. The second is a simple left-right model
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Fig. 1. Three HMM topologies considered in this article. All three are left-
right models that conform to temporal ordering. (a): left-right models with
self-loops (less states than time points); (b): left-right models without loops
or jumps (equal number of states and time points) and (c): left-right models
with jumps (more states than time points).

without loops or jumps, so each state exactly matches one time point.
The third is a left-right model with jumps, i.e. a state i has transitions
toi+1,i+2,...,i+J, where the maximum jump step J is a fixed
constant. In the first topology the number of states is less than the
number of time points, while in the second topology these two are
equal, and in the third topology the number of states is larger than
the number of time points. The first and third topologies can be used
to align patients by modifying their transition probabilities based on
the observed expression data.

We will use the following notations. We are given the time
series gene expressions of K patients, {O1,0»,...,Ok}. We measure
the expression of G genes for each patient at 7 time points,
represented by a G-dimensional multivariate time series O =
(Ok1,0k2, ..., Okr). For gene selection, Oy, denotes the expression
of gene g at time ¢ for patient k. The class patient k£ belongs to
is denoted as ¢y, ci €{1,2}. For notational simplicity, we assume
the patients are from two classes, which is true for many clinical
patient classification tasks. However, the algorithm discussed below
is applicable for multiclass classification as well.

A HMM A with multivariate Gaussian emission probability is
trained for each class m, me {1,2}. Let

200 = ({a™). ™ 0™ ),
where {al(.]’.n)} is the transition probability from state i to j and

{/L](.m)},{a(m)} are mean and SD for the Gaussian distribution of

J
state j. The mean and SD of gene g in state j is denoted as u;;n) and

ajfgm), when it is necessary to specify which gene. We fix the first

state for each topology to represent pre-treatment levels. The hidden
states of time series Oy are denoted as x; = (Xg1,Xk2, ..., XkT)-

We also use the standard notation for the sufficient statistics
of HMM: y]g”) (j) is the posterior probability of state j at time ¢

of observation Oy, conditioned on the model A0 ‘;‘,g”)(i, j) is
the probability of a transition from state i to state j at time ¢ of
observation Oy, conditioned on the model (™).

2.1 Generative training of HMM

Given labeled expression data we can learn the parameters of a
HMM using the Baum—Welch algorithm for each of the three
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topologies mentioned above. The resulting models are generative
as training only utilize data from expression experiments of patients
which belong to that class (good or poor responders). Using such
a generative model we can classify a new dataset by building
one model for each class. Class assignment is based on maximum
conditional likelihood.

It has been shown that MLE is optimal if the true model is
indeed the assumed HMM and there is infinite data (Nadas, 1983).
Unfortunately, it is unlikely that the data is truly generated by a
HMM. Furthermore, the number of training examples for clinical
time series classification is very small. Thus, it would be beneficial
if we could take advantage of both positive and negative data when
building the models for each of the classes. This would allow the
models to focus on the differences between the two sets of expression
datasets, rather than on the most visible features (which could be the
same for all groups of patients, for example stress response which
is a common feature in disease response but may not be a useful
feature for discriminating good and bad responders).

2.2 Discriminative training of HMM

To model the difference between positive and negative examples, we
need to optimize a discriminative criteria, such as the conditional
likelihood of the true classes given the data. This criteria is also
called conditional maximum likelihood estimation (CMLE), often
used in discriminative training methods, e.g. logistic regression.
Here we use the MMIE technique which was originally developed
for speech recognition, to trains HMMs in order to optimize this
discriminative criteria. The standard training algorithm for MMIE is
an extended version of the Baum—Welch algorithm (Gopalakrishnan
et al., 1991). However, unlike generative training, the HMMs for
both classes are learned concurrently and parameters in one of the
models are affected by the parameters estimated for the other model.
The MMIE objective function can be written as,

p(0k|)\’(ck))p()\‘(ck))
POk AD)p(AD)+p(O M P)p(A(2))

FvMmIE= ) _log M

k

Where ¢y, is the class (1 or 2) of patient k.

That is, our goal is to find parameters that will maximize the
probability ratio of the good and poor responders models.

The denominator in Equation (1) will be represented by the
likelihood of a combined HMM, A9€R such that

PO 1.9 = p(0r W D)p(L D)+ p(O 11 P)p ()

29€n jg called the denominator model. In practice we learn new

models for p(k(l)) and p(k(z)) in each iteration and use them to
revise p(Oy|A9M). Thus the denominator model is constructed by
combining the state space of the two HMMs A and 2@, and
assigning initial probability to the beginning states according to the
priors p(A(l)) and p(k(z)). During training, the denominator model
is constructed in each iteration after the HMMs A1) and A are
updated. While updating one class, the HMM for that class is called
the numerator model.

We first discuss the E-step in MMIE which involves the estimation
of expected counts summarizing the current parameter settings. This
estimation is similar to the ones in the Baum—Welch algorithm and
the counts are collected for both the numerator and denominator
models. For example, when A(D is being updated, )/j“um is the

expected count of state j in the positive examples according to
the numerator model A(1); 3 um jg the expected count of transition
from state i to state j in the positive examples according to A,
GJnum(O) are weighted sums of expression values in the positive

examples, and 9}-“““‘(02) are weighted sums of squared values,
where the weightings are the posterior probability of state j.
Similarly, y de" §de“ Gde“(O) and Qden(O ) are expected counts
in all examples according to the denominator model Aden The

calculations when updating 2@ is similar. These expected counts
are obtained from the dynamic matrices of the forward—backward

algorithm. Formally,
d
=L 2D

"= Y w B

klcr=1 t
0= Y > vk ()0, 0de"<0>—ZZyk, ()Ox
k‘(‘k=l t
om0 =Y D v (DO}, 60N =Y Y v ()0},
Klee=1 1 kot
num Z Z‘;;]El)(ld) éden Zzéden(l’j)
klcy=1 t

The major difference between generative and discriminative HMMs
is in the M-step. MLE for the generative model only updates
the parameters in the direction of positive examples, e.g. ;=
Gjpum(O)/yjnum. In contrast, MMIE updates the parameters by
moving them toward the positive examples and away from the
denominator model. This leads to greater focus on emission and
transition probabilities that differ between the two models (either
across states or at specific states for each gene) contributing
to increased discrimination between the two models. However,
such subtraction may generate negative transition probabilities or
negative variances in emission probabilities. A smoothing constant
needs to be added to both the numerator terms and the denominator
terms to avoid this. Hence the reestimation formulas of MMIE are,

oM™ (0) ~ 01" (0)+DE 1y
’aj: num den @
vy e

elnum(ol’)—elde“(02)+DE(cfj2+Mf)

~2 ~2

67 = -} 3
J )/jnum_)/jden+DE J

R snum _EQen +DT‘1ij

= @)

Zénum fden‘f'DTaij’

where Dg and Dt are smoothing constants for emission and
transition probabilities, respectively.

It has been shown that Equation (2)-(4) will converge to a local
maximum of the MMIE objective function, given sufficiently large
smoothing constants Dg and D7 (Normandin ez al., 1994). However,
it is not known how large they must be for the objective function
to converge. If the smoothing constants are too small, update may
not increase the (discriminative) objective function, but if they are
too large, convergence will be too slow. A useful lower bound is
the minimal values that ensures that the HMM parameters remain
valid. Empirically, setting the smoothing constants to twice the lower
bound leads to fast convergence (Woodland and Povey, 2002). Thus
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we set Dr to twice the minimal value that makes all variances
81.2 positive; Dr is set to twice the minimal value that makes all

transition probabilities &;; positive. See Appendix A for details on
how these values can be computed.

The HMM parameters are updated by a weighted average of
the previous parameters and the reestimations. We follow previous
works and set the learning rate, the weight of reestimations, as the
error rate (Normandin et al., 1994). Hence the learning rate is larger
in the beginning and smaller when nearing convergence.

3 GENE SELECTION FOR TIME SERIES
EXPRESSION CLASSIFICATION

Gene selection is critical in clinical gene expression classification for
several reasons. First, the number of patients (data points) is small
compared to the number of genes (features), resulting in overfitting.
It is expected that restricting to a subset of relevant genes will
improve classification accuracy. Second, a small subset of genes that
discriminate between the classes can lead to biomarker discovery.
The selected genes can be further examined by more experiments to
find out the causal factors of different response to a treatment.

We consider the problem of gene selection as a feature selection
problem and will use the terms ‘gene’ and ‘features’ interchangeably.
There are two primary approaches for feature selection; the
‘wrapper’ approach and the ‘filter’ approach (Xing, 2002). The
wrapper approach evaluates the classifier on different feature subset,
and searches in the space of all possible feature subsets using the
specific classification strategy. The filter approach does not rely
on the underlying classifier, but instead uses a simpler criteria to
filter out irrelevant features. Typically the filter approach is faster,
while the wrapper approach can fit the specific need of a classifier
and obtain better performance. In pursuit of higher classification
accuracy, the feature selection method we used here is a wrapper
method.

We used a backward stepwise feature selection method that
utilizes the alignment to the HMM profiles based on recursive feature
elimination (RFE) algorithm, termed HMM-RFE (Guyon et al.,
2002). The basic procedure of RFE is as follows: train the classifier,
eliminate the feature whose contribution to the discrimination is
minimal, and repeat iteratively until the stopping criteria is met. It
is also possible to eliminate several features in one step, especially
when the number of features is large.

To estimate the contribution to discrimination of a specific gene,
we note that since the covariance matrix is diagonal, gene-expression
levels are independent given the hidden states. Thus, if the states
are known, the likelihood can be decomposed into terms involving
each gene separately. However, such a decomposition does not exist
when the hidden states are unknown. Instead we use a heuristic to
approximate this decomposition.

We define the contribution to log odds of a gene g, dg, as

M, . 1 @D
ijkt (/)N<0ktg|llng 1 Ojg )
@), . 2 2
Sivid DN (Ougliy o)

where 8(cy=1) is 1 if ¢, =1 and 0 otherwise. See Appendix B for

a detailed derivation. Briefly, the equation above uses an estimate

of the states (yk(tl)(j) and yk(tz)(j)) to compute the discriminative

contribution of genes for the two classes.

S)

dg=3 (~1)’*=Dlog
k.t

In each selection step, genes are ranked by the contribution dg, and
the gene with lowest score is eliminated. Following the elimination
step, new HMM s are trained using the remaining genes and the gene
selection step is repeated.

In order to determine the final number of selected genes we
use internal cross-validation within the training data. Note that
internal cross-validation does not utilize the test data in any
way. The HMM-RFE algorithm is summarized in the following
procedure:

1. Given G genes, define gene sets with a decreasing number
of genes, G=Gy> G| > Gy >--->Gy, such that G; genes
are selected at the i-th iteration. Initially, the active gene set
includes all genes, and i =0.

2. At i-th selection, train the HMMs A1) and A(2) using genes in
the active gene set.

3. Calculate the discrimination score dg for each gene g, using
Equation (5). Select G; genes with highest scores.

4. Record the cross-validation accuracy of the active gene set.
5. Seti<—i+1, repeat Step 2 until i=N —1.

6. Choose the optimal gene number G* leading to the highest
cross-validation accuracy.

Although we use internal cross-validation to determine the
optimal gene set, it is not used in gene ranking. The reason is
computational. Internal cross-validation for genes would increase
the complexity by a factor of G (total number of genes) which could
be a substantial increase for microarray expression data measuring
thousands of genes.

4 RESULTS

We first tested our method on simulated data. Next, we applied our
method to a clinical dataset measuring MS patients’ response to
IFNB, one of the most common treatments to control MS.

4.1 Simulated dataset

The expression of genes in response to treatments often follows a
bifurcating pattern diverging as time progresses (Ernst ez al., 2007).
This is also the case in clinical settings, as can be seen in Figure 2.
In that figure we plot the average expressions of four genes in MS
patients treated with IFNS (Baranzini et al., 2005). The patients
are divided into two groups, good and poor responders (red and
green curves, respectively). As the figure indicates, while these genes
display similar levels at the early time points they diverge at the later
time points. A classifier that only utilizes the first time point is likely
to perform much worse when compared to a classifier that utilizes
the entire time series.

To generate the simulated data we have also tried to mimic this
type of expression pattern as we describe below. We generated
expression profiles for 100 patients. Of these, 50 patients were in
class 1 (‘good responders’) and 50 in class 2 (“poor responders’).
100 genes were measured for each patients, with a maximum of 8
time points per patient. For each gene g, we generated the Class 1
response profile by randomly selecting a segment of a sine wave,
of length 1.5 between O to 4. Denote this profile as a function,

f(é])(t). We selected 10 out of the 100 genes to be differential,

the other 90 where assigned the same values for Class 2. For
differential genes, the gene-expression profile of poor responders
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Fig. 2. Averaged log expression of good and poor responders for four
bifurcating genes. Expression levels are absolute difference and not log ratios
to the first time point.

féz)(t) is the good responders’ profile curve plus a piecewise linear
function,

0=+ af, ),
Afy(t)=agmax(t —bg,0)

where the gradient ag and the offset bg are gene-specific parameters.
ag is +5 or —5, and by is uniformly selected at random between
—0.1 and 0.3.

After the profiles are generated, we simulate patient-specific
response rate by randomly choosing a scaling value s; between
0.5 to 1.5 for patient k. s is used to transform the time series for
patient k by stretching or shrinking the curves. Thus, the time series
profile for each genes of patient & is the linearly scaled profile time
series. Finally, we add Gaussian noise, with mean 0 and gene-specific
variance Cng. Formally,

Okig =f;§ck)(Skt)+e,

e~N(0,0),
s ~ Uniform(0.5,1.5)

We tried a number of different values for ag based on real datasets
and all resulted in similar performance.

We compared our HMM-based classification with two baseline
classifiers: linear SVM (default parameters of SVM light is used),
and the Integrated Bayesian Inference System (IBIS) method
of Baranzini er al. (2005). IBIS only uses the first time point as
we discussed in Section 1.1. We note that we have tried to obtain
the code for the Kalman filter SVM of Borgwardt et al. (2006) for
direct comparison. Unfortunately, the code is not available online.
Despite several e-mail requests we were unable to obtain their code
and we thus cannot present direct comparison of the two methods.

Simulated time series classification

0.9 T T T T T T
IBIS
— — — Linear SVM
0.85 Loop HMM
—+— Loop HMM, discriminative
0.8 Equal length HMM
—*— Jump HMM
0.75F 4
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Time points

Fig. 3. Classification accuracy of simulated data, based on five random
permutations and 4-fold cross-validation (20 different training—testing
splits). For the loop HMM, 2 to 4 time points use 1 state, 5 to 7 time points
use 2 states, and 8 time points use 3 states. For the jump HMM, 4, 5, 6, 8,
10, 10 and 12 states are used from 2 to 8 time points. For both loop and jump
HMM, 10 random initialization are carried out and the initialization with the
highest likelihood is chosen.

Classification accuracy of different methods are shown in
Figure 3. Due to large amount of noise and limited information
at earlier time points, classification using data from these points
is close to random, causing difficulties for IBIS. With more
time points, HMMs provide satisfactory results. HMMs using the
three topologies all outperform SVM from 6 to 8 time points.
Overall, the loop model results in highest accuracy with more time
points.

For the loop HMM, we performed discriminative training on
the HMMs trained generatively after gene selection. Although it
is possible to incorporate discriminative training in HMM-RFE, the
computation would be much heavier because discriminative training
requires more iterations (e.g. 500 iterations) to converge comparing
to generative training (about 20 iterations). As can be seen, accuracy
is higher except for 2 time points where classification is close
to random. Hence discriminative training can further improve the
performance as it utilize both positive and negative data.

We also verified whether gene selection found the true differential
genes. Since different splits results in different gene selection,
we listed the median number of selected genes, and verified the
correctness of overlapping genes: genes selected in 90% of the
splits, in Table 1. Note that all overlapping genes are correct after
5 time points, and the number of selected genes is small after 6 time
points, especially when using 7 and 8 time points resulting in better
accuracy.

4.2 MS dataset

We next tested our model using a clinical expression dataset. This
dataset contains time series expression data for 70 genes in 52 MS
patients treated with IFN 8 Baranzini et al. (2005). Of the 52 patients,
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Table 1. Selected genes in simulated data

Time Accuracy Median ~ Number of Precision of
(%) overlapping genes  selected genes (%)
2 44 19 1 0
3 47 18 2 0
4 56 16 2 0
5 58 17 2 100
6 73 7 2 100
7 87 2 1 100
8 86 4 2 100

Time is the number of time points used to construct the HMM model. Accuracy is
the best accuracy using these time points (loop HMM using discriminative training).
Median is the median number of selected genes. Number of overlapping genes presents
the number of genes selected in at least 90% of the training—testing splits. Precision is
the percent of overlapping genes that were indeed part of the 10 assigned differentially
expressed genes.

33 responded well to the treatment (‘good responders’) and 19 did
not respond well (‘poor responders’). The 70 genes included were
preselected by experts based on relevance to MS. For each patient
there are 7 time points, measured every 3 month in the first year
following treatment and every 6 month in the second year. Some
patients miss certain measurements, especially at the 7th time point,
causing an entire measurement to be a missing value.

As we did with the simulated data, we compared our method to
the original IBIS algorithm and to linear SVM. We note again that
we were unable to compare our method to the Kalman filter SVM
of Borgwardt er al. (2006) since we could not obtain their code.

The classification accuracy is evaluated using 4-fold cross-
validation. For each possible number of time points (2, 3, etc.) we
train a new instance of each potential classification model (SVM,
HMMs, etc.). Figure 4 presents the results. In that figure we plot
the accuracy versus. the number of time points for the different
classifiers.

As can be seen, HMM with equal number of states and time
points (equivalent to Gaussian Naive Bayes classifier) achieves
classification accuracy that is similar to SVM with default
parameters (tuning of SVM parameters improves the accuracy, but
it is still significantly lower than the other HMMs). In contrast,
the other two HMMs that allow for alignment perform much
better on this clinical dataset, indicating the alignment is indeed an
important issue for time series classification. The loop HMM model
performs better than the jump model from 3 time points; a possible
explanation is that fewer emission parameters reduced overfitting.
The best results when using all data (7 points) were obtained by the
loop HMM after discriminative training (85%). In addition, when
using 2 or 3 time points the discriminative HMM outperformed
the generative model. However, for the other sets of time points
the two models (discriminative and generative) achieved similar
results.

It is important to note that we do not use the test data in gene
selection during training, so that the evaluation would be closer to
the performance on new data. The results presented in Figure 4
differ from the results in the original IBIS paper (Baranzini et al.,
2005) even though we have followed exactly the same (and simple)
procedure as described in that paper. We believe that the reason
for this discrepancy is that, while exhaustive search of all triplets
and full covariance matrix in IBIS gives very good results on the

MS IFN-B response classification
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Fig. 4. Classification accuracy of MS patients’ response to IFNS, based on
5 random permutations and 4-fold cross validation (20 different training-
testing splits). For the loop HMM, 2 and 3 time points use 1 state, 4 to 6
time points use 2 states, and 7 time points use 4 states. For the jump HMM,
3,4,7,8, 10, 12 states are used from 2 to 7 time points. For both loop and
jump HMM, 10 random initialization were carried out and the initialization
resulting in the highest likelihood was selected.

training data, it may lead to overfitting of the validation accuracy,
which becomes much higher than test accuracy.

4.3 Selected genes and the advantages
of patient alignment

We next examined the selected genes for the different classifiers
(trained with different number of time points). Table 2 lists the
selected genes for models constructed from the different sets of
time points. Again we only list genes selected in at least 90% of the
training—testing splits. With more time points the classifiers stabilize
between splits leading to more selected genes. We compared our list
to aprevious list of 12 genes selected by Baranzini ez al. (2005) based
on expression values prior to treatment (first time point). Caspase
10 and Caspase 3 which were also listed in the original paper, are
almost always selected regardless of how many time points are being
used. However Jak2, IL12Rb2 and RAIDD are only selected using
more time points, and are not on the list of 12 genes in that paper.
These uniquely selected genes are due to the ability of our method
to consider later time points, as shown in Figure 5. The left column in
Figure 5 plots the mean and variance of gene expression at different
time points. Some genes like Jak2 differs in later time points more
strongly between the two classes when compared to the first time
point. For some genes, the divergence is visible only in the aligned
expression models, shown in the right column of Figure 5. To obtain
the aligned expression, we use the Viterbi algorithm to align the
time points of a patient to the most likely states of the HMM.
IL12Rb2 and RAIDD, for example, are more separated between
classes in the aligned expression. The large variances (and hence
overlap) in unaligned time series could be due to poor responders
entering the third state earlier or good responders staying in the
second state longer, which is resolved after the alignment. Note that
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Table 2. Selected genes in MS dataset

Time Accuracy Median  Selected genes
(%)

2 78 15 Caspase 3, Caspase 10, IL-4Ra

3 71 13.5 Caspase 3, Caspase 10, Jak2

4 81 11.5 Caspase 10, Caspase 2, Jak2

5 85 26 Caspase 10, MAP3K1, IRF8, Caspase 3,
Caspase 2, Jak2, IL-4Ra, IL12Rb2

6 84 13.5 Caspase 10, Caspase 3, Jak2, IRF4,
Caspase 2

7 85 23.5 Caspase 10, Caspase 3, Jak2, IL-4Ra,

MAP3KI1, RAIDD, Caspase 2

See Table 1 for description of the time, accuracy and median columns. Selected genes
are genes selected in at least 90% of the training—testing splits. Accuracy is based on
loop HMM using discriminative training.

the alignment is on the patient level, based on the expression of
all genes. To isolate the effect of alignment we applied a linear
SVM to the alignment model determined by the HMM. Unlike
the regular SVM that uses the measured values, the alignment
SVM uses the average expression of time points aligned to each
of the HMM states. As Figure 6 shows, such a classifier leads to
much higher accuracy than SVM based on unaligned expressions.
However, while this classifier considers the alignment, it ignores
the temporal ordering of the states which is why it is outperformed
by discriminative HMM, at least in some cases. These results
highlight the importance of alignment when working with clinical
expression data.

Some of the genes we uniquely identified are also validated
by recent complementary studies. IL12RB2, an important
autoimmunity gene is expressed in activated T-cells and is a marker
of TH1 inflammatory response. Its consistent increase in poor
responders suggests lack of response to treatment. This becomes
more evident as time goes by leading to maximal difference after a
year (Fig. 5). A recent paper found that it was a good marker for lack
of response to glatiramer acetate in MS (Grossman et al., 2007),
and as our results indicate it might be a good marker to the IFNS
treatment. Another genes we identified, JAK2, is phosphorylated
by the activation of the IL12 receptor. Again, this might cause a
delayed response leading to stronger differences at later time points.

5 DISCUSSION

A major challenge in classifying time series clinical expression data
is the varying response rates of individuals. In this article we propose
the use of HMMs for this task. HMMs can naturally model non-
linear patient-specific response rates. The hidden states represent
the temporal clustering of gene expression, and can be interpreted
as disease phases. Transition probabilities allows different patients to
progress at different rates. To overcome the small number of training
examples we have used discriminative HMMs. Unlike generative
HMMs, discriminative HMMs can utilize both positive and negative
examples when generating a model for each class.

Using both simulated data and clinical expression data of MS
patients, we show that HMMs outperforms classifiers that do not take
the temporal ordering into account. We further compared three left-
right HMM models: the loop model, the equal-length model, and the
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Fig. 5. Mean and variance of expression profiles of unaligned and aligned
genes selected for models using 5 or more time points. Plots in the same
row are for the same gene. The right column presents, for each of the genes,
the aligned expression profiles corresponding to the four states using the
Viterbi algorithm. Alignment is based on the best discriminative HMM of
all training—testing splits. In the learned model, the selected genes go up in
the second state and back to initial level in the third state. The fourth state
basically models outliers in the 6th and 7th time point, and hence transition
probability into this state is small. The overlap between classes on the second
and third states of all the five genes is smaller after the alignment leading to
better discrimination between poor and good responders. This is critical for
the correct identification of IL12Rb2 and RAIDD as two important features
for later time points.

jump model. Of these, the loop model performs best which is likely
the result of the small training data for these types of experiments.
Discriminative HMMs improve upon generative HMMs in most,
though not all, cases.

In addition to learning discriminative models we also carry out
gene selection. The selected genes in simulated datasets correctly
contain the truly differential genes. While we do not have the ground
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Fig. 6. Applying SVM to the averaged expressions of aligned time points.
The alignments are obtained by running the Viterbi algorithm on the
best discriminative HMM. The SVM uses the linear kernel and default
parameters.

truth for the MS dataset, many of the selected genes can be explained
based on current knowledge of disease progression.

As more time series expression data accumulates we would like to
test our method on additional types of response data. We would also
like to extend our model to better represent the interactions between
genes. The current diagonal covariance emission model ignores
such interactions. When more data becomes available, models that
compute more covariance terms can be learned from data leading to
better models and improved accuracy. We are also interested in other
clinical applications of our HMM, e.g. predicting rejection events
for transplant patients. Alignment of time series gene expression
between group of genes or species could also be important in other
biological experiments.
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APPENDIX A

For discriminative training of HMM using MMIE, the smoothing
constants are set to twice the minimal value that ensures the
probabilities to be valid. Here we show how to calculate the D7 and
Dg smoothing constants for transition and emission probabilities,
respectively. By setting a;; in Equation (4) to be positive, D can
be calculated as

I
Dr=2max {0, — —536“)}
ij ajj
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By plugging Equation (2) into Equation (3) and setting 61.2 to be
positive, we have a quadratic inequality of D,

oM™ (0%) 61" (0%)+DE (a7 +117)

num __,,den
7+ D

6™ (0)— 01" (0) +DE ;| 2
_( j j ) 0
)/jnum_)/jden+DE

or

2D%+|:(0’ ‘H/«] )( num yjden)+(9]pum(02)_9]§ien(02))
—2u; (Q,num(O)—H;ie“(O))}DE

+ (yjnum yden) (anum(oz) _ deen(Oz))

—(8M™(0)~681(0))* > 0

This quadratic inequality can be solved to obtain a lower bound,
and Dp is set to twice the lower bound.

APPENDIX B

In gene selection, we need to estimate the contribution to
discrimination of each gene. Because the covariance matrix is
diagonal, the gene expressions are independent given the hidden
states. That is, the probability of a time series gene expression Oy
given a HMM A and the hidden states Xy, can be decomposed as,

POk ) =TT Tp (Osg o) =TT TV (Ouiglisly o)
1 g { g

What we need is to decompose the marginalized likelihood
p(OkM(l)) into terms involving each gene only, q,,((};(Ok,g):

pOIAMD) =T T IpCorr ek o 1)1‘[p (Okiglir) ]

X
= 1_[ l_[ Dkeg (Okfg)
g t

Unfortunately, expressions levels for individual genes are
not independent once the hidden state are not known, so the
above decomposition does not exist. We will use a heuristic

to approximate this decomposition. Since the hidden states

are unknown, we approximate it by the posterior probabilities,

ylg)(]). We approximate the term q,({:;(Ok,g) as the weighted

average of the Gaussian emission probabilities, the weights being

Ve U
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We can approximate the contribution of each gene to the log odds,
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Then the total log odds of the correct model versus the incorrect
model can be expressed as the sum of contribution of each gene, dg,
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where 8(cy=1) is 1 if ¢y =1 and O otherwise. Thus we have
contribution to log likelihood ratio of a gene dg, defined as

qk,)(ok,g)

1)
Z( 1= e )
q,ﬂ)(ok,g)

(V) 1 @
v DN (Ouglisy o)

37 DN (Osglusy Jﬁj))

:Z(_1)5(0k=1)1
k.t

i165



	Alignment and classification of time series gene expression in clinical studies
	Tien-ho Lin, Naftali Kaminski and Ziv Bar-Joseph
	1 Introduction
	2 HMMs for Aligning Time Series Gene Expression
	3 Gene Selection for Time Series Expression Classification
	4 Results
	5 Discussion



