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ABSTRACT

Motivation: The need for accurate and efficient tools for
computational RNA structure analysis has become increasingly
apparent over the last several years: RNA folding algorithms underlie
numerous applications in bioinformatics, ranging from microarray
probe selection to de novo non-coding RNA gene prediction.

In this work, we present RAF (RNA Alignment and Folding),
an efficient algorithm for simultaneous alignment and consensus
folding of unaligned RNA sequences. Algorithmically, RAF exploits
sparsity in the set of likely pairing and alignment candidates for
each nucleotide (as identified by the CONTRAfold or CONTRAIlign
programs) to achieve an effectively quadratic running time for
simultaneous pairwise alignment and folding. RAF’s fast sparse
dynamic programming, in turn, serves as the inference engine within
a discriminative machine learning algorithm for parameter estimation.
Results: In cross-validated benchmark tests, RAF achieves
accuracies equaling or surpassing the current best approaches for
RNA multiple sequence secondary structure prediction. However,
RAF requires nearly an order of magnitude less time than other
simultaneous folding and alignment methods, thus making it
especially appropriate for high-throughput studies.

Availability: Source code for RAF is available at: http://contra.
stanford.edu/contrafold/
Contact: chuongdo@cs.stanford.edu

1 INTRODUCTION

The secondary structure adopted by an RNA molecule in vivo is a
vital consideration in many bioinformatics analyses. In PCR primer
design, stable secondary structures can obstruct proper binding of
the primer to DNA (Dieffenbach et al., 1993); in RNA folding
pathway studies, secondary structure forms the basic scaffold on
which more complicated 3D structures organize (Brion and Westhof,
1997); and in computational non-coding RNA gene prediction,
RNA secondary structural stability provides the characteristic
signal for distinguishing real RNA sequence from non-functional
transcripts (Eddy, 2002).

To date, the most powerful non-experimental methods for
determining RNA secondary structure rely primarily on position-
specific patterns of nucleotide covariation in multiple homologous
RNA sequences. Specifically, enrichment for complementarity in
pairs of columns from an RNA multiple alignment, especially when
primary sequence is not conserved, provides strong evidence for
potential base-pairings in the RNA’s in vivo structure. A primary
limitation of covariation analysis, however, is the difficulty of
obtaining reliable sequence alignments for divergent RNA families.
This shortcoming is especially relevant in the detection of ncRNA
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genes, as secondary structural constraints often exist even when
primary sequence conservation is lacking (Torarinsson et al., 2006).

In this article, we describe RNA alignment and folding
(RAF), a new algorithm for predicting RNA secondary structure
from a collection of unaligned homologous RNA sequences.
Algorithmically, RAF belongs to a category of RNA secondary
structure prediction methods which simultaneously align and
fold RNA sequences. By optimizing a pair of unaligned RNA
sequences for both sequence homology and structural conservation
concurrently, simultaneous alignment and folding approaches
sidestep the usual problem of needing accurate sequence alignments
before the folding is done. By exploiting sparsity in the set of likely
base pairings and aligned nucleotides, RAF achieves O(L?) running
time for sequences of length L, improving significantly upon the
O(L*) running times of typical simultaneous folding and alignment
approaches.

The main contribution of RAF, however, is its application
of discriminative machine learning techniques for parameter
estimation to the problem of simultaneous alignment and folding.
Unlike previous methods, RAF’s scoring model does not rely on
ad hoc combinations of thermodynamic free energies for structural
features (Mathews er al., 1999) with arbitrary alignment match
and gap penalties (Hofacker et al., 2002), nor does RAF attempt
the ambitious task of simultaneously modeling the evolutionary
history of both sequences and structure (Knudsen and Hein, 2003).
Instead, RAF defines a fixed set of basis features describing
aspects of the alignment, RNA secondary structure, or both. RAF
then poses the task of learning weights for these features as a
convex optimization problem, giving rise to efficient algorithms with
guaranteed convergence to optimality.

The concept of using discriminative methods for parameter
estimation rather than relying solely on parameters compiled
from experimental measurements originated with the CONTRAfold
(Do et al., 2006b) program, and later also became the basis of the
CG (Andronescu et al., 2007) method. In a manner analogous to
these two previous methods for single sequence secondary structure
prediction, RAF demonstrates that automatic learning of parameters
can also confer benefits to multiple sequence structure prediction
accuracy.

2 METHODS

The RAF algorithm consists of four components: (1) a simple yet flexible
objective function for pairwise alignment and folding of unaligned RNA
sequences; (2) a fast Sankoff-style inference engine for maximizing this
objective function via sparse dynamic programming; (3) a simple progressive
strategy for extending the pairwise algorithm to handle multiple unaligned
sequence inputs; and (4) a max-margin framework for automatically learning
model parameters from training data. We describe each of these in turn.
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Fig. 1. Sparsity patterns in posterior probability matrices. Panels (a) and (b) illustrate the pairwise pairing posterior probabilities for two different sequences
(such as generated by a single-sequence probabilistic or partition function—based RNA folding program). Panel (c¢) shows the alignment match probabilities for
these sequences (such as generated by a probabilistic HMM). In each panel, the darkness of each square represents the posterior confidence in the corresponding
base pairing or alignment match. While the single sequence folder or the pairwise sequence aligner may not be able to identify the single correct folding or
alignment, respectively, the set of likely candidate base pairings and matched positions, nonetheless, is extremely sparse.

2.1 The RAF scoring model

We begin our description of the algorithm by describing a scoring scheme for
alignments and consensus foldings of two sequences. Let @ and b be a pair
of unaligned input RNA sequences. We refer to a candidate alignment and
consensus secondary structure of a and b collectively as a parse. Formally, a
parse y for a pair of sequences a and b is a set whose elements consist of base
pairings (a;, a;) belonging to sequence a, base pairings (b, b;) belonging to
sequence b, and aligned positions (a;, by) between a and b.

For a given parse y from the space of all valid' parses ), RAF uses
a simple scoring scheme which takes into account aligned positions and
conserved base pairings. Specifically, RAF defines the score, SCORE(y;w),
of such a parse y to be

Yoy Y 5 g e,
(ai,b)ey ((ai,aj),(br, b)) eB(y)
where wfvﬁg"ed(i, k) and w&aimd(i, Jik,1) are scoring terms for aligned
positions and conserved base pairs, respectively, and where B(y) is the set
of all conserved base pairings. In turn, RAF models each scoring term as a
linear combination of arbitrary basis features (Appendix A.1):
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where w € R"%ligned ipaired = [R” is a vector of scoring parameters.

2.2 Fast pairwise alignment and folding
Given the scoring scheme described in the previous section, the problem of

simultaneous alignment and folding reduces to the optimization problem,

y* =argmax SCORE (y; W). (1)
yey

'We say that a parse y of inputs a and b is valid provided that (1) each
nucleotide of a and b base pairs with at most one other nucleotide in the
same sequence; (2) each nucleotide aligns with at most one nucleotide
in the opposite sequence; (3) neither sequence contains pseudo-knotted
base pairings; (4) the alignment of the two sequences does not contain
rearrangements or repeats; and (5) all base pairings are conserved.

In principle, the solution to (1) follows immediately from the original
dynamic programming algorithm for simultaneous alignment and folding
presented by Sankoff (1985). Sankoff’s algorithm, however, has an O (LX)
time complexity and O(L*X) space complexity for K sequences of length L,
rendering it impractical for all but the smallest multiple folding problems.
Therefore, most programs for RNA simultaneous alignment and folding
use heuristics to reduce time and memory requirements while minimally
compromising alignment and structure-prediction quality. Some heuristics
used in previous programs have included incorporating structural information
into a single alignment scoring matrix (Dalli et al., 2006), disallowing multi-
branch loops (Gorodkin ef al., 1997), and precomputing potential conserved
helices prior to alignment (Tabei et al., 2006; Touzet and Perriquet, 2004).

The most popular heuristics, however, involve reduction of the portion
of the dynamic programming matrices (which we call the DP region) that
must be computed. For example, some methods restrict the DP region to a
strip of fixed width about the diagonal (Hofacker et al., 2004; Mathews and
Turner, 2002) or about an initial alignment path (Kiryu ez al., 2007). Other
methods rely on external single-sequence folding and probabilistic alignment
programs to generate base pairing probability matrices (Torarinsson et al.,
2007; Will et al., 2007) or alignment match posterior probability matrices
(Kiryu et al., 2007), and then exploit the sparsity of these matrices in order
to reduce the amount of computation required.

The RAF algorithm adopts the last of these strategies. Namely, RAF
uses a single-sequence RNA secondary structure prediction program
(CONTRAfold; Do et al., 2006b) and a pairwise RNA sequence alignment
program (CONTRAlign; Do et al., 2006a),> respectively, to construct a
constraint set C of allowed base pairs and aligned positions in a and b.
Given a constraint set C, RAF then replaces (1) with the reduced inference
problem,

y* =argmax SCORE(y; W), ?2)
yede
where Ve ={ye)Y:yCC} is the space of valid parses, restricted to those
which contain only base pairings and alignment matches from the constraint
set C (Fig. 1).

To obtain the set of allowed base pairings, RAF uses the implementation
of McCaskill’s algorithm (McCaskill, 1990) from CONTRAfold in order to
compute the posterior probability of each possible base pairing in sequence a,

2The original CONTRAlign program was designed for protein sequences.
We adapted this for RNAs by removing all protein-specific features (e.g.
hydrophobicity), modifying the underlying alphabet (A, C, G and U) and
simply retraining on the appropriate training set.
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Table 1. Comparison of computational complexity of RNA simultaneous
folding and alignment algorithms

Algorithm Time complexity Space complexity
Sankoff O(L%) O(L%)
FOLDALIGN o(L% o(L*)
LocARNA O(c2LY) O(c*L?)
Murlet O(d*L* +d°L3 /«) O(d*L?)
RAF O(min(c,d)-cd?L?) O(min(c,d)-cdL)

Here, L denotes the sequence length, c is the number of candidate base pairs per position,
d is the number of candidate alignment matches per position and « is the minimum
allowed distance between adjacent helices.

and similarly for sequence b. All base pairs with posterior probability at least
€paired are then retained. Similarly, to determine the set of allowed aligned
positions, RAF retains those matches whose posterior probability, according
to a version of the CONTRAIlign program adapted for RNAs, is at least
€aligned- 1f these cutoffs €ujigned and €paired are chosen to be too low, then
the reduction of the dynamic programming space achieved for Yz will not
be significant. Conversely, a higher cutoff could also degrade performance
by excluding portions of the DP matrix which actually correspond to the
true parse of the input sequences. A similar approach for pruning the space
of candidate alignments and folds via fold and alignment envelopes was
implemented in the Stemloc (Holmes, 2005) program. A number of other
programs exploit either base-pairing sparsity (Torarinsson et al., 2007; Will
et al., 2007) or alignment sparsity (Dowell and Eddy, 2006; Harmanci et al.,
2007; Kiryu et al., 2007) separately.

Assuming O(c) and O(d) bounds on the number of candidate base pairing
and alignment partners, respectively, per position of both sequences, we
show that the time complexity of the RAF algorithm scales quadratically
in the length of the sequences, while the space complexity scales linearly
(Appendix B.1). A comparison table of asymptotic time and space complexity
of a number of modern RNA simultaneous folding and alignment approaches
is shown in Table 1. In practice, we find that RAF’s scaling reflects the
theoretical bounds, achieving running times often an order of magnitude
faster than current simultaneous alignment and folding methods.?

2.3 Extension to multiple alignment

Using the RAF pairwise alignment subroutine, we can also address the
problem of aligning two alignments. Let S and 7 be two sets of sequences
that we wish to align; furthermore, we denote their corresponding alignments
as A and B.

To align a pair of alignments, we first define new basis features
{d)ﬁhgmd(i ,k)};“:"f"ed and {a&galred(i ik, l)}zp:“ ilrEd to simply be the average over
all pairs of sequences s €S and 7 € T of the basis features for aligning s and ¢,
remapped to the coordinates of the alignments A and B. Second, we define the
new constraint set C for aligning the two alignments to be the union over all
pairs of sequences s€ S and €7 of the constraint sets for each pair, again
remapped to the alignment coordinates. Finally, using these new features
and our new constraint set, we simply call the existing RAF subroutine for
fast-pairwise alignment and folding.

3We note that the method described here bears some relation to the ‘candidate
list’ algorithm of Wexler et al. (2007), which maintains sparse lists of
potential bifurcation points for single sequence folding. By showing that
the number of relevant bifurcation points has a negligible dependence on
sequence length, the authors provide an effectively quadratic time algorithm
for single-sequence folding. Here, our algorithm also relies on sparsity
of bifurcation point candidates when dealing with pairwise alignment and
folding, but unlike in the previous algorithm, the candidates are provided
explicitly via the constraint set C.

Using this new subroutine for aligning alignments, we can then
perform multiple alignment in RAF using a standard progressive strategy
(Feng and Doolittle, 1987). Specifically, we cluster the sequences with
a UPGMA (Sneath and Sokal, 1962) tree-building procedure, using the
expected accuracy similarity measure (Do et al., 2005). Finally, we perform
progressive alignment by aligning subgroups of sequences according to
the tree.

2.4 A max-margin framework

Given a set of training examples, S:{(a(i),b(i),y(i))};';l, the parameter
estimation problem is the task of identifying a vector of weights
w=(wi,wa,...,w,)€R" for which the RAF inference algorithm, as
described in the previous section, will yield accurate alignments and
consensus structures. In this section, we present a max-margin framework
for parameter estimation in RAF.

2.4.1 Formulation In the max-margin framework, our goal is to obtain
a parameter vector w for which running the RAF inference algorithm will
generate accurate alignments and consensus structures. Clearly, this goal is
met if for each training example (a®,5®,y®) from our training set S,*

vy e YO\ ). 3)

In such a case, we would be guaranteed that the maximum of (2) is

ScorE(y”; w) > SCORE (y'; W),

attained for y*=y® (provided the true parse y belongs to )}g)), and
hence our inference procedure would necessarily return the correct alignment
and consensus folding. This intuition is captured in the following convex
optimization problem:

Sl 1
minimize 3Cllw|[>+ LY &

weR" EcR™ )
subject to SCORE(y(; w) — SCORE(Y'; W)
> AW, y)—&, “
i=1,...,m,
Y eYPuy®).

Here, C is a regularization constant, and A(y(i), y') is a non-negative distance
measure between pair of parses, conventionally referred to as the loss
Sfunction, which takes value O if and only if its two arguments are equal
(Section 2.4.2).

The inequality constraints play the role of (3)—they try to ensure that
the training output y scores higher than any alternative incorrect parse
y' by some positive amount A(y®,y). In cases where this condition is
not achieved, the objective function incurs a penalty of &. Finally, the
regularization term (¥2)C||w||? is a penalty used to prevent overfitting.’

2.4.2 The loss function The loss function A(y”,y’) in (4) plays two
significant roles. Technically, the loss function establishes an appropriate
scale for the parameters of the problem and prevents the trivial solution,
w=0. Intuitively, however, the loss function also helps to make the max-
margin optimization robust. By choosing a loss function that takes large
positive values for incorrect candidate outputs y’ that differ from the true
output y) in a very critical way, but that takes small positive values for
incorrect candidate outputs y’ whose errors are more forgivable, the loss
function allows the user to implement a notion of ‘cost’ for different types
of mistakes in the max-margin model.

For RAF, we defined the loss function by restricting our attention to four
types of parsing errors: (1) false positive base-pairings ((a;, a;) €y’ \y?, or

“Note that our notation hides the dependencies of the SCORE function on each
of the input sequences ¢ and b, and similarly for the unconstrained and
constrained space of parses, Y@ and yé”.

5 By default, we used C = 1. We found that when running the online Pegasos
optimization algorithm (Section 2.4.3) for a fixed number of iterations, the
resulting generalization performance for RAF is relatively insensitive to the
value of C used, provided that C is not too large.

i70



RNA alignment and folding

similarly in sequence b), (2) false negative base-pairings ((a;, aj)ey(i)\y’,
or similarly in sequence b), (3) false positive aligned matches ((a;,by) €y’ \
y®) and (4) false negative aligned matches ((a;, by) € y?\y'). Then, we set

AG?D,y)=yFPraird. No_ of false positive base pairings
+ PN paired o of false negative base pairings
+pFPaligned g of false positive aligned matches

+pNaligned 405 of false negative aligned matches.

FN paired FP paired FN aligned FP aligned
s B

The numbers y y y and y are
hyperparameters, chosen by the user prior to training the RAF algorithm,
which allow the user to express her preference for models with either
high sensitivity or high specificity for base-pairing positions and aligned
nucleotides.®

2.4.3 Optimization algorithm At first glance, the constrained optimization
problem stated in (4) appears to be a standard convex quadratic program
and hence solvable using off-the-shelf packages for convex programming.
In reality, for each training example, the optimization problem has an
exponential number of inequalities, one corresponding to each possible
candidate parse y’ of the input sequences! Despite our use of constraints
sets to reduce the set of allowed candidate outputs, in most cases, this space
is still too large to enumerate.

One approach to deal with this problem is an iterative algorithm known
as constraint generation (or column generation), as used in the program
CG (Andronescu et al., 2007). In this approach, the parameter vector w; at
each time 7 is the solution to a reduced version of (4) in which only a small
subset of the constraints are retained. Next, one checks if w; violates any
of the constraints of the original full optimization problem by more than
an prescribed tolerance of €. If so, the worst violated constraint is added to
the current set of constraints to form a new reduced optimization problem,
whose solution, in turn, gives the next iterate w,,1. If not, the optimization
algorithm terminates. Each of the optimization problems in the sequence
requires a quadratic programming solver.

Here, we take a simpler approach based on the recent SVM training
algorithm of (Shalev-Shwartz and Singer, 2007) and Shalev-Shwartz et al.
(2007). Omitting details, we begin by converting (4) into an equivalent
unconstrained problem: namely, minimize (with respect to w e R"),

m
fom==>" max
i1y eYPupoy

{SCORE(y’; w) 5)

. . 1
+A(y‘”,y%Scom(y(”:w)}+Ecuw||2.

Next, we use strong duality from optimization theory in order to derive
an upper bound B on the norm of the optimal solution of our unconstrained
problem (Appendix C.1). Finally, we actually run the optimization procedure
by applying the simple update rule,

1
Wit <—HB|:Wt—a‘gt:|s (6)

starting from w; =0. Here, g, € 9f(W;) is any subgradient of the objective
function f(w) evaluated at w=w;, and the operator IIg[-] projects a vector
onto an origin-centered ball of radius B (i.e. Ig[v]=(B/||v|])v if ||v]| >
B and IIp[v]=v otherwise). Intuitively, the algorithm works much like a
standard gradient descent procedure adapted for non-differentiable objective
functions, but with the added twist that the projection operation ensures that
the weight vector iterates stay with a region of the parameter space where
the optimum is known to exist.

Given an existing routine for computing subgradients of the unconstrained
objective, this algorithm can be implemented in a few lines of code with

ﬁBy default, we used ]/FN paired _ 107 and VFP paired _ VFN aligned _
yFPaligned — 1 i order to emphasize prediction of correct base pairings.

no complicated numerical optimization software. As shown by Singer and
Shalev-Shwartz, the algorithm is also quite efficient, requiring only O(m/Ce)
iterations to achieve € accuracy on a training set of m examples. An online
variant of the algorithm, in which the subgradients g; in each step are
computed based only on arandomly sampled subset of the training data (e.g. a
single example), achieves an O(1/Ce) expected running time, independent
of m, the size of the training set.

2.4.4 Subgradient computation Finally, we show how to compute
a subgradient g, €df(w;). In order to simplify notation, define an
n-dimensional vector ®(y) whose pth component is

Z ¢[z]\ligued(i’k)
(aj,br)ey
paired . .
Y e GikD

((ai,aj),(br,bp)eB)

if I<p< Naligned
CI)I,,(y) =

if Maligned + 1<p=<n,

from which it follows that SCORE (y; w)=w’ ®(y). We can apply the usual
rules for computing subgradients (see, e.g. Bertsekas et al., 2003) to obtain

g =th+%;(<1>(yS>)—<1><y”)>), @)

where yﬁf) is simply any y’ which attains the maximum in the ith term of the
summation in (5), for w=w;. Each ‘loss-augmented’ maximization, in turn,
is easily performed by modifying the original RAF inference procedure to
incorporate an appropriately defined additional scoring matrix, ¢o(i,J; k, 1),
with fixed weight wo=1.

3 RESULTS

To evaluate the performance of RAF on real data, we collected
training and testing data from a variety of sources. In particular,
for training, we obtained Rfam 8.1 (Griffiths-Jones et al., 2005), a
database of alignments and covariance models for RNA families
along with annotated secondary structures where available. For
testing, we obtained BRAIIBASE II (Gardner et al., 2005), a
benchmark set for RNA alignment programs. We also obtained
a testing set of RNA families used by the authors of the recent
program, MASTR (Lindgreen et al., 2007).

An important concern in the validation of RNA alignment
programs is the confounding factor that unless cross-validation is
properly performed, the performance that one sees on any given
validation set is not likely to be a reliable judge of the program’s
performance on future data. Even in cases where the training and
evaluation tests are disjoint but still contain sequences from the same
RNA family, evaluation can still give misleading results, because
the weights learned for loop lengths and composition will be biased
toward specific properties of that RNA family.

To be absolutely sure of no contamination between training and
testing data, we preprocessed our Rfam training set of alignments
and consensus structures (October 2007 version, 607 families) by
excluding all families for which either of the two testing databases
contained an example from that family. We then also removed
all families for which only automatically predicted consensus
structures were known, leaving a total of 154 families. Finally, we
generated a training set 77 of up to 10 randomly sampled pairwise
alignments with consensus structures from each remaining family
(1361 pairwise alignments in total), a training set 75, of up to
10 randomly sampled sequences with structures from each family
(1179 sequences in total), and a training set 73, containing one
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Fig. 2. Trade-off between sparsity factor and proportion of reference base-
pairings or aligned matches covered when varying the cutoffs €paireq and
€aligned- This graph was made using training set 73.

randomly sampled five-way multiple alignment from each family
(118 multiple alignments in total).

RAF uses two external programs, CONTRALlign (Do et al., 2006a)
and CONTRAfold (Do et al., 2006b), to compute alignment match
and base-pairing posterior probabilities, respectively. To ensure
proper cross-validation, CONTRAlign was retrained from scratch
using 71, and CONTRAfold was retrained using 7>. Finally, the
RAF algorithm itself was trained using all pairwise projections of
each multiple alignment of 73. Our strict cross-validation procedure
significantly reduces both the size and coverage of the training
sets used for CONTRAlign and CONTRAfold, and thus places
RAF at a significant disadvantage in the comparisons shown here.
Nonetheless, as shown in the following sections, RAF performs well,
indicating its ability to generalize for sequences not present in the
training set.

3.1 Alignment and base-pairing constraints

To observe the effects of different cutoffs €yjigneq and €paireds
we computed the proportions of reference base pairings and
reference aligned matches recovered for varying cutoft constraints.
In addition, we also computed the sparsity ratio (i.e. the maximum
number of pairing partners or matching partners for any nucleotide,
averaged over the entire training set) for each cutoff. A plot of these
two values for training set 73 is shown in Figure 2. As seen in the
figure, nearly complete coverage of base pairings and alignment
matches can be retained when each sparsity factor is roughly 10.”

3.2 Evaluation metrics

To evaluate the quality of the resulting alignments, we used five
different scoring measures:

(1) the standard sum-of-pairs (SP) score (Thompson et al., 1999),
which computes the proportion of matches in a reference
alignment which are present in the predicted alignment,

7In practice, we found that using cutoffs of €aligned ~ 0.01 and €pgireq ~0.002
gave a good trade-off between speed and accuracy of our algorithm when
using CONTRALlign and CONTRAfold; these cutoffs correspond roughly to
average sparsity factors of ~10 each, respectively.

Table 2. Performance comparison on BRAIIBASE II datasets. The best
number in each column is marked in bold

Dataset Program Time (s) SP Sens PPV  MCC
5S rRNA Murlet 687 094 070 0.70 0.70
LocARNA 812 093 055 060 0.57
RNA Sampler 2361 090 055 064 0.59
RAF 87 095 066 0.66 0.66
group Il intron ~ Murlet 962 078 075 0.76 0.75
LocARNA 250 0.74 079 065 0.72
RNA Sampler 1626 0.72 077 065 0.71
RAF 48 0.78 0.83 0.65 0.73
SRP Murlet 20548 088 075 0.78 0.76
LocARNA 22467 0.85 0.66 070 0.68
RAF 1290 0.87 072 0.71 0.70
tRNA Murlet 525 093 0.8 090 0.88
LocARNA 246 095 086 090 0.88
RNA Sampler 763 092 093 091 0.92
RAF 52 094 081 085 0.83
uUs Murlet 1772 084 069 075 0.72
LocARNA 549 0.80 0.56 0.61 0.58
RNA Sampler 4084 0.77 075 070 0.72
RAF 99 0.82 083 079 0.81

(2) sensitivity (Sens), the proportion of base pairings in a
reference parse which are recovered in the predicted parse,

(3) specificity or positive-predictive value (PPV), the proportion
of base pairings in a predicted parse which are also present
in the reference parse, and

(4) the Matthews correlation coefficient (MCC) (Matthews,
1975), which we approximate as +/Sens-PPV, following
Gorodkin et al. (2001).

3.3 Comparison of accuracy

In our first accuracy assessment, we evaluated RAF as well as
a number of other current RNA secondary structure prediction
programs using the BRAIIBASE II dataset. In particular, the first
dataset from BRAIIBASE II contains collections of 100 five-
sequence subalignments, sampled from five specific Rfam families
(5S rRNA, group II intron, SRP, tRNA and US). For each of
these alignments, we ran a number of current multiple-sequence
RNA secondary structure prediction programs, including Murlet
v0.1.1 (Kiryu et al., 2007), LocARNA v1.2.2a (Will et al., 2007),
and RNA Sampler v1.3 (Xu et al., 2007). Wherever any of these
programs required access to external pairing-posterior probabilities,
we used ViennaRNA v1.7 (Hofacker et al., 1994). The results of the
comparison are shown in Table 2.

As seen from the table, on the BRAIIBASE II benchmark, RAF
attains comparable accuracy to the other methods, achieving either
the best or second-best overall accuracy according to MCC on four
out of the five datasets. The running time of the method, however, is
dramatically faster than the other algorithms, often taking an order
of magnitude less time than many of the other programs.

We also obtained the dataset used in the benchmarking of the
MASTR RNA secondary structure prediction program. For a number
of different programs, pre-generated predictions for each input file
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Table 3. Performance comparison on MASTR benchmarking sets. The best
number in each column is marked in bold.

Program SP Sens PPV MCC
CLUSTAL W + Alifold 0.81 0.57 0.73 0.65
FoldalignM 0.78 0.38 0.81 0.55
LocARNA 0.75 0.41 0.77 0.56
MASTR 0.84 0.64 0.73 0.68
Murlet 0.89 0.62 0.78 0.70
RNAforester 0.53 0.55 0.55 0.55
RNA Sampler 0.82 0.65 0.70 0.67
RAF 0.88 0.68 0.77 0.72

are available for download on the MASTR website. In addition
to scoring these pre-generated predictions, we also generated and
scored predictions using Murlet and RAF. The results are shown
in Table 3. In this benchmark set, RAF obtains the highest overall
MCC.

We emphasize, however, that benchmarking results such as these
should be taken with a grain of salt; both the BRAIIBASE II
and MASTR benchmarking sets are extremely restricted in their
coverage of the space of RNA families, choosing to focus on a few
individual RNA families only. As a result, methods carefully tuned to
the benchmarks may perform less well on diverse RNA families not
found in either of these benchmarks. By using cross-validation, we
improve the chances that RAF’s validation results really do indicate
reliable out-of-sample performance.

We also note that the performance of RAF on particular RNA
families is often closely related to the accuracy of the underlying
alignment and single-sequence models used to derive folding and
alignment constraints. Because the tools involved in the RAF
pipeline all rely on automatic parameter learning, RAF allows
the possibility of learning custom parameter sets well-suited for
predictions on particular RNA families.

4 DISCUSSION

We presented RAF, a new tool for simultaneous folding and
alignment of RNA sequences which exploits sparsity in base pairing
and alignment probability matrices and max-margin training in order
to achieve faster running times and higher accuracy than previous
tools.

Besides its speed, one principal advantage of the RAF meth-
odology is its use of a flexible scoring function for combining
an arbitrary set of functions into a coherent objective function
for alignment scoring. The ability to introduce new basis scoring
functions into the RAF scoring model means that there remains a
rich space of possible features to explore.

In addition, the use of the max-margin framework to identify
relevant linear combinations of scoring functions has other
promising potential applications. For example, Wallace er al.
(2006) recently introduced M-Coffee, a meta-algorithm for protein
sequence alignment, which combines the results of several different
protein sequence alignment programs using the T-Coffee framework.
The difficulty of identifying appropriate weights for the various
programs used in the M-Coffee scoring scheme (i.e. some
heuristically derived tree-based weights the authors tried did not

give a significant improvement in accuracy over flat weights), led the
authors to rely on a uniform weight model, treating programs known
to be more accurate on equal footing with less accurate aligners. The
max-margin framework developed in this paper obviates the need
for heuristically-derived weights altogether.
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APPENDIX
A.1 RAF FEATURES

The features used by the RAF program, as evaluated in this

article, consist of alignment features, {¢2hgned

features, {q}gaired(i, Jik,D}. Specifically, the alignment features,

gliened(; 4y = R4 for a candidate alignment match (a;, by) are

(i,k)} and pairing

P(a; aligns with by)
P(a; aligns with bk)2
log P(a; aligns with by)
—log P(a; unaligned) —log P(b;, unaligned)

(AD)

The pairing features, @PAred(; j:k [)eR* for ‘a_conserved
base pairing ((a;,q;), (b, b)) are given by ppaired(; ik )=
gpaired g aj)—|—¢paired(bk, bp). In turn, gpaired (g, aj;) eR* is given
by

P(a; pairs with a;)
P(a; pairs with a;)?
logP(a; pairs with a;) ’
—logP(a; unpaired) —log P(a; unpaired)

(A2)

and similarly for ¢P2'd(p, b;). Thus, the model contains a
total of eight features whose weights must be learned. Here,
the posterior probabilities for aligned positions and base-pairing
positions are computed using the CONTRAlign (Do et al., 2006a)
and CONTRAfold (Do et al., 2006b) programs, respectively.

B.1 THE RAF INFERENCE ENGINE

In the section, we describe the RAF inference engine for fast
approximate simultaneous alignment and consensus folding for pairs
of sequences. In particular, we first present some exact recurrences
for alignment and folding, and then use restrictions on the set
of allowed base pairings and aligned positions to achieve an
improvement in computational complexity.

B.1.1 Recurrences

First, we describe a straightforward O(L% dynamic programming
recurrence for computing the optimal simultaneous alignment and
consensus fold for a pair of sequences a and b.

To compute the optimal parse of a and b, we construct 2 four-
dimensional matrices, S and D. Here, S; ;. ; denotes the optimal
score for aligning and folding a;11a;17...a; with by 1byy>...by.
Furthermore, D; ;¢ ; denotes the optimal score for aligning and
folding these same substrings, subject to the additional constraint
that the outermost positions (a; 4 1,4a;) and (bg 41, b;) form conserved
base pairs.

For 0<i<j<|al and 0<k <[<|b|, we have

Si ikl (B1)
0 ifi=jand k=1
Si,j—l;k,l ifj>i

=max Sigik-1 aligned =k

Sij—liki—1F+¥w - G

max S: . f+D'/ i)
./’:iii’si—Z( ijikot + Dy i)
Ik<l'<l-2

ifj>iand >k

and for 0<i<i+2<j<|a|land 0 <k <k+2<I[<|b|,

paired

D jik,i=Sit1,j-Lik+1,i-1+¥w  (+Ljk+1.0) (B2)

YA e 1)y 2 ),

Here, recurrence (B1) takes the form of a standard Needleman-
Wunsch procedure for aligning the substring a;y1a;42...a; with
bi41bgy2...b;, with an extra case to handle bifurcations in the
base-pairing structure of the RNAs. At the end of the recurrence,
50,1a);0,p| gives the score of the optimal alignment and consensus
fold of the input sequences a and b. By using traceback pointers in
the standard way, the optimal parse can be recovered easily once the
recurrence has been evaluated.

In the next section, we explore how these recurrences may be sped
up considerably if a constraint set C of allowed base pairings and
aligned positions is known ahead of time. For complexity analysis,
we assume O(c) and O(d) bounds on the number of candidate base
pairing and alignment partners per sequence position, respectively.

B.1.2 Exploiting base-pairing sparsity
LocARNA (Will et al., 2007) was the first program for simultaneous
alignment and folding of RNA to take advantage of base pairing
sparsity in a manner that significantly improved in both running
time and memory usage. In this section, we recount the innovations
of LocARNA as they are applied in RAF. In the next section, we
extend these ideas to also account for alignment sparsity.

First, observe that since all parses in Yz contain only conserved
base pairings, the evaluation of (B2) may be restricted to only

i74



RNA alignment and folding

those D j.i ; cells for which both (a;11,a;) €C and (bg41,b;) €C.
Similarly, the inner loop for considering bifurcations in (B1) may
also be restricted to only those j and I’ for which both (aj11,a)€C
and (bp1,b;) €C. Since the bottleneck in the dynamic programming
complexity is the number of executions of the innermost loop
in (B1), it follows that restricting the considered bifurcations in
the manner described above yields an 0(02L4) running time; in
particular, for each i and k, computing all values of S; 4. o takes
0(02L2) time as each entry of the D matrix is touched at most
once. This optimization was originally implemented as part of the
LocARNA (Will et al., 2007) and FoldAlignM (Torarinsson et al.,
2007) algorithms.

Second, consider the task of computing all entries in the D
matrix. From (B2), we see that the values D; o.; o depend only
on Sii1 ek+1,e- Similarly, from (B1), the values S;i] ¢:k+1,e
depend only on Dj j.; ; for j/>i+1 and I’ >k+-1. Thus, ordering
computations in the following way allows the recurrences to be
evaluated in a single pass:

For i < |a| —2 downto 0
For k < |b|—2 downto 0
Compute Si+l,o;k+l,o
Compute D; o:,e

Furthermore, since S| o:k+1,0 is Only needed while computing
D; o:k,o (but not for any later values of i and k), we need only
to retain one Sy o:k41,6 Matrix in memory at any given time
while computing the D matrix. This observation was originally
incorporated in the LocARNA program of Will ez al. (2007).

Finally, observe that once the D matrix has been computed,
the score S |4|;0,1p| of the optimal parse is easily obtainable in
0(c2L2) time by recomputing S o.0,.. Likewise, computing the
full traceback requires at most O(c*L?) time, negligible relative
to the cost of computing the D matrix itself. Thus, we obtain an
overall 0(02L4) time complexity with O(CZLZ) space complexity
(for storing the D matrix).

B.1.3 Exploiting alignment sparsity

To exploit sparsity in the set of allowed aligned positions in C, we
again use the strategy of limiting the DP region. We accomplish
this by first considering the simpler problem of computing the
reduced DPregion .A (known as the alignment envelope) for pairwise
sequence alignment without folding scores. Using .4, we then define
a reduced DP region for our original alignment and folding task.

For the first step, consider the following restatement of recurrence
(B1) using the notation S‘j, 1=350,j;0,1> where we have omitted the
case involving bifurcations/base pairing:

0 ifj=0and =0
- Si_ if j>0
Sj,; =max J_ L 'le 0

j -1 1>

S aligned .
i—1,1—1+Vw SN
As before, S'j’ | represents the optimal score of aligning aja;...q;
to by1by...b;. Here, our goal is to find A, the minimal set of cells
containing no holes,® such that for every parse y € ), there exists

if j>0and [>0.

8That is, S‘jvleA whenever {Sh.laS/’zJ}gA for some jj <j<jy, or

{Sj,ll ,Ssz}g.A for some [} <l <.

some DP path through A corresponding to an alignment with the
same set of aligned positions. Under the assumption that A contains
no holes, we can represent A by keeping track of its boundaries:
foreachje€{0,1,...,]al}, let (A.FIrRsT[;], A.LAST[;]) denote the first
and last positions /€ {0, 1,...,|b|} such that Sj’l eA.

We compute these boundaries in linear time using the following
procedure. First, we adjust the boundaries to include Sj—l,l—l cA
and S ;.1 € A for each candidate aligning pair (a;,b;) €C. In addition,

we also include the corners SO,O and § lal,|b| in A. Finally, we force
the boundaries of A to satisfy the monotonicity conditions

A.FIRST[0] < A.FIRST[1] <... < A.FIRST[|at|]
A.Last[0] < A.LasT[1]<...<A.LAST[|al]

in such a way that guarantees all DP cells S‘j, ;1 € A are accessible via

some DP path from SO,() to S\a\,lbl'

For the second step, we define the reduced DP region for our
original simultaneous alignment and folding recurrences as the
set R of all positions S; j;x,; such that S; €A and S'j,leA. To
use this reduced DP region R, then, we simply force S; .z ;=
—oo for all §; ;¢ ;¢ R. Under this restriction, we can reduce the
amount of computation performed in the recurrence (B1) by iterating
only over cells S; ;. 1 € R, and similarly, restricting the evaluation
of the D matrix in (B2) to only those cells Dj ;i ; for which
Si+1,j—1:k+1,1—1 € R. To ensure that each allowed parse belongs
to Ve, we could penalize any base pairing or aligned position not in
C by —oo. In practice, we instead augment C to include all aligned
matches allowed by R, since this can be done at no increase in
computational complexity.

To analyze the new computational complexity of the algorithm,
we begin by bounding the size of D matrix in two different ways.
First, for each of the O(cL) base pairs (a;,a;) €C, there are O(d)
aligning partners for a; and O(d) aligning partners for a;, giving a
total size of O(cdzL). Alternatively, for each of the O(dL) aligning
pairs (a;, by ) € C, there are O(c) base-pairing partners for ¢; and O(c)
base-pairing partners for by, giving a total size of O(c%dL). Thus,
the size of the D matrix is O(min(c,d)-cdL).

As in Section B.1.2, the space complexity of the algorithm is
dominated by cost of storing the D matrix, and hence, is O(min(c,d)-
cdL). Similarly, the time complexity can be estimated as the number
of evaluations of the innermost loop in the bifurcation case of (B1).
Since the innermost loop touches each entry of the D matrix at
most once for each i and k, and since there are O(dL) choices of
(a;, by) € A, it follows that the time complexity of the algorithm is
O(min(c,d)-cd*L?).

C.1 NORM BOUND

In this section, we derive a bound on the maximum norm of the
optimal parameter vector w* for (4). From standard arguments (see,

9Note that in these bounds, we assume an O(c) bound on the number of base-
pairing partners per position, and an O(d) bound on the number of aligning
partners per position. A weaker condition would be to assume an O(cL) bound
on the total number of candidate base-pairing partners for sequences a and
b and similarly, an O(dL) bound on the total number of candidate aligned
positions; under these conditions, we obtain a worst-case space complexity
of O(min(c,d)*>L?) and a worst case time complexity of O(min(c,d)*dL?).
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e.g. Taskar et al., 2003), the dual optimization problem is

m
. ; 1
maximize >} aiyAGYY)— SClw@?
=lyeydupoy

where

1
D diy= m

y YUy}

W=z Y (P -Fwy)),

=1y eyPufy)

A= (O‘i,y’):ai,y’ >0,

By strong duality, for any solutions (w*, £*) and a* of the primal and
dual optimization problems, respectively, the values of the primal
and dual objectives must be equal, i.e.,

1 1 &
*112 *
ECHW Il +;§15,' = (C1)
=

m

- 1
> ey AePy)—SClwen’.
i=lyeyQuiy)

Now, suppose that D; eR for i=1,...,m satisfy

D> max  AGD,Y). (€2)

y eV Uy}
In the case of the RAF loss function, for example, we can use
D;=(la|+ |b|)<yFP paired -I-J/FN paired +)/FP aligned+ )/FN aligned>.

Then the KKT optimality condition w*=w(a*), the primal
constraint that Si* >0 fori=1,...,m, and (C1) imply that

m m
; 1
CIwiP=3_ 3. aiyaePy)-=3 &
i=1

=1y eyPuy®)

>y

i=lyeydupyo)

1
Therefore, ||w*|| < m u

.

* - .

Oli,nyz = E D;.
i=1
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