Table 3.
Performance comparison between our algorithm (‘SCI-BN’), SVM with the same set of features (‘SCI-SVM’), Clique based method using only the density feature (‘Density’) and the ‘MCODE’ methods (Bader et al., 2003b) (‘MCODE’)
Train | Test | Method | Precision | Recall | F1 |
---|---|---|---|---|---|
MIPS | TAP06 | Density | 0.217 | 0.409 | 0.283 |
MIPS | TAP06 | MCODE | 0.293 | 0.088 | 0.135 |
MIPS | TAP06 | SCI-SVM | 0.247 | 0.377 | 0.298 |
MIPS | TAP06 | SCI-BN | 0.312 | 0.489 | 0.381 |
TAP06 | MIPS | Density | 0.143 | 0.515 | 0.224 |
TAP06 | MIPS | MCODE | 0.146 | 0.063 | 0.088 |
TAP06 | MIPS | SCI-SVM | 0.176 | 0.379 | 0.240 |
TAP06 | MIPS | SCI-BN | 0.219 | 0.537 | 0.312 |
Evaluation is based on precision, recall and the F1 measure. Experiments carried out with either MIPS as positive training set and TAP06 as test set, or vice versa.