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ACCELERATED FAILURE TIME MODELS PROVIDE A USEFUL
STATISTICAL FRAMEWORK FOR AGING RESEARCH

William R. Swindell
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Abstract

Survivorship experiments play a central role in aging research and are performed to evaluate whether
interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model
is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that
is based upon the survival curve rather than the hazard function. In this study, AFT models were used
to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic
manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative
effect on survivorship that is independent of age and well-characterized by the AFT model
“deceleration factor”. AFT model deceleration factors also provided a more intuitive measure of
treatment effect than the hazard ratio, and were robust to departures from modeling assumptions.
Age-dependent treatment effects, when present, were investigated using quantile regression
modeling. These results provide an informative and quantitative summary of survivorship data
associated with currently known long-lived mouse models. In addition, from the standpoint of aging
research, these statistical approaches have appealing properties and provide valuable tools for the
analysis of survivorship data.
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1. Introduction

Survivorship patterns are a key indicator of the rate at which aging occurs within a population.
Interventions and genetic manipulations found to significantly extend lifespan therefore gain
prominence as new models for aging research and receive considerable attention. In mice, this
approach has repeatedly been used to identify environmental interventions that increase
lifespan (e.g., Baur et al., 2006; Miller et al., 2007), as well as genes for which knockout or
over-expression leads to improved longevity (e.g., Brown-Borg et al., 1996; Flurkey et al.,
2001; Schriner et al., 2005). Indeed, there has been striking proliferation in the number of
genetic manipulations that increase mouse lifespan, with seven new models having emerged
in 2007 alone (Conover and Bale, 2007; Dell’agnello et al., 2007; Li and Ren, 2007; Ran et
al., 2007; Taguchi et al., 2007; Wu et al., 2007; Yan et al., 2007). It may, in fact, soon be of
little interest to identify interventions that simply increase mouse lifespan “significantly”.
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Rather, more attention may be given to effect size, with greater focus on interventions for which
lifespan increases are both “significant” and “large”. It is challenging, however, to generate
robust and precise effect size estimates, since most laboratory experiments involve small
sample sizes. In addition, a diverse range of metrics are now used by investigators to summarize
treatment effects on mouse lifespan, and these are often reported without a confidence interval.
This has made it difficult to carry out quantitative comparisons among treatments that increase
mouse longevity, and to prioritize models in terms of their significance to aging research.

The percent treatment difference in mean or median lifespan is the most widely used metric
for summarizing treatment effects on lifespan (Liang et al., 2003), and has been most commonly
cited in abstracts of research reports describing treatments that increase longevity (e.g., Miskin
and Masos, 1997; Migllaccio et al., 1999; Bliiher et al., 2003; Holzenberger et al., 2003;
Schriner et al., 2005; Conti et al., 2006; Conover and Bale, 2007; Taguchi et al., 2007; Yan et
al., 2007). The abstract of Yan et al. (2007), for example, reports that mice lacking 5 adenylyl
cyclase (AC5) have “increased median lifespan of ~ 30%”. An advantage of this approach is
that it is based upon survival times and therefore provides an intuitive measure of treatment
effect. At the same time, however, there are limitations, since estimated parameters are not
embedded within a statistical model. It is not possible, for example, to calculate a 95%
confidence interval for the effect of a given treatment, and records from censored individuals
that have been removed from cohorts during an experimental study are ignored. More
importantly, the measure does not incorporate covariate variables, which can impact the
magnitude and significance of estimated treatment effects. Recently, for example, Taguchi et
al. (2007) found that lifespan was significantly influenced by date of birth and the parental IDs
associated with mice, and using a statistical modeling approach, accounted for these covariates
when evaluating the effect of Irs2 mutations on survivorship (see also Conti et al., 2006). There
are, in fact, many factors not fully controlled in most mouse longevity studies (e.qg., litter size,
parental age, mating status, number of animals per cage, duration of weaning, consumption of
calories), and provided that this information is recorded, statistical modeling can be used to
calculate treatment effects adjusted for these factors.

The semi-parametric Cox proportional hazards (PH) model is the most common approach for
statistical modeling of survivorship data, and has been widely applied in epidemiological
studies (Cox, 1972). Interestingly, however, the PH model has only seldom been used to
evaluate treatment effects on mouse survivorship (Conti et al., 2006; Taguchi etal., 2007). One
explanation is that the PH model does not generate an intuitive summary statistic that is
interpreted in terms of survivorship (Keene, 2002). The PH model is based upon the hazard
function and summarizes treatment effects in terms of the ratio of age-specific mortality rates
in two treatments (i.e., the hazard ratio). Hazard ratios have been an important tool in medical
research, but it is clear that biology of aging researchers prefer to visualize experimental results
in terms of survival curves, rather than hazard functions. This has likely prevented the PH
model from being widely used in experimental aging research, and has compelled many
investigators to summarize treatment effects in terms of percent change in median or mean
lifespan.

Parametric accelerated failure time (AFT) models provide an alternative to the PH model for
statistical modeling of survival data (Wei, 1992). Unlike the PH model, the AFT approach
models survival times directly and generates a summary measure that is interpreted in terms
of the survival curve (Hutton and Monaghan, 2002; Orbe et al., 2002; Patel et al., 2006;
Pourhoseinghol et al., 2007). Suppose that S; (t) is the survivorship of mice receiving an
experimental treatment at time t, while Sg (t) is the survivorship of mice belonging to a control
treatment at time t. Within the AFT model framework, the treatment effect is to uniformly shift
the survival curve forward or backward, with the extent of shift being determined by the
parameter c in the following relationship (Collett, 2003).
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S1(eH)=S () (1)

If an experimental treatment increases survival, such that the survival curve Sq (t) of the treated
mice is shifted forward, the estimated value of ¢ will exceed one. For example, if the treatment
increases median lifespan by 30%, the estimated value of ¢ will be approximately 1.30. The
AFT model therefore generates an intuitive summary measure, but provides the advantages of
statistical modeling. In particular, a confidence interval on c can be calculated, and an adjusted
value of ¢ can be estimated that corrects for differences in covariate variables between
treatments. The AFT approach requires that experimental data satisfy certain assumptions. In
particular, the treatment effect on survivorship should be roughly consistent throughout the
lifespan, and survival times are assumed to follow a parametric distribution that must be
specified (e.g., exponential, Weibull, log-normal, log-logistic).

The purpose of this study was to evaluate the suitability of AFT models for analysis of
survivorship data generated in mouse longevity experiments, and to compare AFT model
results with those from other statistical methods. A timely and appropriate context for these
evaluations is provided by the proliferating number of survivorship experiments that have
demonstrated increased mouse longevity due to genetic manipulation (e.g., Dell’agnello et al.,
2007; Taguchi et al., 2007). Previously published datasets are analyzed in uniform fashion
using both AFT and PH models, and assumptions associated with each modeling approach are
evaluated on a case-by-case basis. Using both approaches, effects of genetic manipulations on
longevity are evaluated, and confidence intervals are presented to reflect the uncertainty
associated with treatment effects. Quantile regression is also used to evaluate age-dependent
treatment effects, as well as effects at late stages of the lifespan (Koenker and Geling, 2001;
Wang et al., 2004). These analyses provide a quantitative summary of survivorship data
associated with long-lived mouse models, and demonstrate analytical methods that can
improve the evaluation of survivorship data upon which aging research models are based.

2. Methods

2.1 Survivorship Datasets

Experimental data were obtained from contact authors of research reports describing genetic
manipulations that significantly increase mouse lifespan. In this context, “genetic
manipulation” broadly refers to gene knockout mutations, as well as transgenic models in which
a specific gene has been over-expressed. A comprehensive effort was made to obtain
survivorship data from all such genetic manipulations that have been described, and ultimately,
raw survivorship data was obtained from 16 published research studies (Brown-Borg et al.,
1996; Miskin and Masos, 1997; Migliaccio et al., 1999; Flurkey et al., 2001; Mitsui et al.,
2002; Bliiher et al., 2003; Holzenberger et al., 2003; Kurosu et al., 2005; Liu et al., 2005;
Schriner et al., 2005; Bonkowski et al., 2006; Conti et al., 2006; Conover and Bale, 2007;
Dell’agnello et al., 2007; Ran et al., 2007; Taguchi et al., 2007). In one case, original
survivorship data had been lost (Miskin and Masos, 1997), so approximated survival times
were obtained from a magnified version of the published survival curve. Accuracy was verified
by close agreement between descriptive statistics obtained from approximated survival times
and those provided in the original research report.

Each analysis involved a two-treatment survivorship comparison between a (long-lived)
experimental cohort and a control cohort. These comparisons are listed in Table 1, along with
sample sizes used for experimental and control treatments, and a description of the genetic
manipulation applied to experimental groups. For some comparisons, data was available that
provided the option of evaluating treatment effects separately by gender, or separately for
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different genetic backgrounds. In these cases, the simplest model was assumed initially, with
similar treatment effects in each gender or on multiple backgrounds. However, if there was
statistically significant evidence to suggest that the simplest model was incorrect (e.g.,
significant gender x treatment interaction effect), treatment effects were estimated separately
by gender or genetic background. This approach used the maximal amount of data for
estimating treatment effects when such effects are similar by gender or background, but did
not ignore interactions between treatment effects and other factors when evidence for such
interactions was present.

2.2 Accelerated Failure Time (AFT) Model

The AFT model was applied to each Table 1 comparison to generate an estimate of the
parameter ¢ from Equation (1). The parameter c is here referred to as the “deceleration factor”,
since it provides an indication of the degree to which mortality patterns, and perhaps aging,
are slowed in the experimental treatment versus on the control treatment (Collett, 2003). For
agiven comparison, the value of 100(c — 1) serves as an estimate for the percent median lifespan
increase in the experimental versus the control treatment (Patel et al., 2006). In fact, the value
of 100(c — 1) describes the percent increase in lifespan with respect to any survival time
quantile, and not just the median. This broad interpretation of 100(c — 1) is possible, since the
AFT model assumes that treatments have a multiplicative effect on survivorship that is
consistent throughout the lifespan. Since this is never the case exactly, the value of 100(c — 1)
tends to describe the treatment effect “averaged” throughout the lifespan at early, middle and
late ages. For example, calculating the percent lifespan increase at the 0.20, 0.40, 0.60 and 0.80
lifespan quantiles, and then averaging these four percentage values, would provide an
approximation to the value of 100(c — 1).

The AFT model treats the logarithm of survival time as the response variable and includes an
error term that is assumed to follow a particular distribution. Equation (2) shows the log-linear
representation of the AFT model for the ith individual, where logT; is the log-transformed
survival time, X;...X p are explanatory variables with coefficients Ay ... 8y, ¢j represents residual
or unexplained variation in the log-transformed survival times, while ¢ and o are intercept and
scale parameters, respectively (Collett, 2003).

10gTi:y+B1x1,~+ . +B,,x,,,-+(r€,- (2)

In the absence of covariates, a single variable X; was defined as a 0-1 indicator variable
distinguishing between control and experimental treatments, and the deceleration factor was
calculated from the coefficient estimate associated with X; (i.e., ¢ = exp(f1)). When covariate
data was available, additional terms f3; X...p Xp Were included in the model, where the added
variables represented factors such as gender, date of birth and parental ids.

An initial step in fitting an AFT model is determining which distribution should be specified
for the survival times T; (Equation 2). Under the AFT model parameterization, the distribution
chosen for T; dictates the distribution of the error term ;. For instance, if survival times are
modeled as a Weibull distribution, the error term is assumed to follow an extreme-value
distribution. Likewise, if survival times are modeled using the log-logistic or log-normal
distribution, the ¢; are assumed to be logistic or normal, respectively. For each comparison,
preliminary models were fit in which the T; were modeled using the exponential, Weibull,
Gompertz, log-logistic and log-normal distributions, and the appropriate distribution was
selected as the one which minimized the Akaike’s Information Criterion (AIC) (Akaike,
1974). In almost every case, the Weibull distribution was the most appropriate based upon the
AIC criterion. An exception was the TRX-Tg comparison, for which the log-normal
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distribution emerged as the most appropriate choice for modeling the T;. The exact choice of
distribution proved to be of limited consequence, and results were similar regardless of the
chosen distribution. For example, when deceleration factor estimates were compared between
the best and next-best distributions (AIC criterion), estimates differed by only 3.9% on average
(range: 0.3% — 11.4%). Moreover, between the best and next-best distributions, statistical
significance of deceleration factor estimates differed for only 2 of 22 comparisons (TRX-Tg
and p66(+/-)).

Covariate data was available for several comparisons (e.g., gender, date of birth, etc), and in
such cases, it was necessary to determine which variables should be included in fitted AFT
models. Variable selection was performed using a forward and backward stepwise procedure
that searched all possible models to determine which model minimized the AIC (R package:
MASS, R function: stepAIC). This approach adds covariates to the model when this improves
goodness of fit, but does not generate an overfit model with unnecessary covariates, since the
AIC includes a penalty term for each explanatory variable added to the model. Following
variable selection, final steps were to fit the selected model, estimate the deceleration factor
¢, and perform diagnostic analyses to evaluate the adequacy of model fit. Model fit was
evaluated based upon a graphical comparison between empirical Kaplan-Meier survival curves
and fitted or “predicted” survival curves generated from the final AFT model. Residual analysis
was used to evaluate whether certain observations were poorly characterized by the model, and
case deletion influence measures were analyzed to determine whether some observations
exerted strong influence on parameter estimates.

A central AFT model assumption is that treatments have a multiplicative effect on survival
time that is consistent over time. To evaluate the validity of this assumption, quantile-quantile
(QQ) plots were constructed for each Table 1 comparison, in which survival time quantiles of
experimental treatments were plotted against survival time quantiles of control treatments.
When treatment effects are consistent across the lifespan, points in this plot should approximate
a straight line (e.g., see Patel et al., 2006). The QQ plot is commonly used and provides the
best overall tool for evaluating whether the AFT model is appropriate for a two-sample
treatment comparison. However, since the approach is non-quantitative, the AFT model
assumption was also evaluated by determining whether estimated Weibull shape parameters
differed significantly between experimental and control treatments. This was informative
since, provided that survival times follow a Weibull distribution in each treatment, the AFT
model is valid if the Weibull shape parameter does not differ between control and experimental
treatments. This can be shown based upon the definition of the pth survival time percentile for
the Weibull distribution (see Equation 5.9 from Collett, 2003). If control treatment survival
times are generated from a Weibull distribution with scale and shape parameters Ag and yg, and
experimental treatment survival times are generated from a Weibull distribution with scale and
shape parameters 11 and y1, then the AFT formulation implies that the pth survival time
percentile of experimental and control treatments differ by a factor of c.

Diogf 100 W _f1, (100 )\
2 e\100-p)f T\ E\100-p 3

From Equation (3), it follows that ¢ = (41/4g)Y” when y = yo = 71 Consequently, if both
experimental and control treatments share a common Weibull shape parameter, c is a constant
with value independent of p, as assumed by the AFT model. This suggests that the AFT model
assumption is valid when Weibull shape parameters do not differ significantly between
experimental and control treatments. This approach serves only as a quantitative complement
to diagnostic analysis based upon QQ plots. If sample sizes are small, for example, there may
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be insufficient statistical power to determine whether Weibull shape parameters differ
significantly between control and experimental treatments.

2.3 Cox Proportional Hazard (PH) Model

The Cox PH model was also applied to each Table 1 comparison in order to examine the
relationship between AFT model deceleration factors and PH model hazard ratios. The PH
approach models h; (t), the hazard function for the ith individual at time t, as the product
between a baseline hazard function hg (t) and a function that depends on coefficients f1,
...,Bp and explanatory variables Xy,..., Xp for the ith individual.

hi(t)=exp (B1x1+B2X2i+ . . . +BpXpi) ho(t) )

In the absence of covariates, only one variable X1 was included in the model to distinguish
between control and experimental treatments (a 0-1 indicator variable), and the hazard ratio
(HR) was obtained from the corresponding coefficient estimate (i.e., HR = exp(f1) ). Additional
covariates were added to PH models for certain comparisons based upon results from AFT
model analyses, so that for each Table 1 comparison, PH model covariates were the same as
those included in AFT models.

The PH model assumes that the hazard ratio is constant across the lifespan and several steps
were taken to evaluate this assumption. Diagnostic plots were constructed in which the log-
transformed estimated hazard function for each treatment was plotted against the logarithm of
time (i.e., a log-cumulative hazard plot) (Collett, 2003). In this plot, non-proportional hazards
are indicated when hazard functions for each treatment are non-parallel, or especially when
hazard functions for each treatment intersect. In addition, for each Table 1 comparison, three
statistical tests were used to evaluate the proportional hazards assumption (weighted residuals
test, score test, smooth test). For each test, departures from proportionality are ultimately
detected using residual analysis, but the tests differ with regard to the types of residuals
analyzed and how non-proportionality is defined. The weighted residuals test is based upon
standardized Schoenfeld residuals, and uses a chi-square distributed test statistic to evaluate
whether a relationship exists between residuals and survival times for particular covariate
variables. If the proportional hazards assumption is appropriate for a given covariate, there
should be no significant relationship between standardized Schoenfeld residuals and survival
times (Grambsch and Therneau, 1994) (R package: survival, Function: cox.zph). The score
and smooth test procedures generate p-values based on simulation. In the score test, Gaussian
distributions are used to approximate the score process expected under the null hypothesis of
proportional hazards, where the score process refers to a partial sum process of martingale
residuals. A comparison is then made between the observed and expected score process to
determine whether significant departure from proportionality exists for a given covariate (Lin
etal., 1993) (R package: proptest, Function: scoreproptest). The smooth test is an interesting
new approach that combines ideas from Cox (1972) and Lin et al. (1993) to evaluate non-
proportionality of individual covariates within a model that may include several covariates
(Krauss, 2008) (R package: proptest, Function: smoothproptest). In this procedure, covariates
are parametrically modeled as a combination of smooth polynomial basis functions, including
artificial time-dependent covariates, which are functionally related to a particular covariate of
interest p. If hazards are proportional with respect to covariate p, such time-dependent artificial
covariates should not be a significant model effect (Cox, 1972). The smooth test procedure is
thus a significance test of artificial time-dependent covariates, where significance is evaluated
based upon the score process test of Lin et al. (1993).
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2.4 Maximum Lifespan and Quantile Regression

The “maximum lifespan” has been viewed as the most important indicator of whether an
experimental treatment influences the aging process (Wang et al., 2004; Flurkey et al., 2007).
Following the approach of Wang et al. (2004), “maximum lifespan” is here meant to reference
the largest survival times recorded within an experiment, such as the 90t percentile of all
survival times in both experimental and control treatments. For evaluating maximum lifespan,
Wang et al. (2004) proposed a quantile regression procedure that addresses whether the tth
survival time quantile differs significantly between control and experimental treatments. In
this method, quantile regression is used to estimate the tth overall survival time quantile (in
both experimental and control treatments combined), and each individual is classified
according to whether its survival time is greater or lesser than the estimated the tth survival
time. This generates a 2-by-2 contingency table in which individuals are classified by treatment
(experimental versus control) and survival time (above or below estimated tth survival time),
and contingency table analysis is used to evaluate whether there exists a significant relationship
between these two dichotomous variables (Redden, 2004; Wang et al., 2004). This approach
was applied to each of the comparisons listed in Table 1 with respect to the T = 0.90 survival
time quantile, and statistical significance was based upon the exact unconditional test (score
statistic) described by Wang et al. (2004). Simulation analyses have shown that this approach
provides good statistical power and an acceptable Type | error rate () (o« = 0.016 — 0.0586 for
nominal o of 0.05) (Wang et al. 2004).

Treatment differences in maximum lifespan were also evaluated based upon coefficient
estimates from a quantile regression model (Koenker and Geling, 2001). Coefficient estimates
were obtained using the Barrodale and Roberts’s algorithm (Barrodale and Roberts, 1974),
with confidence intervals generated by rank inversion (Koenker, 1994) (see R package:
quantreg, Function: rq). The basic form of this model is similar to the Equation (2) AFT model,
except the primary response variable is Qjog(t) (7[X), Which represents conditional quantile
functions of the log-transformed survival times (Koenker, 2005).

Qoery (TN)=B1(Dx1+B2(D X2+ ... +B,(1)x) )

The model provides considerable flexibility for evaluating treatment effects at late ages, or at
any point in the lifespan, since the coefficients f1,..., fp are free to vary across quantiles (z€
[0,1]). Itis therefore possible to evaluate treatment effects across a wide range of survival time
quantiles, while adjusting for the possible influence of covariates. A limitation is that rank
inversion confidence intervals for coefficient estimates are asymptotically correct. The method
is therefore most appropriate for comparisons with larger sample sizes (e.g., blrs2(+/-), Hcrt-
UCP2). This approach was applied to Table 1 comparisons with at least n = 20 observations
in both experimental and control treatments. Simulation analyses showed that type I error rates
were slightly inflated for sample sizes in the range of 20 < n <50 (« = 0.05 - 0.09 for nominal
o. 0f 0.05), but were more acceptable for larger experiments with n > 50 (a = 0.05 — 0.065 for
nominal o of 0.05).

3. Results

3.1 Absolute lifespan

Experiments analyzed in this study were performed in multiple laboratories and utilized several
different genetic backgrounds (Table 1). Given these environmental and genetic differences,
survivorship patterns varied considerably among control cohorts, and were even more diverse
among long-lived experimental mice (Figure 1). Among control cohorts, the TRX-Tg control
mice had the lowest median longevity (17.5 months), while the Gpx4(+/-) control mice had
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the highest median longevity (32.1 months). Strikingly, in terms of absolute lifespan, the
control population associated with Gpx4(+/—) mice was longer-lived than several of the “long-
lived” experimental populations listed in Table 1. Since control mice from both TRX-Tg and
Gpx4(+/-) comparisons were of the same genetic background (C57BL/6), this variability is
surprising, and could be due to a wide range of environmental factors (e.g., number of
littermates, diet, precautions against airborne infection), or breeding protocols generating mice
used in survivorship experiments. Variation in control cohort survivorship should be
considered in the context of analyses presented below, which considers the effect of genetic
manipulations on survivorship, irrespective of baseline longevity within the control cohort.
Based on absolute longevity, for example, Pit1(dw/dw) mice were the longest-lived of all the
experimental cohorts (39.8 months), while TRX-Tg transgenic mice were the shortest lived
(23.0 months).

3.2 Accelerated Failure Time (AFT) model

The AFT model was applied to each Table 1 comparison in order to quantify the longevity
increase associated with experimental treatments. Overall, the Prop1(df/df) and Pit1(dw/dw)
mutations had the strongest effects on survivorship (Table 2 and Figure 2). The Prop1(df/df)
mutation had a stronger effect than the Pit1(dw/dw) mutation, but for both mutations, 95%
confidence intervals associated with treatment effects overlapped (Prop1(df/df): ¢ = 1.48, 95%
Cl: 1.31, 1.61) (Pitl(dw/dw): ¢ = 1.39, 95% CI: 1.29, 1.50). A “second tier” of genetic
manipulations with strong lifespan effects included PappA(—/—) mice, Clk1(+/-) mice (129Sv/
j and C57BL/6J background) and male Irs2(+/—) mice (1.20 < ¢ < 1.40). For all other genetic
manipulations, there was considerable overlap in terms of the estimated effect on survivorship,
and the effect on survivorship was generally small (1.03 < é < 1.20) (Figure 2). There were
some cases in which the effects of genetic manipulations on survivorship were either gender
or strain-dependent. For example, the effect of the Irs2(+/—) mutation was significantly greater
in males than in females, and the Clk1(+/—) mutation had dissimilar effects on each of two
genetic backgrounds (Figure 2).

Diagnostic analysis indicated that AFT models adequately described treatment effects on
survival time. This was indicated by QQ plots, which in most cases, revealed a linear
relationship between lifespan quantiles in control and experimental treatments, reflecting
consistent treatment effects across early, middle and late stages of the lifespan (Figure 3 and
Supplemental Data File 1). Moreover, for 18 of 22 comparisons, there was no significant
evidence that genetic manipulations altered the Weibull shape parameter of survival time
distributions, which is consistent with the location-shift treatment effect assumed by the AFT
model (exceptions were blrs2(—/-), blrs2(+/-), flr(=/-) and Klotho). There were six
comparisons for which the AFT model was questionable, based upon QQ plots, residual
analysis and comparisons between observed and fitted survival curves (Irs2(+/-)(M), blrs2
(=/-), blrs2(+/-), lgflr(+/-)(F), Clk(+/-)(S2), TRX-TG). In each case, a similar trend was
present, in which the treatment effect was strong at early ages, but weakened at more advanced
ages (see Supplemental Data File 1). This treatment effect is more complex than that assumed
to exist under the AFT model, and could reflect legitimate age-dependent treatment effects, or
potentially, the absence of important (unmeasured) covariate variables. It should be noted that,
even in these six cases, deceleration factor estimates were still informative, and represented an
average between the strong and weak treatment effects early and late in life (Table 2).

Case-deletion diagnostic analysis was performed to evaluate whether outlying observations

had strong influence on deceleration factor estimates (Supplemental Data File 2). A common
pattern observed in several experiments was the presence of an especially long-lived individual
from the control cohort that decreased the deceleration factor estimate (Prop1(df/df), CIk1(+/
=)(S2), PappA(—/-), aMUPA, blrs2(+/-), Igflr(+/-)(F), Ghr(-/-), Ghrhr(lit/lit), Klotho, Hcrt-
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UCP2, Gpx4(+/-)). There were only two cases, however, in which the influence was strong
enough to have a substantial impact on the estimated deceleration factor. For the Prop1(df/df)
comparison, a deceleration factor of ¢ = 1.48 was obtained using the complete dataset, and this
value increased to ¢ = 1.54 (95% ClI: 1.41, 1.69) if the outlying observation was eliminated.
Likewise, for the Clk1(+/—)(S2) comparison, a deceleration factor of ¢ = 1.32 (95% ClI: 1.22,
1.44) was obtained using the complete dataset, and this value increased to ¢ = 1.41 (95% CI:
1.30, 1.52) if the outlying observation was eliminated. The elimination of outlying observations
is always a delicate issue in statistical modeling, and should generally depend upon whether
there is reason to believe that outliers were driven by experimental artifacts, which is not known
for the experiments under consideration.

There was little evidence to indicate that large treatment effects were commonly driven by
premature mortality within control cohorts, such as that arising from pathogen infection.
Overall, in fact, there was a positive relationship between control cohort longevity and
deceleration factor estimates (Figure 4). Nevertheless, some comparisons did involve relatively
strong or weak longevity within control cohorts, which should be considered when evaluating
treatment effects for certain comparisons (e.g., Prop1(df/df), aMUPA, Ghrhr(lit/lit), Gpx4(+/

-)) (Figure 4).

3.3 Cox Proportional Hazard (PH) model

Hazard ratios varied considerably among comparisons, and in general, there was only a limited
relationship between hazard ratio and deceleration factor estimates (r = 0.22, rg = 0.71) (see
Table 2). Insome cases, exceedingly large hazard ratios were obtained. For example, the hazard
ratio estimated for the Irs2(+/—)(M) comparison suggested that age-specific mortality rates
were 515 times greater in the control cohort as compared to the experimental cohort (95% CI:
25, 10500). While such a large estimate could represent a departure from modeling
assumptions, this observation suggests that, in comparison to the AFT model approach, the PH
model hazard ratios are less stable and more sensitive to deviations from model assumptions.

The proportional hazards assumption was questionable for half of the comparisons, as indicated
by crossing of log-transformed hazard functions of control and experimental treatments (see
Figure 5) (see p66(—/—), aMUPA, blrs2(+/-), MCAT, CIk1(+/-)(S1), Klotho, blrs2(-/-),
TRX-Tg, Hert-UCP2, Surfl(-/-), Igfir(+/=)(F), Ghr(-/-), Gpx4(+/-) in Supplemental Data
File 3). The proportional hazards assumption was most clearly violated for the blrs2(+/-) and
blrs2(—/-) comparisons. This was supported based upon graphical evidence and also statistical
tests of the proportional hazards assumption. For each of three statistical tests, there was
significant evidence to suggest that hazards for blrs2(+/-) and blrs2(—/-) were non-
proportional (P < 0.01) (Table 3). The proportional hazards assumption was also doubtful for
the Surfl(—/-) comparison, based upon graphical evidence and two of three statistical tests
(Table 3). For one of three statistical tests, hazards were non-proportional with respect to the
Propl1(df/df), fir(-/-), TRX-Tg and Gpx4(+/—) comparisons, although in some cases this
inference was not supported based upon inspection of the log-cumulative hazard plot
(Supplemental Data File 3).

3.4 Maximum Lifespan and Quantile Regression

Treatment effects on maximum lifespan were evaluated using the Score statistic and
contingency table approach advocated by Wang et al. (2004), as well as asymptotic rank
inversion confidence intervals on coefficient estimates from a quantile regression model
(Koenker, 1994) (see Methods). Based on the Score statistic, treatment effects on maximum
lifespan were non-significant for seven comparisons (Irs2(+/-)(M), p66(—/-), CIk1(+/-)(S2),
Klotho, TRX-Tg, p66(+/-), Hert-UCP2) (Table 4). In most cases, this non-significance could
reflect weak statistical power resulting from low sample size. Among the seven non-significant

Exp Gerontol. Author manuscript; available in PMC 2010 March 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Swindell

Page 10

results, for example, there were only two cases in which sample sizes for both experimental
and control treatments were moderately large (n > 20 per treatment) (Klotho and Hcrt-UCP2).
In both of these cases, moreover, significant treatment effects were found based upon rank
inversion confidence intervals from a quantile regression model, which accounted for the
potential influence of covariates (Table 4). There was one comparison for which the treatment
effect on maximum lifespan was significant using the Score statistic (Surfl(—/-); P = 0.003),
but not with respect to rank inversion confidence intervals (95% CI: 0.99, 1.03) (Table 4). This
difference could reflect the influence of date of birth on the maximum lifespan treatment
difference, since the latter statistical approach accounted for this covariate.

Quantile regression was also used to provide a detailed profile of how treatment effects varied
across the lifespan (Koenker and Geling, 2001). The approach is illustrated by Figure 6 for one
case in which treatment effects were similar across time (PappA(—/-); Figure 6A) and a second
case for which treatment effects were time-dependent (blrs2(+/-); Figure 6B). In the first case,
the quantile regression approach confirms results from the AFT model analysis, and shows
that the PappA(—/—) mutation increases lifespan by approximately 30%, with a consistent
treatment effect across the lifespan (Figure 6A). In the second case, the deviation from the AFT
model assumption is apparent, and it is clear that treatment effects are strong early in the
lifespan, but weaken later in the lifespan, with an overall average effect that is summarized
well by the estimated AFT model deceleration factor (¢ =1.17, 95% ClI: 1.12, 1.24) (Figure
6B). Similar quantile regression analyses for all Table 1 comparisons are shown in
Supplemental Data File 4.

4. Discussion

The number of genetic manipulations known to extend mouse lifespan can be expected to grow
considerably in the coming decades. In the S. cerevisiae and C. elegans model systems,
genomic screens suggest that lifespan is increased by manipulating the activity of 0.1 — 3% of
genes (Kennedy, 2008). These results raise the possibility that there may be over 500 single-
gene manipulations that significantly extend longevity in the laboratory mouse. Mouse
survivorship data is subject to experimental noise and there is the potential that uncontrolled
covariates will influence treatment comparisons. Indeed, two separate laboratories can carry
out a similar survivorship experiment, and yet arrive at dissimilar conclusions (Taguchi et al.,
2007; Selman et al., 2008a; Selman et al., 2008b). The statistical analysis of experimental
survivorship data will thus be critical for prioritizing among known and yet to be discovered
models of mouse longevity. This study showed that AFT models are well-suited to evaluating
the effects of genetic manipulations on survivorship, since most manipulations have a
multiplicative effect on survivorship, with similar treatment effects at early, middle and late
ages. Analysis of 16 datasets revealed that AFT model deceleration factors are an informative
indicator of treatment effect size, and are robust to departures from modeling assumptions that
are characteristic of mouse survival data. Quantile regression methods naturally complement
the AFT approach, and for large experiments, are useful for detailed evaluation of treatment
effects and survivorship patterns at late ages. These statistical methods, based upon the survival
curve rather than the hazard function, have not been widely used by previous investigators, but
provide valuable tools for evaluating the effects of interventions on survivorship in the
laboratory mouse.

The AFT model deceleration factor has been viewed as an indicator of how a treatment alters
the “biological clock” of subjects, since it quantifies the direct effect of an experimental
treatment on survival time (Nardi and Schemper, 2003). This interpretation gives a strong
advantage to the AFT model within the context of experimental aging research. The Cox PH
model is a more commonly used alternative to the AFT approach, and unlike the AFT model,
is based on the hazard function (Cox, 1972). This contrasts, however, with the tendency of
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most researchers to summarize treatment effects in terms of survival time (e.g., % increase in
mean or median lifespan). Further, among research reports describing new long-lived mouse
models, survival curve estimates are displayed much more frequently than estimated hazard
functions (e.g., Miskin and Masos, 1997; Migllaccio et al., 1999; Bliher et al., 2003;
Holzenberger et al., 2003; Schriner et al., 2005; Conti et al., 2006; Conover and Bale, 2007;
Taguchi etal., 2007; Yan et al., 2007). Another advantage of the AFT model is that it can often
be used when hazards are non-proportional between experimental treatments (Orbe et al.,
2002; Patel et al., 2006). Investigators commonly fail to evaluate proportionality of hazards
when fitting PH models (Altman et al., 1985), and this can lead to loss of statistical power and
inaccurate conclusions regarding treatment effects (Hess, 1994; Abrahamowicz et al., 1996).
In this study, hazards between experimental treatments were clearly non-proportional for at
least three comparisons (blrs2(+/-), blrs2 (—/=), TRX-Tg), and proportionality was
questionable for several others (p66(—/—), tMUPA, MCAT, CIk1(+/—)(S1), Igflr(+/-)(F),
Klotho, Hert-UCP2, Surfl(—/-)). In such cases, the addition of age-dependent covariates can
sometimes be used to adequately fit PH models, but such remedial measures may not be
required using the AFT approach.

AFT model deceleration factors appear to be more robust than PH model hazard ratios. Among
all comparisons examined, AFT model deceleration factors were within a narrow range (1.03
< ¢ < 1.48), and even when treatment effects were time-dependent, sensible deceleration factor
estimates were obtained that corresponded well to the percent treatment difference in median
lifespan. In contrast, PH model hazard ratios varied considerably among comparisons (1.22 <
HR < 515), and in some cases led to counter-intuitive conclusions. For instance, based upon
hazard ratios, the treatment effect of the Irs2(+/-) mutation in females (HR = 24.0) is several
times larger than the effect of the Prop1(df/df) mutation (HR = 7.82). It may be that the fitted
PH model was in some way not optimized for evaluating the effect of the Irs2(+/-) mutation,
and that certain remedial measures would have provided a more informative hazard ratio (e.g.,
altering the functional form of covariates, adding time-dependent covariates, removing
outliers, stratification). However, this example illustrates that, for mouse survivorship
experiments, AFT model deceleration factors often provide a more intuitive effect size measure
than hazard ratio estimates, which may reflect the fact that deceleration factors are less sensitive
to the model deviations apt to occur in data from mouse survivorship studies. Another
consideration is that, for most mouse survivorship experiments, treatment effects will be much
larger than those in standard epidemiological analyses. For large treatment effects, some
analyses have suggested that AFT parameter estimates are, asymptotically, more efficient than
those of the PH model (Oakes, 1977; Cox and Oakes, 1984).

The purpose of this report is not to dismiss the Cox PH model as a potentially useful tool for
the analysis of mouse survivorship data. Analyzing treatment effects based on the hazard
function may sometimes reveal trends not evident from analysis of survival curves (Royston
and Parmar, 2002), and indeed, many aging researchers have based ideas and concepts on the
rate of age-specific mortality (e.g., Pletcher et al., 2000; Swindell and Bouzat, 2006; Lenaerts
etal., 2007). Moreover, if survival times follow a Weibull distribution, the Cox PH model can
be re-parameterized as a Weibull AFT model, and AFT model deceleration factors should
correspond to log-transformed hazard ratios (Collett, 2003). Additionally, with the PH model,
it is not necessary to specify a particular distribution for the baseline hazard function. In
contrast, for the AFT model, the investigator must choose a particular survival time distribution,
although this is usually easily done based upon the Akaike’s Information Criterion (Akaike,
1974), and a recent AFT modeling approach has been proposed that avoids specification of the
survival time distribution (Orbe et al., 2002). Overall, a reasonable course of action for
investigators may be to apply both the PH and AFT models and evaluate carefully which
method is most appropriate for the particular dataset under consideration. If both modeling
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approaches are appropriate, reporting results from two methods would demonstrate that
conclusions are robust and consistent between alternative techniques.

Treatment effects on maximum lifespan are the most important consideration when evaluating
the relevance of mouse longevity models to aging research (Wang et al., 2004; Flurkey et al.,
2007). If AFT modeling is appropriate, the effects of an experimental treatment on survivorship
are similar at early, middle and late stages of the lifespan. In such cases, the estimated
deceleration factor reflects the treatment effect at all ages (including late ages), and is therefore
informative with regard to maximum lifespan. Results from this analysis show that, in fact,
most genetic manipulations do have multiplicative effects on survivorship that do not depend
strongly on time (Supplemental Data Files 1 and 4). This is, however, an assumption that should
be evaluated on a case-by-case basis for individual survivorship experiments. In this analysis,
there were six genetic manipulations for which treatment effects were clearly stronger early in
life compared to late in life (Irs2(+/=)(M), blrs2(=/-), blrs2(+/-), Igflr(+/-)(F), CIk1(+/-)
(S1), TRX-TG). For these comparisons, AFT model deceleration factors provide an “averaged”
estimate of the treatment effect across the lifespan, but overestimate treatment effects at late
ages. For such cases, quantile regression modeling with rank inversion confidence intervals
was more informative than either AFT or PH model results (Koenker, 1994; Koenker and
Geling, 2001). This quantile regression approach is most appropriate for comparisons with
large sample sizes in both experimental and control treatments (n > 50 per treatment), although
for smaller experiments, treatment effects at specific quantiles can be investigated using the
contingency table approach described by Wang et al. (2004).

The present analysis provides an informative and quantitative comparison among a number of
genetic manipulations in terms of their positive influence on mouse survivorship. An
interesting aspect of this side-by-side comparison is the decline in survivorship effects among
mutations that inhibit increasingly downstream elements of the growth hormone/insulin-like
growth factor | (GH/IGF-I) signaling pathway (see: Propl(df/df), Pit1(dw/dw), Ghrhr(lit/lit),
Ghr(—/=), PappA(—/-), lgflr(+/=)(F), Irs2(+/—)(M), Irs2(+/—)(F), blrs2(+/-), blrs2(—/-)). The
Prop1(df/df) and Pitl(dw/dw) mutations, for example, inhibit GH/IGF-I signaling and have
the strongest overall effects on survivorship (¢ >1.39 ), while the Ghrhr(lit/lit), Ghr(-/-),
PappA(—/-), Igflr(+/-) and Irs2 mutations inhibit the same pathway, but each has a weaker
effect on survivorship (1.13< ¢ <1.32 ). One possibility is that prolactin or thyroid stimulating
hormone deficiencies in Prop1(df/df) and Pitl(dw/dw) mice contribute to increased
survivorship, apart from the effects of inhibited GH/IGF-1 signaling. These endocrine
deficiencies are only characteristic of the Prop1(df/df) and Pit1(dw/dw) mice, and both of these
long-lived models stand apart from all others in terms of the magnitude by which survivorship
is increased (Figure 2). Vergara et al. (2004) found that administration of thyroxine did, in fact,
diminish the lifespan of Pit1(dw/dw) dwarf mice relative to controls. Therefore, although the
GH/IGF-I pathway is clearly important for longevity determination in the laboratory mouse,
secondary endocrine effects associated with Prop1(df/df) and Pit1(dw/dw) mice may also
warrant investigation.

There has been remarkable progress since Brown-Borg et al. (1996)’s original finding that
mouse lifespan is significantly extended by a single gene mutation, and important directions
remain for future experimental work. For example, genetic background can have a substantial
impact on survivorship effects (Spencer etal., 2003; Toivonen etal., 2007), but only few studies
have evaluated survivorship of long-lived mutants on multiple genetic backgrounds
(Coschigano et al., 2003; Liu et al., 2005). Additionally, some genetic manipulations appear
to increase survivorship through independent mechanisms (e.g., PappA(—/—) and MCAT), but
itis unknown whether certain combinations of mutations have additive effects on survivorship.
The longevity studies required to address these issues require considerable time and expense,
but the statistical analysis of resulting data requires only a modest time investment. No one
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statistical approach will perform optimally for every dataset and it is usually profitable to
experiment with several methods. The results presented here, however, argue that the AFT
model should be utilized more widely in aging research, along with quantile regression
modeling as a complementary follow-up approach. These methods are based upon the survival
curve, generate appealing and robust summary statistics with confidence intervals, and can be
used to calculate treatment effects adjusted for variables not controlled experimentally. These
approaches therefore provide useful tools that can be help maximize the insight obtained from
experimental studies of mouse survivorship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Survivorship curves from control and experimental treatments. Part (A) shows survivorship
curves associated with control cohorts from the 18 comparisons listed in Table 1. Part (B)
shows survivorship curves associated with (long-lived) experimental cohorts from the 22
comparisons listed in Table 1.
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Figure 2.

AFT model deceleration factor estimates. The deceleration factor represents the parameter ¢
in the relation Sq (ct) = Sq (t), where Sy (t) is the survivorship of the experimental cohort at
time t and Sq (t) represents survivorship of the control cohort at time t (Equation 1). The value
of 100(c — 1) provides an estimate of the percent treatment difference in lifespan (experimental
versus control) for any survival time quantile. For each comparison (see Table 1), filled
symbols indicate the estimated deceleration factor value and bars represent a 95% confidence
interval. Some deceleration factor estimates have been adjusted for covariates such as parental
IDs, date of birth or gender (see Table 2).
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Figure 3.

Quantile-Quantile plots. Survival time quantiles calculated from control cohort survival times
are plotted against corresponding survival time quantiles calculated from experimental cohort
survival times. Part (A) shows a QQ plot for the Pit1(dw/dw) comparison and part (B) shows
aQQ plot for the CIk1(+/-)(S2) comparison. The solid line represents a least-square regression
line. Part (A) indicates that the AFT model appropriately describes the treatment effect for the
Pit1(dw/dw) comparison, since points approximate a straight line. Part (B) suggests that the
AFT model may not be appropriate for the Clk1(+/—)(S2) comparison, since points do not
approximate a straight line. QQ plots for all 22 Table 1 comparisons are shown in Supplemental
Data File 1.
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Figure 4.

Deceleration factors estimates and control cohort lifespan. The plot shows a weak positive
association between deceleration factor estimates and median lifespan estimates from control

cohorts. Each point represents one of the 22 comparisons listed in Table 1.
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Log-cumulative hazard plots. Part (A) shows a log-cumulative hazard plot for the Prop1(df/
df) comparison, while part (B) shows the log-cumulative hazard plot for the Surfl(—/-)
comparison. Inboth (A) and (B), the dotted line represents the logarithm of the estimated hazard
function for the experimental treatment, while the solid line represents the logarithm of the
estimated hazard function for the control treatment. Part (A) shows that, for the Prop1(df/df)
comparison, the difference between log-hazard functions of control and experimental
treatments is roughly consistent over time (as assumed by the PH model). Part (B) shows that,
for the Surfl(—/—) comparison, the difference between log-hazard functions of control and
experimental treatments varies over time, which suggests that the standard PH model may not
be appropriate. Log-cumulative hazard plots for each of the 22 Table 1 comparisons are shown
in Supplemental Data File 3.
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Figure 6.

Quantile regression estimation of treatment effects. Quantile regression was used to estimate
treatment effects across a range of survival time quantiles (z = 0.10,...,0.90). For a given
quantile z (horizontal axis), the vertical axis represents the percent increase in survivorship
associated with an experimental treatment (Koenker and Geling, 2001). In part (A), results for
the PappA(—/-) treatment are shown, and in part (B), results for the blrs2(+/—) treatment are
shown. In each plot, the middle line represents the calculated effect of experimental treatments
at each survival time quantile, while the upper and lower lines outline a 95% confidence region
(Koenker and Geling, 2001).
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Table 1

Genetic manipulations that increase mouse lifespan. Each identifier represents a survivorship comparison between an
experimental and control cohort, where experimental mice have undergone a genetic manipulation that promotes
longevity. In each row, the identifier associated with each experiment is listed, along with sample sizes of experimental
and control cohorts (excluding censored mice), and a description of the genetic manipulation associated with the
experimental group. When there was significant evidence that the effects of a mutation on lifespan were gender-
dependent, analyses were carried out separately by gender, and separate identifiers corresponding to only male mice
(M) or only female mice (F) are listed. Similarly, when there was evidence that the effect of a mutation depended upon
genetic background, separate identifiers for each background are listed (S1, S2, etc).

Identifier n (Exp.) | n (Control) | Description

Propl(df/df)? 32 27 Homozygous mutation of paired like homeodomain factor 1 (Propl). Ames background.

Pitl(dw/dw)b 24 33 Homozygous mutation of POU domain, class 1, transcription factor 1 (Pit1). DW/J Pit1% x C3H/HeJ Pit1%"~
background.

pappA(f/f)C 20 21 E)omozygous deletion of pregnancy-associated plasma protein A (PappA). Mixed background (C57BL6 and 129SV/

c|k1(+/7)(52)d 9 5 Mice heterozygous for deletion of Clk1. 129Sv/J x Balb/c background.

Irs2(+/-)(M)® 14 13 Mice heterozygous for deletion of insulin receptor substrate 2 (Irs2). C57BL/6J Background.

pes(f/f)f 14 14 Homozygous deletion of src homology 2 domain-containing transforming protein C1 (Shcl). 129/Sv background.

|gf1r(+/—)(|:)9 20 17 Mice heterozygous for deletion of insulin-like growth factor I receptor (1gflr). 129/Sv background.

Ghr(—/—)h 38 41 Homozygous deletion of growth hormone receptor (Ghr). Heterogeneous background.

aMUPAi 33 33 Overexpression of urokinase-type plasminogen activator (UPA) in central nervous system, promoting 20% decrease
in food consumption. NIH FVB/N background.

b|r52(+/—)e 64 93 Brain-specfic, Heterozygous deletion of insulin receptor substrate 2 (Irs2). C57BL/6J Background.

Ghrhr(lit/lit)b 33 31 Homozygous mutation of Ghrhr growth hormone releasing hormone receptor (Ghrhr). C57BL/6 background.

MCATI 62 102 Transgenic mice that overexpress human catalase localized to the mitochondria. B6C3F1 background.

(:|k1(+/—)(51)d 18 17 Mice heterozygous for deletion of mCIk1. 129Sv/j and C57BL/6J backgrounds.

f|r(—/—)k 60 190 Fat-specific deletion of insulin receptor (Ir). Mixed background (129Sv, C57BI/6, FVB).

|rsz(+/—)(|:)e 17 17 Mice heterozygous for deletion of insulin receptor substrate 2 (Irs2). C57BL/6J Background.

Klothol 101 54 Transgenic mice that overexpress klotho hormone. C3H background.

blrs2(-1-)® 46 93 Brain-specific, Homozygous deletion of insulin receptor substrate 2 (Irs2). C57BL/6J Background.

TRX-Tgm 39 14 Transgenic mice overexpressing human thioredoxin (TRX). C57BL/6 background.

p66(+/—)f 8 14 Mice heterozygous for deletion of src homology 2 domain-containing transforming protein C1 (Shcl). 129/Sv
background.

Hert-ucp2n 85 67 Transgenic mice that overexpress uncoupling protein 2 in hypocretin neurons. C57/BL6 background.

surf1(-/-)° 41 48 Homozygous deletion of surfeit gene 1 (Surfl). Mixed BDF1 background.

pr4(+/7)P 50 50 Mice heterozygous for deletion of glutathione peroxidase 4 (Gpx4). C57BL/6 background.

aBrown—Borg et al. (1996)
bFlurkey et al. (2001)
cConover and Bale (2007)
d .

Liu et al. (2005)
eTaguchi etal. (2007)

fMigliaccio etal. (1999)
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gHolzenberger et al. (2003)
hBonkowski et al. (2006)
iMiskin and Masos (1997)
chhriner et al. (2005)
kBIUher et al. (2003)
IKurosu etal. (2005)
M\titsui et al. (2002)
"Conti et al. (2006)
0DeII’AgneIIo etal. (2007)

PRan et al. (2007)
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Table 2

Deceleration factor and hazard ratio estimates. Genetic manipulations are listed in each row and have been ranked
according to their estimated effect on overall survivorship. Rankings are based upon the estimated AFT model
deceleration factor é. This value corresponds to the parameter ¢ in S; (ct) = Sg (t), where Sy (t) is the survivorship of
(long-lived) mice belonging to experimental treatments at time t, and Sy (t) is the survivorship of mice belonging to
corresponding control treatments at time t (Collett, 2003). Hazard ratios were calculated using the Cox proportional
hazards (PH) model and are defined as the ratio of age-specific mortality in control treatments to age-specific mortality
in (long-lived) experimental treatments. Both deceleration factors and hazard ratios were estimated using maximum
likelihood. A description of each genetic manipulation, including genetic background of mice and sample sizes, is
provided in Table 1.

Comparison | Deceleration Factor (95% CI) | Hazard Ratio (95% CI)

Prop1(df/df) 1.48 (1.34, 1.63 7.82(3.98, 15.4)
Pitl(dw/dw) 1.39(1.29, 1.50 21.2(7.0,64.4)
PappA(-/-) 8.77 (3.34, 23.0)

CIKL(+-)(S2)

1.32(1.22,1.44

11.9 (2.2, 64.9)

Irs2(+/-)(M)@

)
)
1.32(1.22,1.43)
)
)

1.29 (1.22, 1.35

515 (25, 10500)

p66(—/-) 1.25 (1.17, 1.34) 5.90 (1.98, 17.6)
IgfLr(+/-)(F) 1.24 (1.05, 1.46) 2.86 (1.36, 6.03)
Ghr(-1-) 1.23 (1.15, 1.32) 4,69 (2.75, 7.98)
aMUPA 1.18 (1.10, 1.28) 2.92 (1.70, 5.01)
birs2(+/-)P 117 (1.12, 1.24) 3.55 (2.49, 5.05)
Ghrhr(lit/lit) 1.17 (1.10, 1.24 3.28 (1.90, 5.68)
MCAT 1.16 (1.10, 1.22 2.42 (1.72,3.42)

CIKL(+/-)(S1)

491 (2.06,11.7)

fir(—1-)

1.14 (1.07,1.21

2.00 (1.47,2.72)

Irs2(+/-)(F)°

)
)
1.16 (1.09, 1.24)
)
)

1.14 (1.10, 1.17

24.0 (5.99, 95.8)

Klothod 1.13 (1.05, 1.22) 2.15 (1.45, 3.21)
blrs2(—/-) 1.13 (1.06, 1.20) 5.09 (2.76, 9.39)
TRX-Tgf 1.12 (0.98, 1.28) 1.39 (0.75, 2.60)
PB6(+/-) 1.11 (1.03, 1.19) 2.41(0.84, 6.93)
Hert-UCp29 1.08 (1.01, 1.16) 1.57 (1.07, 2.32)
surfL ()" 1.07 (1.02, 1.13) 3.54 (1.77,7.05)
Gpxa(+-) 1.03 (0.98, 1.08) 1.22 (0.82, 1.82)

a .
Maternal ID was modeled as a covariate.

bDate of birth was modeled as a covariate.

Cc .
Paternal 1D was modeled as a covariate.

d .
Gender was modeled as a covariate.

e . .
Gender, paternal 1D and date of birth were modeled as covariates.

f .
Gender was modeled as a covariate.

gGender and paternal ID were modeled as covariates.

hDate of birth was modeled as a covariate.
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Table 3
Statistical tests of proportional hazards. The table lists p-values from each of three tests, where significant p-values
indicate non-proportional hazards (contrary to the PH model assumption). For comparisons in which covariates besides
genotype were included in models, results correspond to global tests and indicate non-proportionality for at least one
of the multiple covariates. Log-cumulative hazard plots are shown in Supplemental Data File 3 as a graphical tool for
assessing proportionality of hazards between experimental and control treatments.

Comparison | Weighted Residuals | Score Test | Smooth Test
Prop1(df/df) 0.350 0.043 0.220
Pit1(dw/dw) 0.620 0.740 0.610
PappA(—/-) 0.750 0.400 0.590
CIKL(+/-)(S2) 0.840 0.240 0.430
Irs2(+/-)(M) 0.960 0.570 0.570
p66(~/-) 0.210 0.094 0.093
IgfLr(+/-)(F) 0.980 0.690 0.730
Ghr(-/-) 0.470 0.580 0.560
aMUPA 0.130 0.250 0.130
blrs2(+/-) 0.000 0.000 0.000
Ghrhr(lit/lit) 0.280 0.075 0.280
MCAT 0.550 0.220 0.830
Clk1(+/-)(S1) 0.590 0.750 0.640
flr(-/-) 0.055 0.014 0.140
Irs2(+/-)(F) 0.910 0.340 0.340
Klotho 0.450 0.220 0.770
blrs2(-/-) 0.008 0.010 0.006
TRX-Tg 0.330 0.330 0.006
p66(+/-) 0.170 0.280 0.380
Hcrt-UCP2 0.200 0.230 0.230
surf1(—/-) 0.008 0.440 0.000
Gpx4(+/-) 0.081 0.008 0.150
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Table 4

Maximum lifespan. The Score Test p-values evaluate whether treatments differ significantly in the number of mice
that survive to the 90th percentile survival time (calculated from both treatments combined) (see Wang et al., 2004).
The treatment effect column lists the ratio between the 90th percentile survival time in experimental treatment and the
90th percentile survival time in the control treatment. Asymptotic 95% confidence intervals on treatment effect
estimates were calculated using rank inversion (Koenker, 1994), with adjustment for one or several covariate variables
in some cases (e.g., gender, date of birth, etc.) (see Table 2). Confidence intervals are only calculated for comparisons
in which sample sizes are moderately large in both experimental and control treatments (n > 20) (see Table 1).

Comparison | P-Value (Score Test) | Treatment Effect (95% CI)
Prop1(df/df) 0.042 1.37 (1.21, 1.60)
Pit1(dw/dw) 0.010 1.38 (1.29, 1.50)
PappA(—/-) 0.040 1.31 (1.23, 1.39)
CIKL(+/-)(S2) 0.406 1.30 (— —)
Irs2(+/-)(M) 0.105 130 (— —)
p66(~/-) 0.211 1.26 (—, —)
Igf1r(+/-)(F) 0.008 115 (—,—)
Ghr(-/-) 0.010 1.21 (1.15, 1.27)
aMUPA 0.012 1.16 (1.09, 1.23)
blrs2(+/-) <0.001 1.10 (1.05, 1.29)
Ghrhr(lit/lit) 0.038 1.14 (1.04, 1.24)
MCAT <0.001 1.12 (1.01, 1.20)
Clk1(+/-)(S1) 0.049 112 (——)
flr(~/-) 0.011 1.08 (1.01, 1.17)
Irs2(+/-)(F) 0.049 115 (—,—)
Klotho 0.051 1.13 (1.06, 1.20)
blrs2(-/-) 0.035 1.13 (1.06, 1.20)
TRX-Tg 0.750 1.00 (—, —)
p66(+/-) 0.056 114 (— —)
Hcrt-UCP2 0.376 1.07 (1.01, 1.11)
surf1(—/-) 0.003 1.00 (0.99, 1.05)
Gpx4(+/-) 0.671 0.99 (0.97, 1.03)
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