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ABSTRACT

Motivation: Small organic molecules, from nucleotides and amino
acids to metabolites and drugs, play a fundamental role in chemistry,
biology and medicine. As databases of small molecules continue to
grow and become more open, it is important to develop the tools
to search them efficiently. In order to develop a BLAST-like tool for
small molecules, one must first understand the statistical behavior of
molecular similarity scores.
Results: We develop a new detailed theory of molecular similarity
scores that can be applied to a variety of molecular representations
and similarity measures. For concreteness, we focus on the most
widely used measure—the Tanimoto measure applied to chem-
ical fingerprints. In both the case of empirical fingerprints and
fingerprints generated by several stochastic models, we derive
accurate approximations for both the distribution and extreme
value distribution of similarity scores. These approximation are
derived using a ratio of correlated Gaussians approach. The theory
enables the calculation of significance scores, such as Z-scores
and P-values, and the estimation of the top hits list size. Empirical
results obtained using both the random models and real data from
the ChemDB database are given to corroborate the theory and show
how it can be applied to mine chemical space.
Availability: Data and related resources are available through
http://cdb.ics.uci.edu
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
Small organic molecules, from nucleotides and amino acids to
metabolites and drugs, play a fundamental role in chemistry, biology,
and medicine. As chemical repositories of small molecules continue
to grow and become more open (Chen et al., 2005, 2007; Irwin and
Shoichet, 2005), it becomes increasingly important to develop the
tools to search them efficiently. In one of the most typical settings,
a query molecule is used to search millions of other compounds
not only for exact matches, but also for approximate matches.
In a drug discovery project, for instance, one may be interested
in retrieving all the commercially-available compounds that are
‘similar’ to a given lead, with the aim of finding compounds with
better physical, chemical, biological or pharmacological properties.
Likewise, in a reverse synthesis project, one may be interested in
identifying small molecules that can explain a mass spectrometry
signature, or can be used used as building blocks for the artificial
synthesis of a metabolite or a natural product. The idea of searching
for molecular ‘cousins’ is of course not new, and constitutes one
of the pillars of bioinformatics where one routinely searches for
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homologs of nucleotide or amino acid sequences. Search tools such
as BLAST (Altschul et al., 1997) and its significance ‘e-scores’ have
become de facto standards of modern biology, and have driven the
exponential expansion of bioinformatics.

While molecular similarity is different from molecular homology
in that it is not predicated on an underlying evolutionary
process, there is no reason to believe that a BLAST-like tool for
small molecules cannot be developed. Indeed, many different
representations and similarity measures have been developed
in chemoinformatics over the years (Leach and Gillet, 2005).
Yet no consensus tool such as BLAST has emerged. One of the
reasons behind the lack of consensus is that there has been no
systematic, large-scale, open study of molecular similarity scores,
and their statistical distributions and significance levels. As a
result, the majority of existing chemical search engines do not
return a score with the molecules they retrieve, let alone any
measure of significance. Examples of fundamental questions one
would like to address include: What threshold should one use to
assess significance in a typical search? Is a Tanimoto score of
0.4 significant or not? How many molecules should be expected
to have a score above 0.4 and under which assumptions? How
does the answer depend on the size of the database being queried?
How does the answer depend on the type of query used? A clear
answer to these questions is critical for unifying existing chemical
databases and search methods, for assessing the significance of a
similarity score, and ultimately for helping to better understand the
nature of chemical space.

Here we address these questions by conducting a systematic
statistical study of chemical similarity scores and their extreme
values as a function of, for instance, database size. To do so, in
Section 2, we first define the molecular representations and similarity
scores to be used in the study. Then, in Section 3, we introduce
the probabilistic models required to both approximate empirical
distributions of similarity scores and to create random models of
the background similarity scores against which significance can be
assessed. In Section 4, we develop the theory for the distribution of
the similarity scores, and in Section 5 the theory for the distribution
of the extreme values of these similarity scores. Experimental results
to illustrate and corroborate the theory are described in Section 6
followed by a discussion and conclusions in Section 7.

2 MOLECULAR REPRESENTATIONS AND
SIMILARITY SCORES

Many different representations and similarity scores have been
developed in chemoinformatics (Leach and Gillet, 2005). The
methods to be described are very broadly applicable but, for
brevity, we illustrate the theory using one of the most commonly
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used frameworks across chemoinformatics platforms, namely binary
fingerprint representations with Tanimoto similarity scores.

2.1 Molecular representations: fingerprints
To search large databases of compounds by similarity, most modern
chemoinformatics systems use a fingerprint vector representation
(Baldi et al., 2007; Fligner et al., 2002; Flower, 1998; James et al.,
2004; Leach and Gillet, 2005; Xue et al., 2003, 2004) whereby a
molecule is represented by a vector whose components index the
presence/absence, or the number of occurrences, of a particular
functional group, feature or substructure in the molecular bond
graph. Because binary fingerprints are used in the great majority
of cases, here we present the theory for these fingerprints, but it
should be clear that the theory can readily be adapted to fingerprint
based on counts. We use A to denote a molecule and �A= (Ai) to
denote the corresponding fingerprint vector. We let A denote the
number of bits set to 1 (1-bits) in the fingerprint �A (A=|�A|).

In early chemoinformatics systems, fingerprint vectors were
relatively short, containing typically a few dozen components
selected from a small set of features, hand-picked by chemists.
In most modern systems, however, the major trend is towards the
combinatorial construction of extremely long feature vectors with
a number of components N that can vary in the 103–106 range,
depending on the set of features. Examples of typical features
include all possible labeled paths or labeled trees, up to a certain
depth. The advantage of these much longer, combinatorially-based
representations is 2-fold. First, they do not require expert chemical
knowledge, which may be incomplete or unavailable. Second, they
can support extremely large numbers of compounds, such as those
that are starting to become available in public repositories and
commercial catalogs, as well as the recursively enumerable space
of virtual molecules (Bohacek et al., 1996). The particular nature
of the fingerprint components is not essential for the theory. To
illustrate the principles, in the simulations we use both fingerprints
based on labeled paths and fingerprints based on labeled shallow
trees with qualitatively similar results. For brevity and consistency,
the examples reported in the Results are derived primarily using
fingerprints based on paths.

2.2 Fingerprint compression
In many chemoinformatics systems, the long sparse fingerprint
vectors are often compressed to much shorter and denser binary
fingerprint vectors. The most widely used method of compression
is a lossy compression method based on the application of the
logical OR operator to the binary fingerprint vector after modulo
wrapping to 1024 bits (James et al., 2004). Thus component
i of the compressed fingerprint is set to 0 if and only if all
the positions i modulo 1024 are set to 0 in the uncompressed
fingerprint. Other more efficient lossless methods of compression
have recently been developed (Baldi et al., 2007). With the
proper and obvious adjustments, our results are applicable to both
lossy compressed and uncompressed fingerprints. Because lossy
compressed representations are the most widely used, we report
the majority of our results using modulo-OR compressed binary
fingerprints of length N =1024. Due to their smaller size, these
also have the advantage of speeding up Monte Carlo sampling
simulations.

2.3 Similarity scores
Several similarity measures have been developed for molecular
fingerprints (Holliday et al., 2002; Leach and Gillet, 2005;
Swamidass and Baldi, 2007). Given two molecules A and B, the
Tanimoto similarity measure is given by

S(A,B)=S(�A, �B)= (A∩B)/(A∪B) (1)

Here (A∩B) denotes the size of the intersection, i.e. the number
of 1-bits common to �A and �B, and A∪B denotes the size of the
union, i.e. the number of 1-bits in �A or �B. Because the Tanimoto
similarity is by far the most widely used, the theory and experimental
results reported here are based on Tanimoto similarity. However, the
same theory can readily be applied to all the other measures. To see
this, it suffices to note that the other measures consist of algebraic
expressions built from A∪B and A∩B, as well as other obvious
terms such as A, B, and sometimes N . For instance, the Tversky
measure (Rouvray, 1992; Tversky, 1977) is defined as Sαβ (�A, �B)=
A∩B/[αA+βB+(1−α−β)(A∩B)], where the parameters α and β

can be used to tune the search towards the sub-structures or super-
structures in the query molecule. The theory to be presented begins
precisely by studying the statistical distribution and properties of
the intersection and the union, in particular their mean, variance
and covariance. Thus, the distribution and statistical properties of
all the other similarity measures can readily be derived from the
distributions analyzed in this article. For this reason, we focus on
the Tanimoto score, which can be viewed as the chemoinformatics
analog of the alignment score in bioinformatics.

2.4 Data
In the simulations and results, we illustrate the methods using
fingerprints of molecules randomly sampled from the ∼5 M
molecules available in the ChemDB database (Chen et al., 2005,
2007), or randomly generated using the stochastic generative models
described in Section 3. The empirical fingerprints are generated
by indexing all the labeled paths of length up to eight, or all the
labeled trees of depths up to two present in the molecular bond
graph. The labels on the vertices correspond to the atom type (e.g.
C, N, O) while the labels on the edges correspond to the bond type
(e.g. single, double, triple). The exact details of the fingerprints,
which are not important for this study, can be found in (Baldi
et al., 2007) and references therein. Except where noted, both
the empirical and model fingerprints are generated using 1024-bit
modulo compression. In the simulations, the reported distributions
are typically determined using random samples of n=100 query
fingerprints against background databases that range in size from
5000 to 1 million fingerprints.

3 STATISTICAL MODELS OF FINGERPRINTS
Statistical models of fingerprints are essential for a variety of tasks.
For instance, in fingerprint compression, fingerprints can be viewed
as ‘messages’ produced by a stochastic source and understanding
the statistical regularities of the source is essential for deriving
efficient compression algorithms that use short codewords for the
most frequent events. Here, statistical models are essential in at least
two different ways: (1) to model and approximate the distribution
of similarity scores; and (2) to assess significance against ‘chance’,
where chance can be defined in various ways. Similar observations,
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of course, can be made in sequence analysis to, for instance, assess
what is the probability of observing a particular alignment score
against a random generative background model of nucleotide or
amino acid sequences. It is worth noting that as a default, we assume
that the distribution over the queries is the same as the distribution
over the molecules in the database. However, these statistical models
can also be used to model particular distributions over the space of
queries that may differ from the overall distribution.

3.1 One-parameter Bernoulli trials and binomial model
The simplest statistical model for binary fingerprints is a sequence of
independent identically distributed Bernoulli trials (coin flips) with
probability p of producing a 1-bit, and q=1−p of producing a 0-bit.
This model can be applied to both long fingerprints with a very low p,
or to the modulo-OR compressed fingerprints of length 1024 with a
higher value of p. The coin flip model is consistent with fingerprint
features that are randomly ordered and statistically exchangeable,
in fact even independent, and leads to a binomial model B(N,p),
with only two parameters N and p, for the total number of 1-bits in
the corresponding fingerprints. The Bernoulli/binomial model can
be used, either to approximate the distribution of fingerprints in an
entire database such as ChemDB, or the distribution of fingerprints
given a value for A by using p=A/N . In the former case, as we will
show (Fig. 1), the binomial model does not reproduce the variance
of A across the database very well since in a binomial model,
the variance Npq is always at most equal to the expectation Np,
whereas in large databases of compounds we tend to observe a larger
variance. A better model is a normal distribution N (µ,σ 2) where
the mean µ=Np and variance σ 2 �=Npq are fitted to the empirical
distribution across the database. In the latter case, by generating
fingerprints with probability p=A/N , the number of 1-bits is not
constant and varies around the mean value A, introducing some
additional variability with respect to the case where A is held fixed
(Section 3.3).

3.2 Multiple-parameter Bernoulli model
While the coin flip model is useful to derive a number of
approximations, it is clear that chemical fingerprints have a
more complex structure and their components are not exactly
exchangeable since the individual feature probabilities p1,...,pN
are not identical and equal to p but vary and, when reordered in
decreasing order, follow roughly a power-law distribution (Baldi
et al., 2007), especially in the uncompressed case. The probability
of the j-ranked component is given approximately by pj =Cj−α

resulting in a line with slope −α in a log–log plot. Thus, the
statistical model at the next level of approximation is that of a
sequence of non-stationary coin flips where the probability pj of
each coin flip varies. The multiple-parameter Bernoulli model has
N parameters: p1, p2, ..., and pN . In this case, the expectation of
the total number A of 1-bits is given by

∑
i pi and its variance by∑N

i=1piqi. This model is useful in simulations and compression
(Baldi et al., 2007), but cannot be treated analytically due to its large
number of parameters, unless the approximation pj =Cj−α is used.
A distribution over queries different from the overall distribution
could be modeled using a multiple-parameter Bernoulli model with
different parameters r1, …, rN .

3.3 Conditional distribution model
Both the binomial and multiple-parameter Bernoulli models
consider the fingerprint components as independent random
variables. The conditional distribution model is an exchangeable
model where the components are weakly coupled. To generate a
fingerprint vector under this model, we first sample A, the total
number of 1-bits, using a given distribution, typically a Gaussian.
Then we sample uniformly over fingerprint vectors containing
A 1-bits (which can be realized by randomly permuting the
components of real fingerprints). The conditional Gaussian model
has only three parameters: the mean µ, the variance σ 2 and N .
Compared to the binomial model, the additional parameter in the
conditional Gaussian model allows for a better fit of the variance of
A in the data.

3.4 Spin model
More complex, second order, models are possible but will not
be considered here. These models are essentially spin models
from statistical physics, and are also known as Markov random
fields or Boltzmann machines (Ackley et al., 1985; Frey, 1998).
In these models, one would have to also take into account the
correlations between pairs of features which can be superimposed
over the multiple Bernoulli model. In real data, these correlations
are not exchangeable, and thus behave differently from those
introduced in the conditional distribution model. In real data,
however, and especially in the case of uncompressed fingerprints,
these correlations are close to 0 both on average and in the typical
case, and will not be considered here any further. In general, these
models cannot be treated exactly.

4 THEORY: SIMILARITY SCORE DISTRIBUTION
As we have seen, most similarity measures between two fingerprints
are built by first computing the intersection and the union. Thus, the
basic strategy, is to first study the distribution of the intersection and
the union under some of the statistical models given above. Note
that the intersection and union, in general, are not two independent
random variables, but have a non-zero correlation that must be
estimated. Knowledge of the distributions of the intersection and
unions can then be used to study the Tanimoto measure and derive
its approximate distribution under various assumptions.

4.1 Single-parameter Bernoulli/binomial model
Under the exchangeable independent model, molecules B in the
database can be modeled by a binomial B(N,p) which can be
approximated by a normal distribution N (Np,Npq) for large N .
Consider a query A with distribution B(N,r) which can be
approximated by N (Nr,Nrs) (s=1−r) for large N . Then the
intersection I =A∩B=∑i Ii =

∑
i(Ai ∩Bi) is a random variable

with binomial distribution B(N,pr), which can be approximated
by a normal distribution N (Npr,Npr(1−pr)) for large N , as well
as a Poisson distribution P(Npr) when N is large and pr is
very small. Then the union U =A∪B=∑i Ui =

∑
i(Ai ∪Bi) is a

random variable with binomial distribution B(N,1−qs)=B(N,p+
r−pr), which can be approximated by a normal distribution
N (N(1−qs),N(1−qs)qs) for large N , and a Poisson distribution
P(N(p+r−pr)) when N is large and p+r−pr is small.
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Under the binomial model, we can get an exact expression for the
distribution of the Tanimoto scores. Note that the Tanimoto score T =
I/U can only take rational values t between 0 and 1. Assuming that
n and m are irreducible, with 0≤n≤m and t =n/m, the probability
P(T = t) is given exactly by

P(T = t)=P

(
I

U
= n

m

)
=

K∑
k=1

P
(
I =kn,U =km

)

=
K∑

k=1

(
N

kn

)
pknrkn

(
N −kn

km−kn

)
×

(ps+qr)km−knqN−kmsN−km (2)

where K is the largest integer such that Km≤N , i.e. K =�N
m 	.

Clearly if t is not rational, this probability is 0. Thus, in principle,
from this distribution we can derive all the properties of the score
distribution, including its mean and variance, under the assumptions
of the binomial model.

In practice, it is easier to approximate the numerator I and
denominator U by Gaussian distributions and view the Tanimoto
score as the ratio of two correlated Gaussians. Thus, we next need
to compute the covariance between I and U under the binomial
model. Noticing that Ii and Uj are independent for i �= j, we have

Cov(I,U)=
∑

i

Cov(Ii,Ui)=NCov(Ii,Ui) (3)

A direct calculation gives Cov(Ii,Ui)=E(IiUi)−E(Ii)E(Ui)=
pr(1−p−r+pr) so that

Cov(I,U)=Npr(1−p−r+pr). (4)

4.2 Multiple-parameter Bernoulli model
The analysis above for the binomial model can easily be extended to
the multiple-parameter Bernoulli model by using similar expressions
for the mean, variance and covariance of the individual variables Ii
and Ui, and combining them using the linearity of the expectation
and the independence of components associated with different
indices. In this case, we let p1,p2,...,pN be the vector of
probabilities for the database and r1,r2,...,rN the vector of
probabilities for the queries. The mean and variance of I are
given by

∑
i piri and

∑
i piri(1−piri), respectively. Thus, I can be

approximated by a normal distribution N (
∑

i piri,
∑

i piri(1−piri)).
Likewise, the mean and variance of U are given by

∑
i(1−qisi)

and
∑

i(1−qisi)qisi, respectively. Thus, U can be approximated by
a normal distribution N (

∑
i(1−qisi),

∑
i(1−qisi)qisi). Finally, for

the individual covariance terms we have Cov(Ii,Ui)=piri(1−pi −
ri +piri) and Cov(Ii,Uj)=0 for i �= j. Therefore, the full covariance
is given by the sum Cov(I,U)=∑i piri(1−pi −ri +piri).

4.3 Conditional Gaussian model and hypergeometric
distribution

In some cases, it is useful to condition the Tanimoto scores on a
fixed value of A. For example, when A is very small or very large,
the Tanimoto distribution may differ from that for an average query,
and a better approximation may be obtained by conditioning the
distribution on A. The binomial model B(N,r =A/N) is not an ideal
model since it introduces additional fluctuations on the value A.

To address this issue, under the exchangeable hypothesis (no need for
independence), it is easy to see that for fixed A and B the intersection
I =A∩B has a hypergeometric distribution with probabilities given
by

P(I =k|A,B)=
(A

k
)(N−A

B−k
)

(N
B
) =

(B
k
)(N−B

A−k
)

(N
A
) (5)

for A+B−N ≤k ≤ inf (A,B), and 0 otherwise. The mean and
variance of the hypergeometric distribution are given by AB/N and
AB(N −A)(N −B)/N2(N −1). The union can be studied from the
intersection by writing U =A+B−I , so that P(U =k|A,B)=P(I =
A+B−k|A,B). Thus, when A and B are fixed, we have E(U)=
A+B−E(I), Var(U)=Var(I), and Cov(I,U)=−Var(I).

To study the Tanimoto scores directly, we have the conditional
density

P

(
T = I

U
= t|A,B

)
= P

(
I

A+B−I
= t|A,B

)

= P

(
I = t(A+B)

1+t
|A,B

)
(6)

and conditional cumulative distribution

P(T ≤ t|A,B) = P

(
I

A+B−I
≤ t|A,B

)

= P

(
I ≤ t(A+B)

1+t
|A,B

)
(7)

Therefore, the probability distribution for the similarity T can be
derived from the hypergeometric distribution of I , given A, B and
N . In particular, we have the conditional distribution

P(T = t|A)=
B=N∑
B=0

P(t|A,B)P(B) (8)

where the sum is over the distribution P(B). To model this
distribution, we can use the binomial model P(B)=(NB)pB×
(1−p)N−B. But it is often preferable, as previously discussed, to
use a more flexible Gaussian model with

P(B)= 1√
2πσ

exp[−(B−µ)2/2σ 2] (9)

where the mean and standard deviation are fitted to the empirical
values. The unconditional distribution of Tanimoto scores is given
by a second integration over the distribution P(A) of queries

P(T = t)=
A=N∑
A=0

B=N∑
B=0

P(t|A,B)P(B)P(A). (10)

Again, for convenience, we will assume that P(A)=P(B)
as a default, i.e. we will use the same distribution for the
queries and the molecules in the database, but in specific
applications this does not have to be so. Below, we refer to this
unconditional model with P(A)=P(B) represented as Gaussians as
the hypergeometric/Gaussian model.
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4.4 Ratio-of-Gaussians approximation
Whether one uses the binomial, multiple Bernoulli or hyper-
geometric models, or the empirical data, in the end, the Tanimoto
score distribution can be approximated by the distribution of
the ratio-of-correlated Gaussians approximating the numerator and
the denominator, respectively. The different models will yield
different estimates of the mean, variance and covariance of the
Gaussians. Note that the same approach can be used to approximate
directly the empirical distribution of the Tanimoto scores in a
database such as ChemDB. The only difference is that instead of
fitting the correlated Gaussian parameters to the intersection and
union distributions under a probabilistic model, we fit the parameters
to the empirical intersection and union distributions in ChemDB.

The density of the ratio of correlated Gaussian distributions
can be obtained analytically, although its expression is somewhat
involved (Cedilnik et al., 2004; Hinkley, 1969; Marsaglia, 1965;
Pham-Gia et al., 2006). The probability density for T =X/Y , where
X ∼N (µX ,σ 2

X ), Y ∼N (µY ,σ 2
Y ), and ρ =Corr(X,Y ) �=±1 is given

by the product of two terms

fT (t) = σXσY
√

1−ρ2

π (σ 2
Y t2 −2ρσXσY t+σ 2

X )
×

[
exp

(
−1

2
supR2

)(
1+ R�(R)

φ(R)

)]
(11)

or

fT (t)= σXσY

√
1−ρ2

π (σ 2
Y t2−2ρσXσY t+σ 2

X )
×[

exp
(
− 1

2 supR2
)
+√

2πR�(R)exp
(
− 1

2 [supR2 −R2]
)]

(12)

where

R=R(t)= (σ 2
Y µX −ρσXσY µY )t−ρσXσY µX +σ 2

XµY

σXσY
√

1−ρ2
√

σ 2
Y t2 −2ρσXσY tσ 2

X

(13)

supR2 = σ 2
Y µ2

X −2ρσXσY µXµY +σ 2
Xµ2

Y

σ 2
Xσ 2

Y (1−ρ2)
(14)

and

supR2 −R2 = (µX −µY t)2

σ 2
Y t2 −2ρσXσY t+σ 2

X

(15)

Thus, anytime we can approximate the distribution of the
intersection and the union by two correlated Normal distributions,
the distribution of the Tanimoto scores can be approximated using
Equations (11)–(15) with X = I and Y =U. This approach can
be used, for instance, to derive the mean and standard deviation
of the Tanimoto scores under various assumptions including: (1)
the binomial and multiple-parameter Bernoulli models with p=r
(or pi =ri) for the average Tanimoto scores across all queries; (2)
the binomial and multiple-parameter Bernoulli models with p �=r
(or pi �=ri) for queries modeled by a different Bernoulli model than
the one used for the database being searched; (3) the hypergeometric
model with A fixed, or A integrated over the database distribution, or
a distribution over queries; and (4) the empirically-derived Gaussian

models for the union and intersection averaged over the entire
database, or focused on a particular class of molecules. Finally, from
the ratio of Gaussians approximation of the score distribution, it
is possible to estimate the number of molecules that have a score
greater than or equal to t.

5 THEORY: SIGNIFICANCE, Z-SCORES,
EXTREME VALUE DISTRIBUTIONS, AND
P-VALUES

There are at least two basic approaches for detecting when a
similarity score is significant: Z-scores, and P-values associated with
the extreme value distributions.

5.1 Z-scores
In the Z-score approach, one simply looks at the distance of a score
from the mean of the scores, in numbers of standard deviations.
Therefore, the Z-score is given by

Z = t−µ

σ
(16)

The parameters µ and σ can be determined either empirically from
a database of fingerprints, or using the statistical models described
above. While Z-scores can be useful, their focus is on the mean and
standard deviation of the distribution of the scores, not on the tail
of extreme values.

5.2 Extreme value distributions and P-values
The second approach is to compute P-values. For a given score t, its
P-value is the probability of finding a score equal or greater to t under
a random model. Thus in this case, one is interested in modeling
the tail of the distribution of the scores, and more precisely the
distribution of the maximum score (Coles, 2001; Galambos, 1978;
Leadbetter et al., 1983). This distribution depends on the size of
the database being searched since for a given query, and everything
else being equal, we can expect the maximum similarity value to
increase with the database size.

Consider a query molecule A and a database containing D
molecules, yielding D similarity scores t1,...,tD. The cumulative
distribution of the maximum Fmax(t)=P(max≤ t) is given by

Fmax(t)=P(t1 ≤ t)...P(tD ≤ t)=FT (t)D (17)

under the usual assumption that the scores are independent and
identically distributed. Here FT (t) is the cumulative distribution of
a single score. A P-value is obtained by computing the probability
p=1−Fmax(t) that the maximum score is larger than t under a
chance model.

The density of the maximum is obtained by differentiation

fmax(t)=DfT (t)[FT (t)]D−1 (18)

where fT (t) is the density of a single score. In the case of
Tanimoto similarity scores, fT (t) can be approximated by the ratio-
of-Gaussians approach described above, and FT (t) is obtained from
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fT (t) by integration. FT (t) can also be approximated by (Hinkley,
1969)

FT (t)≈�

(
µY t−µX

σXσY a(t)

)
, a(t)=

(
t2

σ 2
X

− 2ρt

σxσY
+ 1

σ 2
Y

)1/2

(19)

where �(u)=∫ u
−∞[1/

√
2π ]e−x2/2dx is the cumulative distribution

of the normalized Gaussian distribution. This approximation is good
when the denominator of the ratio-of-Gaussians is positive, with
its standard deviation much larger than its average. By combining
Equations (11), (18) and (19), we get:

fmax(t)≈DfT (t)

[
�

(
µY t−µX

σXσY a(t)

)]D−1
(20)

Finally, because the Tanimoto scores are bounded by one, the
theory of extreme value distributions shows that the cumulative
distribution of the normalized maximum score nD, normalized
linearly in the form nD =aDmax+bD using appropriate sequences
aD and bD of normalizing constants, converges to a type-III extreme
value distribution, or Weibull distribution function, of the form

F(x)=P(nD ≤x)=exp

[
−
(

µ−x

σ

)ξ
]

(21)

6 EXPERIMENTAL RESULTS

6.1 Distributions of A, A∩B and A∪B
In this section we investigate the distributions of the number of
fingerprint bits set to 1 per molecule (1-bits), as well as the
intersection and union distributions, using empirical fingerprints
extracted from ChemDB and the fingerprint models described in
Section 3. Figure 1 compares the empirical 1-bit distribution to
the distributions arising from the binomial and multiple parameter
Bernoulli models. The two model distributions are similar, and
match the empirical distribution mean, but not the variance, which is
larger for the empirical fingerprints due to the diversity of molecule
sizes in the database. Similar results are also observed for the
intersection and union distributions (Fig. 2), where the binomial
and multiple Bernoulli models provide a good approximation of
the distribution means, but have much smaller standard deviations.
To better model the width of the empirical distributions, the
hypergeometric model is used in conjunction with a Gaussian
distribution to describe the underlying fingerprints. As discussed
in Section 4.3 and apparent from Figure 1, a more flexible
Gaussian model accurately describes the empirical fingerprint
distribution. Under the hypergeometric model, the intersection
and union distributions are determined by integrating Equation
(5), and its union analog, over P(A) and P(B) modeled by the
same Gaussian distribution fit to the empirical 1-bit distribution.
Compared to the binomial and multiple Bernoulli distributions,
the hypergeometric/Gaussian distributions are much wider, and are
very similar to those observed empirically (Fig. 2). In all cases,
the distributions are well approximated by Gaussians, with χ2

values in the 10−4–10−6 range (see Table 1 for parameters), though
deviations are seen in the tails of the distributions for the empirical
results.
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0 100 200 300 400 500 600
Number of Bits

Fig. 1. Distributions of 1-bits from the ChemDB fingerprints (red ‘+’),
and the Binomial (blue) and multiple Bernoulli (black) fingerprint models.
The empirical distribution was also fit to a Gaussian (yellow), which
approximates the data well. While the model distribution means are close to
the empirical mean, the distribution widths are significantly smaller.
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Fig. 2. Intersection (red) and union (blue) distributions calculated
empirically from the ChemDB fingerprints, and from the various fingerprint
models described above. For the ChemDB results, the distributions were
empirically sampled (‘+’), and fit to Gaussians (solid lines). The calculated
hypergeometric/Gaussian distributions are shown with ‘+’ symbols, and the
Gaussian fits in solid lines, which are good approximations of the empirical
distributions. In the case of the binomial and multiple Bernoulli models, the
Gaussian approximations are shown (solid lines), which can be calculated
directly from the model parameters. In all cases, the distributions are well
approximated by Gaussian distributions.

6.2 Ratio-of-Gaussians
From the Gaussian approximations of the intersection and union
distributions, determined either empirically or from the fingerprint
models, it is possible to model the Tanimoto score distribution
as a ratio-of-correlated Gaussians. To test how well this model
works in practice, the Tanimoto distributions are first sampled
using empirical ChemDB fingerprints, and randomly generated
fingerprints under the binomial and multiple Bernoulli models. The
Tanimoto distribution for the hypergeometric/Gaussian model is
calculated directly from Equation (10). Next, the corresponding
ratio-of-Gaussians approximations, fT (t), are calculated according
to Equation (12) using the intersection and union parameters
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Table 1. Distribution parameters of Gaussian approximations for the 1-bit,
intersection, and union distributions

Distribution µ σ

1-Bits (ChemDB) 205.8 97.9
1-Bits (Binomial) 215.0 13.0
1-Bits (Multiple Bernoulli) 217.7 12.3
Intersection (ChemDB) 58.2 31.3
Intersection (Binomial) 45.1 6.6
Intersection (Multiple Bernoulli) 66.4 6.9
Intersection (Hypergeometric/Gaussian) 31.2 31.8
Union (ChemDB) 364.7 109.0
Union (Binomial) 385.7 15.8
Union (Multiple Bernoulli) 369.1 14.3
Union (Hypergeometric/Gaussian) 380.5 107.2

The ChemDB parameters were obtained from Gaussian fits of the sampled distributions.
The binomial and multiple Bernoulli parameters were calculated directly from the
models, and the hypergeometric/Gaussian parameters were obtained from Gaussian fits
to the distribution calculated directly from the equations in Section 4.3.

Table 2. Empirical and model Tanimoto score distribution parameters

Distribution µ σ ρ

Tanimoto (ChemDB) 0.17 0.052 0.82
Tanimoto (fT (t)ChemDB) 0.16 0.055 0.82
Tanimoto (Binomial) 0.12 0.017 0.28
Tanimoto (Multiple Bernoulli) 0.18 0.018 0.25
Tanimoto (Hypergeometric/Gaussian) 0.10 0.050 0.90

The parameters were determined from Gaussian fits to the distributions, except for
the ratio-of-Gaussians parameters ( fT (t)ChemDB), which were determined directly
from the analytical formula for fT (t). The intersection and union correlations are
also given. The ratio-of-Gaussians approximation gives accurate estimates of the
empirical distribution parameters. With the empirical bit probabilities, the multiple
Bernoulli model gives a good approximation of the empirical mean, but the distribution
width is too small. Conversely, the use of a Gaussian to model the query and database
fingerprints allows to the hypergeometric/Gaussian model to reproduce the empirical
distribution width, though the distribution mean is smaller than the empirical value.

given in Table 1, along with the intersection and union
correlations, calculated empirically for the ChemDB and
hypergeometric/Gaussian results, and analytically for the binomial
and multiple Bernoulli models (Table 2). In each case, the ratio-of-
Gaussians model provides a good approximation of the observed
Tanimoto distributions (Fig. 3). Therefore, as these results show, it
is possible to accurately predict the distribution of Tanimoto scores
from the intersection and union distributions, and their correlation
with one another, either determined empirically, or under a stochastic
generative model of fingerprints.

6.3 Extreme value distributions
Once the distribution of Tanimoto scores is determined, either
empirically from a database of molecules, or based upon a
mathematical model, it is possible to assess the significance of a
particular similarity score in relation to this distribution. One way
to assess a score’s significance is through its P-value, which can be
calculated from the cumulative distribution of the maximum scores
as p=1−Fmax(t). From the ratio-of-Gaussians approximation
calculated from the fitted ChemDB parameters, the distributions
of the maximum scores fmax(t) and their cumulative distributions
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Fig. 3. Distribution of Tanimoto scores (red ‘+’) and their ratio-of-
Gaussians approximations (blue lines). The Tanimoto distributions were
sampled using empirical fingerprints for the ChemDB results, and randomly
generated fingerprints for the binomial and multiple Bernoulli models. The
hypergeometric/Gaussian distribution was calculated directly from Equation
(10). The ratio-of-Gaussians model provides excellent approximations of the
Tanimoto distributions.
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Fig. 4. Maximum and cumulative maximum Tanimoto score distributions
derived from Equations (17) and (18) using the empirical ratio-of-Gaussian
parameters for different database sizes D (red: D=100, green: D=1000,
blue: D=5000, magenta: D=10000, cyan: D=50000, black: D=500000).
As D increases for fmax(t), the distribution shifts from being concentrated
around relatively low scores, to scores concentrated around 1.0. For small
database sizes, the cumulative distributions Fmax(t) quickly increase and
saturate toward lower scores, while at larger databases sizes, the distributions
remain small over most of the score range and rapidly increase as they
approach 1.0.

Fmax(t) were calculated for various database sizes D (Fig. 4).
For small database sizes (D<5000), the maximum scores lie in
the 0.2–0.4 interval. Upon further increase in D, the maximum
score distribution widens, and becomes nearly uniform above t =
0.4. Finally, for D>50000, fmax(t) gets pushed closer to t =1.0,
and begins to concentrate around this upper score limit. The
resulting cumulative distributions indicate that database size plays an
important role in determining the P-value of a similarity score. For
small databases, a large similarity score may result in a very small
P-value, while for a large database, the same score may produce a
much larger P-value.
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Table 3. Percentages of molecules with similarity scores above tmin from the
ratio-of-Gaussians approximation with the fitted ChemDB parameters

tmin Gaussian ratio (%) No. Hits (D=1 M)

0.4 0.033 330
0.5 0.015 150
0.6 0.010 100
0.7 0.007 70
0.8 0.004 40
0.9 0.002 20

The number of expected molecule hits is also shown for a database of size D=1M.
These values provide a qualitative estimate of the number of hits expected for a typical
query above the given Tanimoto thresholds.

When investigating the distribution of maximum scores, another
important question to consider is how many hits, above a given
similarity threshold, one should expect on average. In Table 3, the
percentage of molecules with similarity scores above a lower limit
tmin are given, estimated using the score distribution predicted by
the ratio-of-Gaussians model with the fitted ChemDB parameters.
As the threshold increases, the number of expected hits rapidly falls
off. The values in Table 3 represent a first order approximation of the
number of expected hits in the tails of the Tanimoto score distribution
for an average query. However, potentially large deviations in these
values are possible depending upon the size of the query A. More
accurate estimates of the number of hits in the distribution tails
may be obtained using the theory outlined in Section 4.3 for the
distributions conditioned on A (results not shown).

7 DISCUSSION AND CONCLUSIONS
We have presented a general mathematical framework, along with
several stochastic models for chemical fingerprint, from which the
distribution of similarity scores, and the extreme value distributions
can be accurately predicted. As shown in Figure 2, the intersection
and union distributions are well described by Gaussians, both in the
empirical case and for the fingerprint models. Using the Gaussian
parameters and the correlation between the intersection and union
distributions, the ratio-of-Gaussians model can be used to accurately
predict the expected Tanimoto score distribution, illustrated by
the good agreement between the Tanimoto and ratio-of-Gaussian
distributions in Figure 3. Once the Tanimoto distribution has been
determined, an assessment of similarity score significance can be
made using, for example, Z-scores or P-values.

It is important to note that several factors, including the choice of
fingerprint features, compression method, and the size of the query
and database fingerprints can influence the statistical properties
of a particular similarity score distribution. For this reason, it is
not possible to give concrete values characterizing these properties
for general use, as they will depend upon the details of the
chemical database system used. However, using ChemDB with path-
based, lossy modulo-OR compressed fingerprints, we have observed
several important trends in the resulting Tanimoto score distribution.
First, scores are very small on average, approximately t =0.17, and
the bulk of the distribution is located below t =0.4, which is more
than four standard deviations away from the mean. As a result,
Tanimoto scores as low as t =0.4 are much higher than average, and
may be of potential interest. Second, for scores above t =0.4, one

Query: Tyrosol (Natural Product) Top Hit: t = 0.80
Z-score: 12.1

Bottom Hit: t = 0.40
Z-score: 4.4

Top Hit: t = 0.95
Z-score: 15.0

Bottom Hit: t = 0.40
Z-score: 4.4

Top Hit: t = 0.91
Z-score: 14.2

Bottom Hit: t = 0.40
Z-score: 4.4 

Query: Deoxyuridine (Metabolite)

Query: Tamoxifen (Drug)

Fig. 5. Example molecules queried against ChemDB. For each query, the
given number of hits refers to the number of molecules with similarity scores
above t =0.4. The top scoring hits are also shown along with the lowest
scoring hits above t =0.4, and their corresponding Z-scores.

can expect on the order of 102 hits for a database of size 1 million.
However, it should be noted that this estimate was obtained using
query and database molecules both taken from ChemDB, and the
estimate may vary widely for query molecules outside the region
of chemical space covered by the database, or queries that are
much smaller or larger than an average sized query. Finally, the
size of the database has an important effect on the distributions
of the maximum scores (Fig. 4). As D increases, the maximum
score distribution concentrates closer and closer to t =1.0, and for
large databases containing several million compounds, it is highly
likely to find a similarity score very close or equal to 1.0. It is also
important to note that a Tanimoto score of 1.0 does not necessarily
imply that the scored pair of molecules are the same. Aside from
fingerprint compression, which can map two different uncompressed
fingerprints onto the same compressed representation by chance,
chirality and other types of atomic arrangements can also lead to two
different molecules having the same fingerprint. This is a limitation
of the path and tree features used, which can be insensitive to certain
kinds of molecular symmetries.

To test the similarity score statistical framework in practice,
several example molecules, including natural products (Tyrosol),
drug compounds (Tamoxifen), and metabolites (deoxyuridine) were
queried against a random subset of ChemDB containing 1M
compounds (Fig. 5). While the top scoring hits show a large degree of
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visual similarity to the queries as expected, the bottom hits also retain
a certain degree of visual similarity and contain several common
substructures. Also in line with the theoretical framework, the top
hits have scores close to t =1.0, particularly for Tamoxifen and
deoxyuridine, as predicted by the distribution of maximum scores
fmax(t).

While a detailed understanding of the similarity score distribution
underlying a chemical database can be useful, even for individual
queries performed by hand, such understanding becomes essential
for large-scale, high-throughput, computational studies, where
manual inspection of all the hits is not feasible. Such studies are
becoming routine in the areas of metabolomics, chemical genomics,
systems biology and drug screening/discovery. In these areas,
understanding the statistical properties of chemical similarity scores
should be vitally important for identifying new molecules of interest,
building effective computational screening pipelines, and furthering
our understanding chemical space.
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