Skip to main content
. 2008 Jul 1;24(13):i250–i268. doi: 10.1093/bioinformatics/btn164

Table 3.

Performance comparison between our algorithm (‘SCI-BN’), SVM with the same set of features (‘SCI-SVM’), Clique based method using only the density feature (‘Density’) and the ‘MCODE’ methods (Bader et al., 2003b) (‘MCODE’)

Train Test Method Precision Recall F1
MIPS TAP06 Density 0.217 0.409 0.283
MIPS TAP06 MCODE 0.293 0.088 0.135
MIPS TAP06 SCI-SVM 0.247 0.377 0.298
MIPS TAP06 SCI-BN 0.312 0.489 0.381
TAP06 MIPS Density 0.143 0.515 0.224
TAP06 MIPS MCODE 0.146 0.063 0.088
TAP06 MIPS SCI-SVM 0.176 0.379 0.240
TAP06 MIPS SCI-BN 0.219 0.537 0.312

Evaluation is based on precision, recall and the F1 measure. Experiments carried out with either MIPS as positive training set and TAP06 as test set, or vice versa.