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Abstract
In this paper, the estabished and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI)
and metabolic diseases are reviewed and available results from human agonist/antagonist studies are
discussed. While there is evidence for the involvement of CCK1R in numerous diseases including
pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-
deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging
data from several clinical studies of CCK1R antagonists in some of these conditions, but their role
as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis,
pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its
effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in
acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for
CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists
are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the
role of CCK2 receptors as targets for medical imaging is discussed.

Even though cholecystokinin (CCK) and gastrin were among the first gastrointestinal hormones
discovered [1,2], both their physiological roles as well as their roles in clinically relevant
gastrointestinal diseases remain unclear and even controversial in many cases [3–6]. The structural
characterization of CCK and gastrin [7,8], pharmacological identification [9–13] and cloning [14,
15] of CCK and gastrin receptors (CCK1R, CCK2R), characterization of receptor location, peptide
and receptor genes, development of receptor antagonists and receptor/agonist knockout animals
[16–21] have led to important advancements in our understanding of the physiological and
pathophysiological role of CCK and gastrin signaling [3]. Most of these topics are dealt with in other
papers in this volume. The present review will focus on the role of CCK and gastrin and their receptors
(CCK1R and CCK2R) in gastrointestinal and metabolic diseases with special emphasis on human
studies and the assessments and potential for their use for treatments for human diseases

1.INTRODUCTION
Multiple gastrointestinal tissues express CCK1R, CCK2R or both. Importantly, there is a
relevant inter-species variation of the tissue distribution of CCK1R and CCK2R [4,22], so that
data from animal studies cannot always be extrapolated to humans. The human CCK1R is
expressed at the protein level in the mucosa of the stomach [23,24], the exocrine pancreas
[25] and in smooth muscle cells of the gallbladder [26], stomach [24] and intestine [27,28].
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Moreover, human CCK1R mRNA has been reported in vagal afferent fibers [29], the adrenal
gland [30], the kidney [22] and mononuclear blood cells [23]. In contrast to most animals, very
low or non-detectable levels of CCK1R mRNA are expressed in human pancreatic acini and
these cells do not respond to CCK1R agonists [4,31]. CCK2R protein has been demonstrated
in the human exocrine [32] and endocrine [33] pancreas, the stomach mucosa [24] and
muscularis [24]. Moreover, CCK2R receptor mRNA expression has been shown in human
blood mononuclear cells [23], adrenal gland [30] and vagal afferent fibers [29].

The CCK1R has a high affinity (Kd in the nanomolar range) for CCK and sulfated CCK
analogues but a low affinity (Kd in the micromolar range) for gastrin, which is a poor activator
of CCK1Rs at physiological concentrations [34–36]. The CCK1R has been shown to exist in
a high- and low-affinity state, which are coupled to different intracellular signaling mechanisms
[3,17,37–39].The CCK2R has almost equal affinity for gastrin and CCK as well as for
desulfated CCK analogues [3,17,37,38]. As postprandial serum gastrin values are 5- to 10-fold
higher than those of CCK, gastrin is probably the physiological ligand of most of the peripheral
(i.e. non-CNS) CCK2R receptors [3]. For both receptors, numerous specific agonists and
antagonists have been developed (for reviews, see [6,21,40]). The CCK1R and CCK2R
antagonists that have been assessed in humans (physiologically or in diseases) are shown in
Fig. (1) and Fig. (2), respectively.

Numerous selective CCK1R agonists and antagonists have been developed [3,6,21,41–43].
CCK1R selective agonists include peptides (sulfated CCK analogues as will as CCK tetra-
peptide analogues [A-71378, A-71623, AR-R 15849]), benzodiazepine derivatives (GSK
compound GI 18177, GW 7178, GW 5823) and thiazole derivatives (SR 146131, SR 146131)
[21,41,44–46]. CCK1R agonist have primarily been investigated in appetite control and will
not be discussed here because this is covered in other papers in this volume. CCK1R selective
antagonists include glutaramic acid derivatives (lorglumide, loxiglumide, dexloxiglumide,
A-65186), 1,4-benzodiazepine derivatives (L-364,718 [MK-329, devazepide], pranazepide
[FK-480], tarazepide), various conformationally constrained dipeptoid analogues, various 1,3-
dioxoperhydropyrido[1,2-c]pyrimidine analogues, 1,3,5-substituted pyrrolidinones analogues
(SC-50,998), 1,3,3-substituted indol-2-one derivatives (T-0632) as well as others identified by
randon screening (SR-27,897[lintitript], TP-680) [6,21,45,47]. In the present review only
CCK1R antagonists that have been used in humans will be discussed [Fig. (1), Table 3].

II. CCK AND CCK1R
II.A. Physiological functions mediated by CCK1Rs (Table 1)

In humans strong evidence suggests CCK1R activation is involved in the regulation of
numerous physiological processes, including gallbladder contraction and sphincter of Oddi
relaxation, stimulation of pancreatic secretion, inhibition of gastric emptying and acid
secretion, lower esophageal sphincter relaxation, slowing of colonic motility and regulation of
satiety [4,16,19,20,48–62].

II.B. Gastrointestinal (GI) diseases likely involving CCK or CCK1Rs (Table 1)
Although CCK1Rs have been reported to be relevant in various gastrointestinal diseases, the
role of CCK1Rs in these conditions has not been firmly established [4,16,48]. Several studies
reviewed below report CCK deficiency states that could have clinical relevance. Others suggest
that CCK1Rs could be involved in various pancreatic disorders (acute, chronic pancreatitis);
GI motility disorders including gallbladder disease, irritable bowel syndrome, functional
dyspepsia, chronic constipation, gastroesophageal reflux disease; appetite/satiety regulation,
modulation of pain and regulation of tumor growth. The latter two subjects will be treated in
other papers in this journal and thus will not be dealt with further in the following review.
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II.B.1. CCK deficiency states—Reduced serum levels of CCK, possibly contributing to
impaired gallbladder contractility and cholelithiasis, have been reported in patients with celiac
disease [63–68], the short bowel syndrome [69], in diabetics [70], in newborns with infantile
colic [71] and in patients receiving total parenteral nutrition [30,72]. In this later group of
patients, it is controversial whether CCK administration can prevent parenteral nutrition-
induced cholestasis or sludge/stone formation [73–77]. It has been proposed that diarrhea and
malabsorption in patients with autoimmune polyglandular syndrome type 1 are due to CCK
deficiency induced by loss of CCK-producing enteroendocrine cells in the proximal small
intestine [78], however, this proposal has been questioned by others [79].

II.B.2. Role of CCK1R in pancreatic disorders
II.B.2.a. General: The relevance of CCK1R signaling in clinical pancreatic disorders is not
clearly defined. This has occurred because important inter-species variation of pancreatic
CCK1R and CCK2R expression complicates the development of suitable animal models.
While in rat and mice, the two animals used in most experimental models of human pancreatic
disease, pancreatic acini express exclusively CCK1R, human pancreatic acini express almost
2exclusively CCK2R receptors [4,22,80–82] and CCK causes no alteration in human acinar
cell function [31]. Other reports indicate that CCK-induced pancreatic enzyme secretion in
humans is mediated by a cholinergic mechanism [83,84]. Therefore, several authors conclude
that it is unlikely that CCK1Rs on human acini mediate important cellular functions, such as
enzyme secretion or proliferation [31,83], as reported in animal models.

II.B.2.b. CCK1R in acute pancreatitis: II.B.2.b.1 CCK1R in acute pancreatitis.General:
Several lines of evidence in animal studies suggest that CCK1Rs may mediate induction and
development of acute pancreatitis in experimental models [55,85–87]. First, in rats and mice,
parenteral administration of supraphysiological doses of CCK agonists can cause acute
pancreatitis [88,89]. Second, in the CDE model of acute pancreatitis in mice (choline-deficient
ethionine-supplemented diet), CCK worsens the pancreatitis [89]. Third, OLETF rats lacking
CCK1R expression develop less severe pancreatitis in several experimental models [90,91].
Forth, administration of CCK1R antagonists reduced the severity of pancreatitis in most [87,
89,92–99] but not all [100–102] animal studies of experimental pancreatitis. One study [102]
even showed that the specific CCK1R antagonist L-364,718 [Fig. (1),Table 3] worsened the
course of bile-pancreatic-duct obstruction (PDO) pancreatitis in rats, but it has been criticized
by others for methodological problems [103]. Another report by the same group suggested that
CCK1R blockade by, L-364,718 could increase intra-acinar free-radical generation, thereby
worsening PDO pancreatitis [104]. Fifth, ethanol, one of the common causes of pancreatitis in
men, has been shown to sensitize pancreatic acinar cells to CCK in in vitro [92,105] and in
vivo [106] rat studies. Moreover, recent studies reporting an up-regulation of CCK1Rs during
pancreatic regeneration after taurocholate-induced pancreatitis in rats [107] and a delayed
pancreatic regeneration in CCK1R deficient OLETF rats after ethionine-induced pancreatitis
[91] suggest a possible role for CCK1R in pancreas regeneration. In animal studies,
intracellular activation of zymogens appears to be one of the early events in the initiation of
acute pancreatitis [93,108–111].

At present, little data is available on the pathogenesis of the most common forms of pancreatitis
in man, i.e. pancreatitis induced by biliary tract disorders, alcohol, drugs and metabolic
abnormalities. There is only indirect evidence for a potential role of CCK1Rs in clinical
pancreatitis. First, patients with biliary pancreatitis have been reported to have higher serum
CCK levels than control patients or patients with non-biliary acute pancreatitis [112]. Second,
studies in hereditary pancreatitis support the role of premature zymogen activation in clinical
pancreatitis, because different mutations of the cationic trypsinogen [113–115] and the serine
protease inhibitor Kazal type 1 [116–118], two molecules regulating zymogen activation, have
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been found to correlate with different forms of hereditary pancreatitis. This analogy to animal
models of pancreatitis, including CCK-induced pancreatitis, might provide indirect evidence
for the role of CCK in certain forms of clinical pancreatitis, but does not clearly establish the
importance of CCK1R signaling in this disease.

II.B.2.b.2 CCK1R antagonists in acute pancreatitis: Currently, data are available on only one
human clinical study of a CCK1R antagonist in acute pancreatitis [119]. In this double-blind
study, 189 patients from 104 Japanese centers were treated with three different doses of the
selective CCK1R antagonist loxiglumide [Fig. (1),Table 3], administered intravenously twice
a day. Pain disappearance, changes in clinical symptoms (nausea, vomiting), changes in
physical findings and changes in serum amylase were similar in all three groups. Serum lipase
levels returned to normal more quickly in the high-dose group, suggesting that loxiglumide
could be useful to treat acute pancreatitis, especially as the reported side effects were rare and
usually mild. However, this study lacks a placebo group and therefore is inconclusive.
Loxiglumide has entered a phase III trial for acute pancreatitis, however no data are currently
available [42]. So far, no study shows unequivocally a clinical benefit of CCK1R antagonists
in acute pancreatitis in humans.

II.B.2.c. CCK1R in chronic pancreatitis: II.B.2.c.1. CCK1R in chronic pancreatitis.
General: Animal studies in rats, chicken and pigs suggest that exocrine pancreatic secretion
is regulated by a negative feedback mechanism [112,120]. A CCK-releasing peptide stimulates
secretion of CCK, which triggers pancreatic enzyme secretion. Pancreatic enzymes inactivate
the CCK-releasing peptide in the duodenum, thereby reducing their own secretion in a negative
feedback loop. Several findings have led to the proposal that the inhibition of this feedback
mechanism in chronic pancreatitis could cause elevated CCK levels inducing excessive
stimulation of pancreatic secretion with elevated intraductal pressure, causing abdominal pain.
First, some patients with chronic pancreatitis are reported to have higher basal CCK levels than
healthy controls [121–123]. Second, some studies of pancreatic enzyme preparations in chronic
pancreatitis showed pain relief [121,124], especially in mild to moderate disease and minimal/
no changes in ERCP [125]. Some authors propose that this pain-relieving effect of the
pancreatic enzymes is mediated by feedback inhibition of CCK [125], probably by denaturation
of CCK-releasing peptide by the pancreatic enzymes. The role of CCK in the pathogenesis of
pain in chronic pancreatitis is however controversial [120,126], as three studies of pancreatic
enzyme preparations in chronic pancreatitis showed no decrease in abdominal pain [120,127,
128].

II.B.2.c.2. CCK1R antagonists in chronic pancreatitis: Data on one double-blinded,
randomized, placebo-controlled study of three doses (300, 600, 1200 mg/day) of oral
loxiglumide in chronic pancreatitis in 207 Japanese patients are available [129]. Physical signs,
clinical symptoms and serum pancreatic enzyme levels were evaluated. In the 600 mg group,
back/abdominal pain, serum amylase and trypsin levels decreased significantly while in all
three groups, the abdominal tenderness/resistance improved. Adverse side effects were rare
and mostly mild to moderate. The authors concluded that 600 mg/day loxeglumide may be
useful in the treatment of chronic pancreatitis. Further adequately designed placebo-controlled
studies with appropriate end points are needed to confirm this conclusion. A phase III trial of
loxeglumide in chronic pancreatitis has been started, but no data are available [42].

II.B.3. Role of CCK1R in motility disorders
II.B.3.a. Role of CCK1R in gallbladder disorders: II.B.3.a.1.General: Numerous studies
evidence that gallbladders from cholesterol stone patients have a CCK contractile defect
[130,131], due to altered membrane fluidity, which results in dysfunction of G-protein coupled
transmembrane receptors, such as the CCK1R [130–132]. Moreover, recent studies in a
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knockout mouse model [133] provide evidence that disruption of CCK1R signaling leads to
enhanced gallstone formation. Furthermore, some clinical studies show reduced CCK1R
expression in cholesterol stone patients with non-contractile gallbladders [134] and in diabetic
patients with gallstones [135].

The role of CCK in acalculous gallbladder disease and the clinical entity itself as a cause of
chronic abdominal pain are controversial [136–139]. Multiple approaches to study gallbladder
emptying after CCK or a fatty meal, triggering release of endogenous CCK, to identify
symptomatic patients with acalculous cholecystitis who might benefit from a cholecystectomy
have led to contradictory results [136,137,140,141]. While some recent studies on CCK-
cholescintigraphy, the most widely used of these tests in the United States, have found a good
reproducibility [142] and a good prediction of the presence of acalculous chronic/acute
cholecystitis [143], others have found that cholescintigraphy may only be of limited use
[144]. Therefore, further investigations with standardized test procedures are needed to define
the optimal methodology for studying gallbladder emptying.

II.B.3.a.2. CCK1R antagonists in gallbladder disease: Pain relief after oral administration of
the CCK1R inhibitor loxiglumide has been first reported by Beglinger et al. in patients with
biliary colic refractory to conventional therapy after extracorporeal shock-wave lithotripsy of
gallbladder stones [145]. In a pilot study of 14 patients with biliary colic, Malesci et al. report
significantly greater and faster pain reduction after 50 mg of intravenous loxiglumide than after
standard intravenous anticholinergic treatment [146]. Further randomized double-blind trials
with sufficient patient numbers are needed to confirm this finding.

II.B.3.b. Role of CCK1R in irritable bowel syndrome (IBS): II.B.3.b.1. Role of CCK1R in
IBS: general: Numerous abnormalities of bowel motility, impaired sensitivity to gastric acid
and visceral sensitivity have been described in IBS [4,147–150]. Some studies suggest that
exaggerated release of CCK or altered responses to CCK could contribute to the symptoms of
IBS [149,151–154]. A recent study provides evidence that the presence of intraduodenal lipids
increases visceral sensitivity in constipation-and diarrhea-predominant IBS [155] and that
CCK is a possible mediator of this effect.

II.B.3.b.2. Role of CCK1R in IBS: CCK1R antagonists in IBS: In a study involving eight
healthy volunteers and eight patients with IBS, loxiglumide failed to inhibit the gastrocolic
response in both patient groups [156]. In a pilot double-blind placebo-controlled multicenter
study of 72 patients with IBS, 200 or 400 mg t.i.d. oral loxiglumide were administered for eight
weeks. 400 mg were reported to cause a significant clinical improvement when compared to
the placebo group or 200 mg group, especially in constipation-predominant IBS [157,158]. A
recent study of the CCK1 selective antagonist dexloxiglumide [Fig. (1),Table 3] (200 mg t.i.d)
in 36 women with constipation-predominant IBS found accelerated gastric emptying and
slower ascending colon emptying, but no significant effect on overall colon transit or relief of
IBS symptoms [159]. In a multicenter, randomized, placebo-controlled, double-blind phase II
study of 405 patients of oral dexloxiglumide (200 mg t.i.d.), female constipation-predominant
IBS patients responded significantly better to dexloxiglumide than to placebo and
dexloxiglumide significantly improved clinical symptoms (pain, bloating, stool consistency)
in constipation-dominant IBS patients. Furthermore, dexloxiglumide was generally well
tolerated [160–162]. Two phase III studies involving 1400 women with constipation-
predominant IBS found a trend towards a benefit of oral dexloxiglumide vs. placebo, but it did
not reach statistical difference [163]. Results from another phase III trials of 1800 patients with
constipation-predominant IBS are still pending [43]. To date, the usefulness of CCK1R
inhibitors in the treatment of IBS remains unclear.
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II.B.3.c. Role of CCK1R functional dyspepsia: II.B.3.c.1. Role of CCK1R functional
dyspepsia.General: Dyspepsia is defined as a discomfort or pain in the upper abdomen and is
a very common problem in patients in clinical practice [164]. Patients with functional dyspepsia
often present with a hypersensitivity to distension of the stomach [165]. Chua et al. showed
that infusion of CCK can reproduce specific symptoms in patients with functional dyspepsia
[166]. Consumption of fat, which is known to release CCK, is often associated with dyspeptic
symptoms and the indcution of symptoms is accompanied by a rise in plasma CCK levels
(62,65). In healthy subjects, CCK1R antagonist loxiglumide has been found to accelerate liquid
and solid gastric emptying [42], whereas a CCK1R agonist, GI181771X, has been found to
delay gastric emptying of solids [167].

II.B.3.c.2. CCK1R antagonists in functional dyspepsia: In a randomized, double-blind,
placebo-controlled study of 28 patients with functional dyspepsia, the authors found that oral
loxiglumide relieved dyspeptic symptoms significantly better than placebo [166,168]. In
another double-blind study of 12 patients with functional dyspepsia [165], intravenous
dexloxiglumide relieved dyspeptic symptoms induced by gastric distension and duodenal lipid
infusions significantly better than placebo. Larger studies are needed to confirm these
encouraging findings.

II.B.3.d. Role of CCK1R in chronic constipation: II.B.3.d.1. Chronic constipation and
CCK1R.General: A number of studies have demonstrated that CCK affects the activity of
colonic muscle [169–171]. In human and animals a number of studies provide evidence that
CCK increases colonic transit time [5,172,173], however, other studies found that
physiological concentrations of CCK do not effect transit in healthy subjects [156,174]. In
healthy volunteers CCK1R antagonists have accelerated colonic transit [48,175,176], however,
no increase in colonic transit occurred after treatment with CCK1R antagonists in patients with
irritable bowel syndrome [159,177].

II.B.3.d.2. Chronic constipation and CCK1R antagonists: A randomized, double-blind,
placebo-controlled trial of 21 chronically constipated geriatric patients found a significant
benefit (acceleration of transit time, increase in stool frequency, diminution of number of
enemas) after three weeks of oral loxiglumide (800 mg 3 times daily) [178]. In another study
in 8 younger men, dexloxiglumide 200 b.i.d. over 7 days partly reversed increased colonic
transit time induced by fiber-supplemented liquid formula diet, suggesting it might be useful
as pro-kinetic in patients with chronic obstipation [175]. However, larger studies are needed
to confirm these findings.

II.B.3.d. Role of CCK1R in gastroesophageal reflux disease (GERD): II.B.3.d.1. GERD
and CCK1R.General: Multiple studies have shown in animal models and man that CCK can
contribute to GERD by increasing transient lower esophageal sphincter relaxations indirectly
by causing gastric fundal distension as well as through a direct interaction with esophageal
CCK1Rs result in lower basal lower esophageal sphincter pressure [179–186]. The CCK1R
antagonists loxiglumide and lintript [Fig. (1),Table 3) can inhibit the effect of CCK on the
human lower esophageal sphincter (LOS)[187] and loxiglumide can significantly decrease
transient relaxation of the LOS caused by either CCK infusions or mechanical distension [5].
A number of studies in humans demonstrated that the CCK1R antagonist, loxiglumide could
decrease transient relaxations of the LOS induced by various means (air or mechanical
distension, CCK infusion, fat meal) [5,60,185,188].

II.B.3.d.1. Use of CCK1R antagonists in GERD: In a study of 10 healthy volunteers and 9
GERD patients, Trudgill et al. found that loxiglumide inhibits postprandial LOS relaxation
significantly better than placebo in GERD patients and controls, however, there was only a
modest effect on acid exposure [186]. In a study of 12 patients with morbid obesity, Hirsch et
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al. found that loxeglumide reduced postprandial lower esophageal sphincter relaxation but did
not reduce significantly episodes of transient lower esophageal sphincter relaxations [189].
Further well-designed trials with sufficient patient numbers are needed to define the role of
CCK1R inhibitors in GERD.

II.B.4.CCK1R gene mutations—A number of recent studies provide evidence that reduced
CCK1R expression or expression of a non-functional receptor could predispose a subset of
patients to cholecystolithiasis. In an obese patient with gallstones, Miller et al. described a 262
bp deletion resulting in a non-functional receptor [85]. Miyasaka et al. [190] reported that
CCK1R expression was decreased in gallbladders with stones when compared to gallbladders
without gallstones and described a polymorphism in the CCK1R promoter in gallstone patients.
However, this polymorphism did not influence promoter activity. The authors further show
that CCK1R knockout mice had increased gallstone formation [190]. Another study reported
that CCK1R knockout mice showed increased sludge and gallstone formation at 12 and 24
months of life when compared to wild-type mice [191]. Recently, decreased CCK1R
expression in the gallbladder was reported in patients with gallstones and a non-contracting
gallbladder [134] and in patients with gallstones and diabetes mellitus [135]. Some recent
studies suggest that CCK1R polymorphisms might be related to obesity. Funakoshi et al.
[192] report that a polymorphism in the CCK1R promoter [G to T (n-128) and A to G (n-81)]
is correlated with higher percent body fat and increased serum levels for insulin and leptin
[193]. However, the mechanism of this association remains unclear and polymorphic promoters
did not affect CCK1R promoter activity when transiently expressed in STC-1 endocrine tumor
cells [192]. In another study, the same group reported that this CCK1R promoter polymorphism
is associated with midlife weight gain in men only when combined with a β3-adrenergic
receptor polymorphism [194], although the mechanism underlying this association remains
unclear. Marchal-Victorion et al. reported a V365I mutation in the CCK1R of obese diabetic
patients [195]. This mutated receptor demonstrated a decreased expression and a low efficacy
for activating phospholipase C when transfected into COS-7 cells. However, it remains unclear
whether this mutation contributes to diabetes mellitus or obesity in these patients.

III. GASTRIN AND CCK2R
III.A. General

Gastrins well-established physiological effects are mediating acid secretion and stimulation of
gastric mucosal growth, especially the enterochromaffin-like cells (ECL) [4,18] (Table 4).
Recent studies on CCK2R knockout mice demonstrate that inhibition of gastric emptying is
likely also a physiological effect of gastrin[196](Table 4). In contrast to the CCK1R and CCK,
the role of the CCK2R or gastrin has been defined in a number of gastrointestinal disorders
(Table 4). Gastrin causes gastric mucosal growth/hyperplasia of gastric enterochromaffin-like
cells (ECL cells), which can progress to the formation of carcinoid tumors [197–201];
stimulates gastric mucosal growth with increased parietal cells, and is a mediator of gastric
acid secretion in acid-peptic disorders and in various gastric acid hypersecretory studies
including Zollinger-Ellison syndrome (ZES) [202–208]. Studies suggest gastrin-related
peptides also may have important growth effects on a number of GI malignancies, because
they frequently overexpress or ectopically express CCK2R [209–213]. Furthermore, gastrin
itself or gastrin-related peptides, interacting with either the CCK2R or an unknown receptor,
may have growth effects in some tumors, especially colon cancer [209–217]. The effect of
gastrin, CCK and CCK-R’s in cancer is dealt with in a separate section in this volume, so it
will not be dealt with further, except in the use of radiolabeled CCK/gastrin analogues for
localization of various tissues/tumors over-expressing these receptors.
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III.B. Gastrin or CCK2R alterations in clinical GI disease
CCK2R and /or gastrin is important in human hypergastrinemic states (Table 2,4), in acid-
peptic disorders, in imaging disease processes over-expressing CCK2R’s, and CCK2R
mutations have recently been described which may mediate important abnormal growth effects.
In a number of these conditions the possible utility of CCK2R antagonists has been proposed
and in some cases studied in humans. Furthermore, there is a long established use of gastrin
analogues in provocative testing to examine for medullary thyroid cancer (MTC) or to assess
gastric maximal acid output (MAO) to aid in the diagnosis or management of various disorders
of gastric acid secretion [218–221]. Each of these will be briefly dealt with in the following
sections.

III.B.1. Gastrin analogues for provocative testing—A number of analogues of gastrin,
primarily derivatives of the active C-terminal gastrin tetrapeptide sequence (Tyr-Met-Asp.Phe-
NH2) were used in humans, principally to assess maximal acid output (MAO) [221]. Currently,
only pentagastrin (N-t-butyl oxycarbonyl-β-Ala.Tyr.Met.Asp.Phe-NH2) is generally used for
this purpose or as a provocative agent for medullary thyroid cancer [218–221]. Assessment of
MAO was used much more frequently in the past than at present [220,221]. In the past the
MAO was assessed for possible prediction of acid- peptic recurrences, for the diagnosis of
Zollinger-Ellison syndrome and to determine the presence of pernicious anemia and other
hypochlorhydria/achlorhydric states [220–223]. Today, although underutilized, it remains
important in the differential diagnosis of hypergastrinemic states, especially in the
differentiation between physiologically hypergastrinemia due to hypo-/achlorhydria and
pathological hypergastrinemia due to disorders such as Zollinger-Ellison syndrome (Table 4)
[220,222–224]. Medullary thyroid cancers (MTC) are derived form parafollicular C-cells of
the thyroid and release calcitonin which is used to assess for the possible presence of MTC as
well as the ability of pentagastrin to stimulate calcitonin release from these cells [218,219,
225]. MTC ectopically express CCK2R in 92% of cases whereas the other cells of the thyroid
do not which is the basis of this widely used provocative test [226].

III.B.2. Gastrin and CCK2R in hypergastrinemic states
III.B.2.A. Gastrin and CCK2R in hypergastrinemic states-diseases: Human
hypergastrinemic states result from two principal causes: a physiological response due to acid
hypo-/achlorhydria occurring in such disorders as pernicious anemia/atrophic gastritis (Table
4), and in disorders causing hypergastrinemia with acid hypersecretion [203] (Table 4). Long-
lasting hypergastrinemia in both categories can have clinical significance, because it can result
in gastric ECL cell hyperplasia and the development of gastric carcinoid tumors [197,200,
227–230]. This consequence of hypergastrinemia is receiving increased attention, because a
proportion of gastric carcinoid tumors can be malignant [59,231,232]. Hypergastrinemia with
acid hypersecretion is significant because the acid hypersecretion can result in aggressive
peptic ulcer disease. Hypergastrinemia with acid hypersecretion can be caused by a number of
abnormalities (Table 4). The most frequent cause is H. pylori infections, because in a proportion
of infected patients hypergastrinemia with hyperchlorhydria develops[233,234]. The most
aggressive hypersecretory disease occurs in the Zollinger-Ellison syndrome (ZES), which is
due to the presence of a neuroendocrine tumor ectopically secreting gastrin (i.e., a gastrinoma)
[203,224,235].

Various forms of gastrin peptides as well as gastrin mRNA has been reported in bronchogenic
carcinoma, acoustic neuromas, pheochromocytomas, ovarian carcinomas, colorectal
carcinomas, and other pancreatic endocrine tumor syndromes than those causing the Zollinger-
Ellison syndrome [18,236–238]. Except for ovarian carcinoma and a single case of small cell
lung cancer, these tumors do not cause ZES, because they do not secrete biologically active
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amidated gastrins, which are the only forms that interact with high affinity with the CCK2R
and stimulate potently acid secretion[18,236,238–242].

Gastrinomas producing the ZES until recently were thought to be entirely intra-abdominal in
location (primary location: duodenum >pancreas >lymph nodes >liver >other abdominal sites)
[224,235,243,244]. However, recent studies show gastrinomas can arise in the heart [245,
246] and ZES can also occur from gastrin secretion by a non-small cell lung cancer [239].
Because, patients with ZES are cured surgically in <50% of cases, the majority have life-long
hypergastrinemia [59,244,247–250]. Furthermore, because their acid hypersecretion can now
be controlled in almost every patient medically (i.e. with proton pump inhibitors, histamine
H2 antagonists) [59,251,251–253],today ZES patients rarely die of refractory peptic disease as
they did in the past [254,255], and have extended survival; hence they are an excellent natural
model to study the long-term consequences of hypergastrinemia in man.

Recent studies of ZES patients has provided important insights into the effects of chronic
hypergastrinemia in man, especially in regards to its gastric effects [4,59,249]. These studies
show hypergastrinemia can cause marked gastric acid hypersecretion which can result in severe
refractory peptic ulcer disease, malabsorption and gastro-esophageal reflux disease [223,249,
254,256,257]; can cause increased gastric mucosal thickness and increased parietal cell mass
4- to 6-fold with no increase in peptic cells [258–261]; and result in a mean 2-fold increase in
mucosal argyrophil cells [262–267]. Of the seven types of gastric endocrine cells the increase
in gastric argyrophil cells with hypergastrinemia in man is due to an increase only in the gastric
ECL cells [267], which is similar to results in animal studies [268–271]. No other clinical
effects of chronic hypergastrinemia have been clearly demonstrated from studies of patients
with Zollinger-Ellison syndrome, especially in regard to increased tumor growth or frequency
of tumors in other sites [4,59,272,273]. These points will be discussed in more detail in the
following sections.

A number of animal studies show that chronic hypergastrinemia (antisecretory drug treatment,
gastrin infusions, surgical procedures) can cause gastric ECL proliferation and in some cases
(rat, mouse, mastomys), the development of gastric carcinoids [198,270,271,274–278], which
can occasionally be malignant [279]. It is proposed the gastric carcinoids arise from the ECL
cell through a progression of ECL cell proliferative changes from increasing hyperplasia
(linear, micronodular, adenomatoid) to dysplasia and carcinoid formation [200,270,280,281].
It is thought a similar sequence of events occurs in humans because various human conditions
with chronic hypergastrinemia [especially atrophic gastritis/pernicious anemia and ZES (Table
4)] as well as in patients with chronic acid suppressive treatment, ECL cell proliferative changes
can occur [200,230,263,266,270,280,282–287]. In addition, in patients with atrophic gastritis
[231,284,287,288] or with ZES with multiple endocrine neoplasia-type 1 (MEN1) [231] and
rarely without MEN1 [231,249,289,290], gastric carcinoid tumors develop.

Recently, increasing attention is being given to the effect of chronic hypergastrinemia on gastric
ECL cell proliferation primarily for two reasons [59]. First, increasing numbers of patients
with idiopathic gastro-esophageal reflux disease/peptic ulcer disease (PUD) are treated long-
term with potent acid suppressants such as PPIs and in 80–100% of these patients [283,291]
hypergastrinemia develops. In 20–30% of patients the fasting gastrin levels can reach levels
frequently seen in ZES [249,283,291–293]. Second, in a subset (4–30%) of patients with
hypergastrinemic states who develop gastric carcinoids, the tumors are malignant [231,232,
294].

A recent study [230] in 106 ZES patients provided a number of insights into the long-term
effects of hypergastrinemia on gastric ECL cells in man. Because these patients infrequently
have gastritis or gastric atrophy, as occurs in atrophic gastritis and which can effect ECL cell
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behavior, they are a good model to study the effects of chronic hypergastrinemia alone in man
[230]. Furthermore, at least one-half of the ZES patients have fasting gastrin levels in the range
seen with chronic PPI treatment [230,249,282,291,293]. In this study [230] only 1% of the
patients with active disease had a normal ECL cell pattern and 52% having at least linear
hyperplasia or a more advanced ECL change [230] including 7% with dysplasia and 0% with
carcinoid tumors [230]. Fasting gastrin levels correlated closely with the magnitude of the ECL
change (p <0.0001) and no threshold effect of gastrin on ECL cell hyperplasia was found, as
proposed by others [200,295,296]. In contrast to animal studies, gender [274,297,298], age, or
vagal tone [198,299,300] did not affect the degree of ECL change. These results show the risk
of developing gastric carcinoids with chronic hypergastrinemia alone in man is low; however,
even mild chronic hypergastrinemia in man can cause ECL hyperplasic changes without a
threshold effect.

III.B.2.B. Use of CCK2R antagonists in human hypergastrinemic states: Whereas it
appears logical to consider treating human hypergastrinemic states with CCK2R antagonists
and numerous papers have proposed such a use for them [6,40,301,302] there is very little data
from human studies. Particularly appealing would be the ability to prevent the ECL hyperplasia
that occurs in these states as well as the ECL changes seen after the long-term use of potent
acid suppressant drugs such as the PPI’s and therefore reduces the potential development of
gastric carcinoids with long-term hypergastrinemia [59]. In animal studies a number of CCK2R
antagonists have been shown to cause prompt inhibition of gastrin stimulated ECL-cell
histamine and pancreastatin secretion and synthesis as well as gastrin-stimulated acid secretion
[303]. A few studies have examined the effect of CCK2R antagonists on gastric acid secretion
in humans, which will be discussed in the next section, but almost no data exist on their potential
effective in hypergastrinemic states. Whether this potential clinical indication for a CCK2R
antagonist would actually be clinically helpful in many of these patients is unclear at present.
Whereas it is clear chronic treatment with PPI’s increases ECL hyperplasia in many patients
it is not established in what proportion, if any, its long-term use in man leads to the development
of carcinoids [59,304–306]. Furthermore, except for ZES patients with MEN1 who develop
gastric carcinoids in 13–43%, the proportion of patients with atrophic gastritis (2–8%) or with
idiopathic ZES (<1%) who develop gastric carcinoids over many years is relatively low [4,
59,230,307]. Lastly, other forms of treatment currently exist for hypergastrinemic patients with
carcinoids with the demonstration that parental somatostatin analogues can reverse the
hypergastrinemia and even the carcinoids presence in these patients [308,309]. Proglumide
(DL-4-benzamido-N,N-di-n-propylglutaramic acid) [Fig. (2), (Table 3], a low affinity CCK1R
and CCK2R antagonist (Kd, 3=11 uM) [6,310,311] was given intravenously to 3 patients with
ZES [312]. Proglumide was given as a bolus injection (50 mg/kg) and as a bolus followed by
a continuous intravenous infusion (50 mg/kg/hr). It did not alter serum gastrin levels but
inhibited acid secretion by 13–62%, which was less than the 83–86% inhibition caused by an
infusion of the histamine H2 receptor antagonist cimetidine (2 mg/kg/hr). It was concluded that
proglumide is a weak inhibitor of acid secretion in these patients [312].

III.B.3. Gastrin and CCK2 receptors in peptic ulcer disease
III.B.3.A. Gastrin and CCK2 receptors in peptic ulcer disease/acid secretion: One of the
most important physiological effects of gastrin is its ability to stimulate gastric acid secretion
[18].Even though studies in various species show the parietal cell possesses CCK2R, most
evidence suggests the principal pathway of stimulation of acid secretion by gastrin is by
stimulating release of histamine from ECL cells [18,313,314]. That gastrin is the major
hormonal mediator of the gastric phase of acid secretion [18] is supported by studies utilizing
immuno-neutralization of circulating gastrin, which completely inhibits acid secretion
stimulated by peptone or glucose-induced gastric distension [315]. Gastrin also plays a variable
role in the cephalic and intestinal phases of acid secretion in different species [18]. CCK2R
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antagonists in rats inhibit gastrin-stimulated acid secretion and histamine release from ECL
cells [303,313,316]. In humans spiroglumide, a selective CCK2R antagonist [Fig. (2),Table
3], inhibited acid secretion stimulated by a meal as well as sham feeding stimulated secretion
[317]. These results support an important physiological role for gastrin in regulating acid
secretion in humans, as well as other species. The central role of the CCK2R in mediating the
action of gastrin on acid secretion is also supported by the results of CCK2R and gastrin
knockout studies in mice [19,53,318]. In both cases the mice have an elevated gastric pH and
do not secrete acid in response to gastrin [53,318].

Gastrin also has a trophic effect on parietal cells and chronic hypergastrinemia results in an
increased parietal cell mass [224,319,320]. This is important clinically because the parietal cell
mass correlates with the maximal acid output [221]. In various chronic hypergastrinemic states
in man, such as ZES, both increased parietal cell mass and an increased maximal acid output
are frequently found and can contributed to the marked gastric acid hypersecretion that occurs
[223,224,258–261].

Numerous studies demonstrate that Helicobacter pylori (H. pylori) infections are the principal
cause of duodenal ulcer disease; however, the exact mechanisms by which H. pylori causes
duodenal ulcer are still unclear [321–324]. Furthermore, the exact role of gastrin or
abnormalities in gastric secretion in the development of H. pylori-mediated duodenal ulcer
disease remain unclear [321–324]. A proportion of patients with duodenal ulcers have an
increased parietal cell mass resulting in an increased MAO, an exaggerated acid and gastrin
release with meals or gastrin-releasing peptide administration, an altered sensitivity to gastrin,
impairment in inhibiting responses mediating secretion of acid and gastrin, in addition to an
increased basal acid output in 30% of these patients [322].

Patients with duodenal ulcer disease caused by H. pylori characteristically have an antrum-
dominant, body-sparing, non-atrophic gastritis [323,324], which results in increased acid
secretion and gastrin release. The increased gastrin release is mediated primarily by an
impairment of the acid-mediated inhibitory control of gastrin release, which is regulated by
somatostatin release from antral D cells [323–325]. Lower levels of somatostatin-IR are found
in the antral mucosa of H. pylori infected subjects and the levels increase post-eradication of
the H. pylori [323–325]. Functional studies suggest that alterations in the ability of CCK
functioning through CCK1R may be involved in the impairment of acid-mediated inhibitory
control of gastrin release in H. pylori infected subjects [326,327]. CCK acting via CCK1R on
antral D cells stimulates somatostatin release, which has an inhibitory effect on gastrin secretion
from antral G cells [50,323,328]. The CCK1R antagonist, loxiglumide (Table 3), increased
meal-stimulated acid output in healthy controls, but not in duodenal ulcer patients [327].
Eradicating H. pylori results in correction of the abnormal response to CCK1R blockage in
duodenal ulcer patients [326,327]. The mechanism by which H. pylori infection or
accompanying gastritis alters the acid-inhibitory control of gastrin release and somatostatin
levels is not completely clear [323,324]. Possible mechanisms include secondary to increased
cytokine production, and alterations induced by ammonia production by H. pylori [317,323,
329].

Some studies [324], but not others [321], propose that alterations in gastrin regulation can
explain most of the acid secretory abnormalities seen in patients with H. pylori infection. This
includes the proposal that 1) the increased acid output is, in large part, due to the altered gastrin
release, and this results in increased duodenal acid load which progressively damages the
duodenal mucosa leading to gastric metaplasia and eventually to duodenal ulcers; and 2) the
increased gastrin release results in an increased BAO and the trophic effects of gastrin cause
the increased MAO [324].
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III.B.3.B. Use of CCK2R antagonists in peptic ulcer disease/acid secretion: A number of
CCK2R antagonists have been studied in man for their affect on acid secretion or in peptic
ulcer disease.

Glutaramic acid derivatives: Proglumide, a non selective CCK1R and CCK2R low affinity
antagonist (Table 3) was marketed by Rotta Laboratories (Italy) for treatment for peptic ulcers
prior to the widespread use of histamine H2 antagonists and PPIs and some studies reported
increased healing rates [330–332]. Subsequent structure function studies of glutaramic acid
analogues of proglumide yielded the CCK1R antagonists; lorglumide, loxiglumide,
dexloxiglumide [Table 3,Fig. (2)] which are discussed in the previous section on CCK1R
disease states, as well as the CCK2R preferring antagonists: spiroglumide and itriglumide
[(Table 3), Fig. (2)]. Spiroglumide given intravenously in 3 doses (1,2.5,7.5 mg/kg/hr dose
dependently inhibited gastrin, sham and meal stimulated acid secretion in normal volunteers
[317] and in another study the inhibition of gastrin stimulated secretion was competitive in
nature [333]. This drug was not developed further even though it had excellent oral
bioavailability, because of it relatively low anti-gastrin activity in vitro and its poor selectivity
for CCK2R compared to CCK1R[334]. Further structure-function studies of spiroglumide
yielded itraglumide (CR 2945) which had a 9000 fold higher affinity for CCK2R than CCK1R
(Table 3)[334,335] This compound is reported to now be in Phase 1 trials as an anti-ulcer and
anxiolytic agent [6].

Benzodiazepine derivatives: Structure function studies of asperlicin, the first potent nonpeptide
CCK1R antagonist [336] identified the highly selective CCAR antagonist, L-364,718 [337]
and the CCK2R antagonist, L-365,260 [338](Table 3). L-365,260 was active after oral
administration, had a extended duration of action and inhibited stimulated acid secretion in a
number of animals [339]. In a double-blind study in eight normal human volunteers, L365,260
inhibited gastrin-stimulated acid secretion, however the duration was not prolonged [340].
L-365,260 subsequently underwent a number of human studies assessing its possible anxiolytic
effects, however it generally gave disappointing results, which were attributed to its limited
oral bioavailability [6,341]. Subsequently, additional 1,4 substituted benzodiazepine
derivatives (L-368,730, L369,466, L-736,380, L-740,093, YM022) as well as 1,5 substituted
analogues (GV1500013X, GV191869X, Z-360) were developed [6,40,334,342] with enhanced
potency and bioavailability, however no human studies assessing their effect on acid secretion/
secretory disorders are reported with these compounds. YF476 (Table 3) was identified by
structure-function studies of YM022 and shown to have a 5000 higher affinity for CCK2R than
CCK1R, to have good bioavailability and to inhibit acid secretion in animals [302,343]. A
single dose of YF474 caused dose-dependent inhibition of gastric acid secretion in human
volunteers and the antisecretory effect was longer lasting than seen with ranitidine [344]. In
later trials in humans when YF476 was administered twice per day for 7 or 14 days there was
initially a substantial reduction in acid secretion, however this decreased with repeated doses
and after 7 and 14 days in the two trials the gastric acidity was not different from placebo
[345,346]. The mechanism of this loss of efficacy of YF476 with continued treatment was not
clear. However, this is the first report of tachyphylaxis with prolonged CCK2R antagonist use
in humans.

Peptoids: Using the C-terminal tetrapeptide sequence of CCK/gastrin (Trp-Met-Asp-Phe-
NH2) Parke Davis researchers developed a series of CCK2R antagonists [6,347]. One of the
most potent and selective was CI-988 (PD-134,308) (Table 3) which potently inhibited
pentagastrin-stimulated acid secretion in animal studies [348,349].CI-988 has been examined
in a number of human studies to investigate its ability to prevent panic attacks [350–
353],however there are no studies on its effect on acid secretion in humans.
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Other CCK2R antagonists in human acid secretory studies: A number of other potent CCK2R
antagonists have been developed, but not assessed in human acid secretory disorders, including
ureido-acetamide derivatives (RP 69758, RP 72540, RP 73870, DA-3934, D51-9927),
quinazolinone derivatives LY-202769), benzazepine derivatives (CP 310,713) [6,40,334],
dibenzobicyclo [2.2.2]octane and bicycloheteroaromatic scaffold-based analogues
(compounds 83,86,89,91, JB93182) [6,354,355].

What the role for CCK2R antagonists in the treatment of human peptic disease or gastro-
esophageal reflux disease at present is unclear [334,342,356]. There is a number of classes of
drugs such as histamine H2 receptor antagonists (cimetidine, ranitidine, famotidine) and proton
pump inhibitors (omeprazole, lansoprazole, esomeprazole, rabeprazole, pantoprazole) that are
generally very effective at inhibiting acid secretion and treating these diseases. PPI’s have a
long duration of action so that there is in general not a need for an inhibitor that might even
have longer duration of activity. Furthermore, each of the above compounds has an excellent
safety record with prolonged use in many patients. Therefore an additional class of acid-
suppressant agents such as the CCK2R antagonists is not need in most patients. Furthermore,
if the tachyphylaxis seen with repeated use of YF476 [345,346] is a characteristic acid secretory
response in humans to repeated dosing with a potent CCK2R antagonist, this will greatly limit
the therapeutic potential of these compounds for acid secretory disorders. The main role for
CCK2R antagonists in these common diseases might be to possibly prevent the results of the
hypergastrinemia that occurs in almost all patients with prolonged treatment with potent acid
anti-suppressants such as PPI’s in gastroesophageal reflux patients [59].At present the risk of
this hypergastrinemia short term (<5 years) is very low, although the long term risk is unclear
[59,357,358]. The definition of this risk will be important in assessing the possible need for
prevention of this effect with concomitant treatment with CCK2R antagonists [59].

III.B.4. CCK2R abnormalities in diseases—CCK2R mutations occur in a number of
cancers including those of the pancreas [359], colon [113,114], and stomach [114]. A
misspliced form of the CCK2R in which intron 4 is retained is reported in pancreatic [359] and
colon cancer [113]. The occurrence of the misspliced receptor form was associated with
decreased amounts of the U2 small nuclear ribonucleoprotein particle auxiliary splicing donor
in pancreatic cancer [359] (U2HF35) [359]. The abnormal spliced receptor showed constitutive
activation and had trophic activity in cells expressing it [113], suggesting its presence might
confer t growth-promoting effects. In 43 gastrointestinal tumors with a high microsatellite
instability, frameshift mutations were found in the CCK2R in 19% [114]. Frameshift mutations
in the CCK2R occurred in 23% of gastric cancers, 13% of sporadic colorectal cancers and 20%
of hereditary colorectal carriers, and all tumors also had frameshift mutations in other genes
[114]. The LoVo colorectal cancer cell line responds to gastrin also showed a similar frameshift
mutation in the CCK2R [114]. The above results [114] led the authors to propose that the
human CCK2R gene is a new candidate target gene possibly playing a role in the tumorigenesis
of a fraction of MSI tumors.

In obese, diabetic patients, 2 of 18 families with type-2 diabetes mellitus were found to have
a V125I mutation in the CCK2R [195]. This mutated receptor, when expressed in COS-7 cells,
had an increased affinity for CCK and enhanced potency for activating phospholipase C
[195]. Co-segregation studies showed the mutation was not associated with diabetes or early
age at diagnosis of the disease. At present, the role of this CCK2R mutation in the pathogenesis
of either the obesity or diabetes mellitus in the families remains unclear.

III.B.5. Gastrin, gastrin-related peptides on normal and tumor growth (non-ECL
cell growth)—Numerous studies demonstrate that gastrin related peptides can have important
growth effects on a number of tumors [4,201,209–211,215,217,319,360]. This is dealt with in
another paper in this volume so it will not be dealt with further here.
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I.C. CCK2R imaging for localization of disease
Recent studies especially with radiolabeled somatostatin analogues demonstrate that
overexpression of G protein-coupled receptors by tumors or other disease processes can be
used for localization, clinical assessment and for receptor directed delivery of therapeutic
agents [361–364]. CCK2R receptors are overexpressed in a number of human tumors
particularly medullary thyroid cancer, (92%), but also some gastroenteropancreatic tumors
[226,365]. In addition, over-expression of CCK2R occurs in a significant number of small cell
lung cancers, ovarian cancers and astrocytomas [365]. This has lead a number of groups to
develop specific radiolabeled analogues of gastrin that could be used to assess CCK2R
expression using imaging and provide information on its localization and over-expression in
vivo in different disease processes [366–372]. [111In-DTPA]-[D-Asp26, Nle28, 31]-CCK (26–
33[366] and [111In-DTPA] minigastrin analogues [368,372] are reported to image CCK2R
bearing medullary thyroid cancers in patients as well as to image the gastric mucosa which
contains a high density of CCK2R cells. Whether this approach will be clinically useful in
localizing these tumors or in allowing peptide receptor targeting of cytotoxic agents, as has
been done with somatostatin analogues in a number of tumors over-expressing somatostatin
[361–364], is at present unclear.
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Figure 1.
Structure of CCK1 receptor antagonists used in human studies. CCK1R and CCK2R affinities,
chemical structures and references are listed in Table 3.
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Figure 2.
Structure of CCK2 receptor antagonists used in human studies. CCK1R and CCK2R CCK1R
and CCK2R affinities, chemical structures and references are listed in Table 3.
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Table 1
CCK and CCK1R in the gastrointestinal tract: physiological functions and possible
disorders

Physiological functions

1. Contraction of gallbladder/relaxation sphincter of Oddi

2. Stimulation of pancreatic secretion

3. Inhibit colonic motility

4. Inhibit gastric emptying

5. Decrease lower sphincter pressure /increase in sphincter relaxation

6. Inhibition of acid secretion

Possible disease involvement.

1. CCK-deficient states (celiac sprue, bulimia, diabetes mellitus, autoimmune polyglandular
syndrome-type 1)

2. Pancreatic disorders (acute/chronic pancreatitis)

3. GI motility disorders [gallbladder disease (cholesterol stores, acalculous cholecystitis),
irritable bowel syndrome, functional dyspepsia, chronic constipation]

4. Tumor growth

5. Satiety disorders
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Table 2
Causes of chronic hypergastrinemia

a. Associated with gastric acid hyposecretion-achlorhydria

1. Pernicious anemia-atrophic gastritis

2. Treatment with potent acid antisecretory agents (especially with H+-K+-ATPase
inhibitors)

3. Chronic renal failure (common)

4. H. pylori infection

5. Post-gastric acid-reducing surgery

B. Associated with gastric acid hypersecretion

H. pylori infection

Gastric outlet obstruction

Antral G-cell hyperfunction-hyperplasia

Chronic renal failure (rare)

Retained gastric antrum syndrome

Short-bowel syndrome

Gastrinoma (Zollinger-Ellison syndrome)
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Table 3
CCK1R and CCK2R Antagonist used in human studies1

IC50 (µM)

CCK1R CCK2R
Fold CCK1R

preferring

CCK1R preferring

A. Glutaramic acid analogues

Proglumide2 6,000 11,000 1.8

Lorglumide (CR 1409)3 0.13 300 2,300

Loxiglumide (CR 1505)4 0.33 9.1 27

Dexloxiglumide (CR 2017)5 0.12 22 170

B. 1,4 Benzodiazepines

L-364,718 (MK-329, Devazepide)6 0.08 270 3,400

C. Other

Lintript (SI-27897)7 0.58 489 843

Fold CCK2R
preferring

CCK2R preferring

A. Glutaramic acid analogues

Spiroglumide (CR 2194)8 13,500 1,400 9.6

Itriglumide (CR 2945)9 20,700 2.3 9,000

B. 1.4 Benzodiazepines

L-365,36010 280 2 140

YF47611 502 0.11 5,020

C. Dipeptoids

CI-988 (PD-134,308)12 4,300 1.1 2,501

1
Data are from [6,40,47,334–338,373–375]

2
D,L-4-benzamido-N,N-dipropyl-glutaramic acid

3
[D, L-4-(3,4-dichlorobenzoylamino)-5-(di-N-pentylamino)-5-oxopentanoic oxid]

4
[D, L-4+(3,4 dichlorobenzamido)-N-(3-methoxypropyl)-N-pentylglutaramic acid]

5
[(R)-4-(3,4-dichlorobenzoylamino)-5-[N-(3-methoxylpropyl)-N-pentylamino]-5-oxopentanoic acid]

6
[3S(−)-N(2,3-Dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-yl)-1H-indole-2- carboxamide]

7
1-([2-(4-(2-chlorophenyl)thiazole-2-yl)aminocarbonyl]indolyl) acetic acid

8
(R)-8-Azaspiro[4,5]decaane-8-pentanoic acid

9
(R)-1-naphtalene propionic acid

10
3-R(+)-(N-2,3-Dihydro-1methyl-2-oxo-5-phenyl-1 H-1,4 benzodiazepin-3-yl)-N’-(3- methylphenyl)urea
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11
((R)-1-[2.3 dihydro-2-oxo-1-pivaloylmethyl-5-(2’pyridyl)-1H-1,4-benzodiazepin-3-yl]-3- (methylamino-phenyl)urea

12
4-[[2-[[3-(1H-indol-3-yl)-2-methyl-1-oxo-2[[(tricyclo[3.3[12.17]dec-2-yloxy)- carbonyl]amino]-propyl]amino]-1-phenyethyl]amino]-4-oxo-[R-

(R*,R*)]-butanoate N-methyl- D-glucamine
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Table 4
Gastrin and CCK2R in the gastrointestinal tract: physiological functions and
possible disorders

Physiological functions

1. Stimulation of gastric acid secretion

2. Stimulation of gastric mucosa growth (esp ECL cells)

3. Inhibit of gastric empyting

Possible disease involvement

I. Proven:

Hypergastrinemic states [physiological (atrophic gastritis, pernicious anemia), and
pathological (Zollinger-Ellison syndrome)]

Abnormalities due to gastric mucosal effects of hypergastrinemia (ECL cell
hyperplasia, carcinoids, ↑ parietal cell mass)

Acid-peptic disorders

II. Possible:

a. Tumor growth (colon, gastric, pancreatic, liver)

Curr Top Med Chem. Author manuscript; available in PMC 2009 July 30.


