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Abstract
Complex systems are often modeled as Boolean networks in attempts to capture their logical
structure and reveal its dynamical consequences. Approximating the dynamics of continuous
variables by discrete values and Boolean logic gates may, however, introduce dynamical
possibilities that are not accessible to the original system. We show that large random networks of
variables coupled through continuous transfer functions often fail to exhibit the complex dynamics
of corresponding Boolean models in the disordered (chaotic) regime, even when each individual
function appears to be a good candidate for Boolean idealization. A suitably modified Boolean
theory explains the behavior of systems in which information does not propagate faithfully down
certain chains of nodes. Model networks incorporating calculated or directly measured transfer
functions reported in the literature on transcriptional regulation of genes are described by the
modified theory.

I. INTRODUCTION
Natural systems often involve many types of elements interacting in a complicated fashion.
The interactions may be difficult to describe, and may be mediated in ways that are poorly
understood. In this situation, it is necessary to find a model that captures most of the salient
features of the system without attempting to describe all the details.

Boolean networks are often constructed to model the logic of systems with a complex set of
interactions [1–3]. In this idealization, continuous variables are modeled by binary states,
and interactions are modeled by Boolean update rules. A binary representation is a natural
approximation for systems whose elements tend to take distinct high and low values with
sharp transitions between states. However, even when individual elements are good
candidates for Boolean modeling, qualitative discrepancies between the dynamics of the
underlying system and its Boolean idealization can arise.

The relation between continuous and Boolean systems has been the subject of some study.
In previous work, we identified the features that cause a discrepancy in the attractor
dynamics of small systems [4]. Davidich and Bornholdt have shown that through a careful
examination of the attractor dynamics, a Boolean model can be constructed that faithfully
reproduces the temporal sequence of states obtained from direct binarization of a given
continuous system. [5]. Glass et. al. have extensively studied a class of large networks
governed by piecewise linear differential equations, which involve both Boolean and
continuous variables. They have noted that artifacts introduced by synchronous update
contribute significantly to the size of the attractor set, and that both periodic and chaotic
dynamics can be observed, although chaos is quite uncommon in random networks with a
connectivity of k = 2 [6, 7]. Magnasco has shown that it is possible to construct continuous
systems that implement any specified Boolean computation [8]. The present work addresses
new dynamical features that arise in large networks of generic elements with sigmoidal
response functions and explores the extent to which they can be understood using Boolean
models.
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We consider an illustrative class of continuous models and show that information
propagation along chains plays a key role in determining the qualitative dynamical behavior
of large random networks. We develop a modified Boolean theory incorporating the effects
of signal decay on certain chains that explains key features of the continuous dynamics.
Applying the theory to the well-known transition between order and disorder in random
networks [9, 10] reveals that signal decay has little effect on ordered dyanmics but can lead
to a substantial suppression of disorder. Finally, we study cis-regulatory functions from the
quantitative biology literature and show that our theory accounts well for the dynamics of
random networks constructed using those functions. The differences in collective behavior
of the continuous systems and naive Boolean models are not simple extensions of the
differences in attractor structure noted in earlier studies [4]. They suggest both that caution
should be taken when making inferences based on Boolean modeling of individual nodes
and that appropriately modified Boolean models can still provide useful insights.

II. A CLASS OF CONTINUOUS MODELS
We study continuous systems with variables {xi} and time evolution equations

(1)

(2)

where ηi, γi, the b’s and the d’s are constant coefficients and τij is a constant time delay
associated with the conversion of the output of node j into its active form and/or a
propagation time between node j and its target node i. Each node i receives exactly two
inputs from randomly selected nodes in the network and responds as determined by its
transfer function fi. The form of the differential equations is motivated by studies of genetic
regulatory networks, in which case the variables represent mRNA concentration [11].

Time delays are included for two complementary reasons. First, the interactions between
elements in the systems of interest typically involve a series of events that take time to
complete. For transcriptional networks, the activation or repression of a target gene due to
the buildup of a particular mRNA requires the translation of the mRNA, the folding of the
protein, and the transport of the protein to the nucleus. In this case, the delays in our model
equations represent the time required for protein levels to build up, along with whatever
other post-translational processes are required and may be thought of as capturing the
dominant effect of a set of explicit equations for additional variables. Second, the delays are
necessary to produce simple oscillatory behavior in small negative feedback loops. A self-
repressor in a Boolean system produces oscillations rather than fixed points, but a
continuous self-repressor will not oscillate in the absence of a time delay. To get a
meaningful comparison of large Boolean network models and the underlying continuous
systems, we want to study continuous models capable of exhibiting the oscillatory behaviors
of very simple negative feedback loops. Though there may be cases in which the function of
negative feedback in a real system is just to regulate the level of a fixed point, such feedback
would be irrelevant from the perspective of Boolean modeling.

A system that nicely illustrates the role of time delays is the repressilator (a loop of three
repressors) studied by Elowitz and Leibler [12]. To model the observed oscillations, it was
necessary to include separate equations for the net rate of production of RNA and proteins.
Coupled equations for RNA concentrations of the form of Eq. 1 with τ = 0 yield only a
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stable fixed point [12]. With sufficiently large time delays, however, the fixed point
becomes unstable to an oscillatory attractor; it is not necessary to include explicit equations
for protein production.

III. ANALYSIS OF TWO SPECIFIC SYSTEMS
We consider two random network systems, S1 and S2, that have the same Boolean
idealization but turn out to behave quite differently. Each node in Sα is assigned fi = gα with
probability p and fi = h otherwise, where gα and h are defined by the parameters listed in
Table I. g1 and g2 are plotted in Fig. 1. Both would be approximated by a Boolean NIF
function, which returns a 1 if and only if the first input is 1 and the second input is 0. h
corresponds to a Boolean OR function. The choice of NIF and OR functions allows us to
tune through the order–disorder transition by varying p. The qualitative results are not
specific to this choice.

The continuous dynamics are simulated using the fourth order Runge-Kutta method
described in [4]. The time delays {τij} are set to 1, the decay constants {γi} are chosen at
random from the interval [0.8,1.2], and the normalization constants {ηi} are chosen such
that g1, g2 and h all have the same saturation value of 100. The results presented here are not
sensitive to the values of {τij} or {γi}. We studied networks of size N = 1000. For each
given distribution of transfer functions, we simulated between 15 and 30 networks, with 15
to 30 random initial conditions each, each network requiring about one hour of computation
time on a desktop computer.

To compare the dynamics of the continuous systems with their Boolean counterparts, we
binarize the continuous time series, setting a node’s value to 1 (0) if it is above (below) a
specified threshold. For a given network, let ϕi be the mean value of node i over time,
obtained after concatenating time series of equal duration from attractors generated by

different initial conditions. We focus on two quantities: μ = Avg[ϕi], and ,
where Avg […] denotes an average over nodes. σ2 is the average of the variances for a
system with binary values 0 and 1. Note that frozen nodes, which go to the same static value
at long times on all attractors, contribute zero to σ2. The concatenation of attractors allows
nodes that are constant on any single attractor, but not at the same value on all attractors, to
contribute to σ2.

Fig. 2 shows the ensemble averages 〈μ〉 and 〈σ2〉 as functions of p. S1 behaves very much
like its Boolean idealization, represented by the solid curves; S2 does not. We use
established techniques [10, 13–15] to determine that the Boolean system is ordered for p ∈
[0, 0.5), disordered for p ∈ (0.5, 1) and critical for p = 0.5 and p = 1. In the large system
limit, we expect 〈σ2〉 = 0 in the ordered regime and a continuous transition to 〈σ2〉 > 0 in the
disordered regime. The nonzero value of 〈σ2〉 at the critical points is a finite size effect. The
variance of S2 is strongly suppressed in the region where the Boolean model is disordered.
We note that 〈μ〉 = 0 implies 〈σ2〉 = 0, so for this particular system, we can explain the
suppression of 〈σ2〉 by deriving a theory of 〈μ〉. The dashed curves explaining the behavior
of S2 are based on the theory discussed below.

As discussed by Magnasco in [8], a system whose transfer functions are globally compatible
is capable of executing logical operations, where global compatibility means that all transfer
functions have the same two fixed point values; i.e., that when every input is held steady at
either the high or low value, every output will also take one of those two values. We show
here a system (S1) that behaves statistically like its Boolean analogue, although the transfer
functions for the two node types are not tuned to be globally compatible and the attractors
are not always steady states. Fig. 3 shows a typical time series for a continuous node in S1
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and a Boolean node in networks with p = 0.8. Both exhibit the complicated behavior
associated with the disordered regime.

Certain features of continuous systems are known to strongly affect the number and nature
of attractors in small systems and simple rings in ways that are not captured by Boolean
models [4]. It is not clear, however, whether these features lead to important effects in large
systems. The close match for 〈μ〉 and 〈σ2〉 of S1 and its Boolean model (Fig. 2) suggests
that they do not, but care must be taken to interpret these results. Much of the agreement can
be attributed to the fact that 〈μ〉 and 〈σ2〉 are determined primarily by the fraction of frozen
nodes in the network, a quantity that does not depend on the timing or sequence of updating
the nodes [9].

In the ordered regime, the nearly vanishing number of nodes that are not frozen leads to very
low values of 〈σ2〉. The agreement in the disordered regime is less trivial. Consider, for
example, a ring of nodes containing a random mixture of copiers and inverters. For
synchronously updated Boolean dynamics, every attractor of a given network has a partner
in which the values 0 and 1 are exchanged for all time steps, and these two attractors have
basins of the same size. (When the number of inverters is odd, every attractor is its own
partner.) Thus μ is always ½ and σ2 is always the maximum value of ¼. As discussed in [4],
the breaking of on-off symmetry in generic continuous systems leads to a collapse of almost
all attractors, leaving only two fixed point states for rings with an even number of inverters
and one oscillating state for rings with an odd number of inverters. The odd case produces
〈μ〉 ≈ 0.5 and 〈 σ2〉 ≈ 0.25. These are not strict equalities because, unlike for the
synchronous Boolean ring, a node in the corresponding continuous system need not spend
precisely the same time in the high and low states, but the symmetry breaking effect is
typically small. [4]. In the even case, on the other hand, the two fixed point states can have
dramatically different size basins and therefore exhibit a substantially reduced value of σ2.
For a ring of size N = 100 with a random mixture of continuous copiers and inverters, we
find 〈μ〉 ≈ 0.5 and 〈σ2〉 ≈ 0.12. So in the case of simple rings, where 〈μ〉 and 〈 σ2〉 are
determined by dynamical properties of the attractors rather than numbers of frozen nodes,
we do not see agreement similar to that of S1 and the Boolean system shown in Fig. 2. It
appears that the complex network of connections between active rings in the disordered
regime restores the agreement. Fig. 3 suggests that Boolean and continuous attractors in the
disordered regime have similar temporal features, but a full characterization of the dynamics
of individual attractors is beyond our present scope.

We now turn to the analysis of S2, a case where the continuous dynamics show substantial
deviations from the naive Boolean expectations. To understand why S1 and S2 behave
differently, we examine the functions g1 (x, y) and g2 (x, y) when the second input is held at
a low value ε = 1.12, the low stable fixed point of h(x, x). A Boolean NIF function whose
second input is held at 0 acts as a copier on its first input, so we expect the functions g1 (x,
ε) and g2 (x, ε) to behave like copiers. As shown in Fig. 4, g1 (x, ε) has two stable fixed
points, but g2 (x, ε) has only one stable fixed point.

As noted in [8], the faithful propagation of information along chains of nodes requires two
stable fixed points in the transfer function. We refer to the loss of information along chains
of nodes lacking a second stable fixed point as “propagation failure.” Because g2 does not
have the required fixed point structure, propagation failure may cause the system S2 to
behave differently from its naive Boolean idealization. We now present a modified Boolean
model that accounts for propagation failure and agrees well with simulations, as shown by
the dashed curves in Fig. 2. The success of this theory indicates that for large random
networks, propagation failure is the primary source of the measured discrepancy between the
continuous system and the original Boolean model.

Norrell and Socolar Page 4

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A modified Boolean theory for S2 is derived by noting that some of the nominal NIF nodes
are actually better modeled by the Boolean OFF function. Consider a chain of continuous
nodes where each has the transfer function g2 (x, y), and where node i is the first input (x)
into node i + 1. Because g2 lacks the necessary high fixed point, propagation failure prevents
nodes far down the chain from ever rising above threshold in response to a high input signal
to the first node in the chain (i = 1). Though they may be initialized at a high value, they will
always stay low after a brief transient. Let node m be the first node in the chain that cannot
rise above threshold due to propagation failure. We will model node i with a NIF function if
i < m, and with an OFF function if i ≥ m. The value of m for the a particular chain of g2
nodes will depend on the parameters in g2, the choice of threshold, and the value of the high
input into the first node of the chain. Approximating the system as a random Boolean
network with fractions r, q, and 1 − r − q of OFF, NIF, and OR nodes, respectively
(neglecting correlations in the positions of the OFF nodes), 〈μ〉 can be calculated exactly as
the stable fixed point of the bias map [13]

(3)

where rho;t represents the average fraction of nodes with a value of 1 at time t. The stable
fixed point is

(4)

Let n be the value of m for S2, computed using the average value of the high input signals
that arise from the dynamics. For a large random network, the fraction of nodes that are
assigned the OFF function is r = pn, so the fraction of nodes that truly act as NIF is q = p −
pn. Substitution into Eq. 4 gives

(5)

The prescription for finding OFF nodes does not explicitly account for the failure of
propagation around rings of g2 nodes smaller than n, but such loops are very rare in random
networks.

The dashed curves in Fig. 2 show 〈μ〉 for n ∈ {2, 3, 4}, with n increasing to the right. The
simulations suggest a crossover from n = 4 for p ≲ 0.5 to n = 3 for p ≳ 0.5. The reduction of
n arises because the average value taken by nodes that are above threshold decreases as p
increases, which implies lower input values to chains of g2 nodes. The switch from n = 4 to
n = 3 associated with the function g2 (x, ε) of Fig. 4 and our chosen threshold of 10 occurs
when the initial input to a chain is about 58. Simulations reveal that the average value of
nodes above threshold crosses 58 at p ≈ 0.51, which corresponds reasonably well with the
crossover observable in Fig. 2.

The suppression of disorder, as indicated by small values of 〈σ2〉 for p > 0.5 in Fig. 2(b), is
caused by the effective insensitivity of nodes at the end of sufficiently long chains. Because
nodes in this set have approximately fixed values, all nodes receiving both inputs from this
set will also have approximately fixed values, leading to a cascade of effectively frozen
nodes. The net result is a substantial loss of sensitivity for the network as a whole.
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Further insight into the order–disorder transition comes from examining the trajectory traced
in the q − r plane as p increases from 0 to 1, shown in Fig. 5. The shaded sector is the
disordered regime of the Boolean system, where the slope of the Derrida plot exceeds unity
[10, 16]. The unshaded sectors correspond to ordered regimes, and the boundaries to critical
systems. Fig. 5(a) shows trajectories corresponding to different n. We can measure 〈μ〉 in
simulations of S2 and determine r and q from the relations r + q = p and Eq. 4. The results
are shown in Fig. 5(b). Only the results for 〈μ〉 > 0 are plotted; the theory cannot determine
unique values for r and q in the upper unshaded sector because every (q, r) pair gives 〈μ〉 =
0. This plot again reveals a shift from n = 4 to n = 3, but also shows that the system skirts a
critical boundary as p is varied. The dynamical suppression of disorder in this case provides
a mechanism for keeping a network in the critical regime over a wide range of parameter
values. We note, however, that this is not necessarily a generic effect. Functions producing
larger values of n would permit some degree of disorder.

IV. RESULTS FOR REPORTED TRANSFER FUNCTIONS
It is instructive to examine suggested or measured transfer functions from the literature to
see whether collections of similar functions would faithfully execute their nominal Boolean
logic. In [17], Boltzmann weights are used to compute the probability that RNA-polymerase
will bind to the promoter region of a gene as a function of the concentrations of the
transcription factors for that gene. If we take the transfer functions to be proportional to the
probability functions, we find that they lack the necessary fixed points for propagating
information and that random networks built from them exhibit strong suppression of
disorder. We note, however, that there is evidence for cooperative effects and post-
transcriptional processes that influence the effective transfer function, so we do not
necessarily expect the systems considered below to be representative of real regulatory
networks.

Consider a continuous system with two transfer functions defined in [17] as implementing
NAND and OR logic. A mean field theory analogous to Eq. 5 can be constructed. The
results in this case depend upon the choice of threshold for the binarization of the time
series. Two plots for 〈μ〉, using different threshold values, are given in Fig. 6. The solid
curve shows the behavior of the straightforward Boolean idealizations, and the dashed
curves show the predictions made by our mean field theory. The theory predicts 〈σ2〉 = 0 for
all fractions p of NAND nodes because propagation failure pushes the system into the
ordered phase, an effect confirmed by simulations. As above, accounting for the insensitivity
of some nodes allows a reasonably accurate prediction of the dynamics of the continuous
system.

In a random Boolean network of NAND and OR gates, the fixed point in the bias map

becomes unstable to a 2-cycle at . Oscillations in bias occur also in continuous
systems with long time delays and short decay times, but not if these time scales are
comparable. In the latter case, the NAND nodes find stable intermediate values. Fig. 6
shows the dynamics with the choice τij = 1 and γi ∈ [0.8, 1.2] with two different threshold
values, one above and one below the intermediate fixed point of the all NAND system.
Analysis of continuous systems with oscillating bias is beyond the scope of this work.

Ref. [17] provides no obvious guide for choosing the normalization constants for the transfer
functions. For Fig. 6 we used η1 = η2 = 1000. We tried every combination of (η1, η2) with
ηi ∈ {200, 400, 600, 800, 1000} and found no pair that produced behavior significantly
different from those shown. In this case, as in most cases, the NAND nodes took clearly
separated high and low values for most values of p, but the OR nodes typically converged to
a single value due to the absence of a low fixed point.
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A second example of a biological transfer function is the lac cis-regulatory input function
studied in [18]. The lac promoter requires both IPTG and cAMP to be produced. Setty et. al.
discuss both the real input function and an idealized continuous AND function. Neither of
these functions satisfies the criterion for faithful information propagation in a network. For
high values of the first input, the function does not have a stable high fixed point for the
second input. A large network of such elements would not express its nominal Boolean
logic.

It has been shown both theoretically and experimentally that signaling cascades can create
switch-like responses [19–21] in genes several steps downstream from the initial stimulus.
In transcriptional regulation, one mechanism for achieving the required characteristics of the
transfer functions involved was proposed in [22], wherein an evolutionary model generated
steeper transfer functions by introducing auxiliary binding sites for a transcription factor.
Another mechanism has been proposed in recent work by Buchler et. al., who emphasize the
possible role of protein or RNA sequestration in creating sharp transfer functions [23, 24].
We note here that the demonstration of an effective Hill function with high cooperativity
does not by itself imply that a cascade of similar elements would successfully propagate
information. One needs to know how to normalize the output levels to see whether there is a
high fixed point, and this requires knowledge of the level needed to activate the downstream
target. Nevertheless, the use of cooperativity and sequestration to construct elements with
nearly Boolean behavior appears promising. Our present work highlights another relevant
issue for synthetic or natural transcriptional circuits: the interactions of transcription factors
may make it difficult to simultaneously meet all of the requirements for signal propagation
for genes with two or more inputs. Attempts to experimentally demonstrate a sharp, two-
input logic gate may yield new insights into the feasibility of implementing complex logic in
biological systems.

It is not clear, however, that biological networks need to be able to carry out arbitrarily
complicated logical operations. Our results show that faithful propagation down long chains
is not crucial for implementing the Boolean dynamics arising in the ordered and critical
regimes in systems of a few thousand elements. Moreover, if operation near criticality is
advantageous for a biological system, as suggested in [1], suppression of disorder may be
beneficial. We have identified a dynamical mechanism for accomplishing this, which may
be a useful alternative to alteration of the network architecture. A limited range of
propagation could actually be an important feature of real biological networks.

V. CONCLUSION
In conclusion, we have seen that the detailed form of continuous transfer functions can have
a qualitative effect on the dynamics of large random networks. If all of the transfer functions
have suitable fixed point structures such that signals can propagate down chains of arbitrary
length, fundamental statistics of the attractors are similar. This indicates that disordered
systems are not prone to the type of attractor collapse that occurs on simple rings. When
some of the transfer functions do not have a suitable fixed point structure, the dynamics in
the disordered regime are strongly affected. In the case studied above, the suppression of
disorder leads to an extended domain in the parameter space where the system is close to a
critical Boolean network. A successful theory of these effects has been obtained within a
Boolean framework by accounting for the failure of information to propagate down long
chains of nodes. Further characterization of the temporal structure of individual attractors in
the disordered regime is needed to fully understand the importance of these phenomena in
large networks.
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FIG. 1.
The transfer functions g1(x, y) (left) and g2(x, y) (right). Both functions have the same
Boolean idealization.
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FIG. 2.
(a) The mean fraction of ON nodes. The + and Δ symbols correspond to S1 and S2,
respectively. The solid line μ = 1 − p is the prediction for an infinite random Boolean
network with a fraction p of NIF gates and 1 − p of OR gates. The dashed curves show the
theoretical results discussed in the text. (b) The total variance corresponding to the systems
in (a). The solid curve is the average variance from simulations of the Boolean model.
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FIG. 3.
Typical time series for an unfrozen node in the disordered regime (p = 0.8) in a continuous
system, S1, and in a synchronously updated Boolean system. Both systems have attractors
with complex dynamics.
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FIG. 4.
(a) g1 (x, ε) and (b) g2 (x, ε), with ε = 1.12.
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FIG. 5.
(a) Trajectory in the q − r plane, as predicted by the mean field model, for fixed decay
lengths n ∈ {2, 3, 4, 5, 10, 20}. The curves go from low to high n when viewed left to right.
(b) Fit of actual data with varying n. See text for details.
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FIG. 6.
Mean node value of a network using NAND and OR transfer functions from [17] and a
threshold that is (+ symbols) below, and (Δ symbols) above the intermediate fixed point
defined in the text. p is the fraction of NAND nodes. Our mean field theory (dashed curves)
gives a much better approximation of the dynamics than does the naive Boolean model
(solid curve).
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