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Purpose: To correlate the morphogenic and molecular traits that affect fungal virulence in human corneas.
Methods: C. albicans wild-type strains SC5314 and VE175 were compared using in vitro growth kinetics, filamentation
assays, and microarray analysis. Corneal virulence was assessed ex vivo by inoculating C. albicans onto superficially
scarified human corneas that were processed after 1 and 3 days to measure hyphal penetration. For comparison, DSY459, a
C. albicans homozygous deletion mutant deficient in secreted aspartyl proteinases (SAP) 4, 5, and 6, was evaluated.
Results: C. albicans strain SC5314 was highly filamentous in vitro and more invasive in human corneal explants while
VE175 demonstrated limited filamentation and less corneal invasion. Among 6,655 C. albicans genes, 9.0% significantly
(p<.05) differed by 2 fold or more between SC5314 and VE175. Genes involved in fungal filamentation that were
upregulated in strain SC5314 compared to VE175 included SAP5, SAP6, and other hypha-associated genes. Compared to
wild-type strains, DSY459 had intermediate filamentation and stromal penetration.
Conclusions: Fungal genes involved in filamentation likely contribute to virulence differences between wild-type strains
of C. albicans. The corneal pathogenicity of C. albicans involves the morphogenic transformation of yeasts into hyphae.

Candida albicans is a commensal fungus of the ocular
surface [1], an occasional contaminant of ophthalmic devices
[2-4], and an opportunistic pathogen of the compromised
cornea [5]. In recent clinical series, Candida species were
isolated from 1% to 5% of eyes with microbial keratitis
[6-11].

Improved prevention and therapy of C. albicans
infections require better understanding of fungal metabolism
and growth. O’Day and associates [12] first suggested using
C. albicans strains having divergent ocular pathogenicity to
help identify the mechanisms of fungal virulence for the eye.
SC5314, a pathogenic C. albicans strain widely used for
experimental and genomic studies, rapidly penetrated into the
cornea after topical inoculation in immunocompetent rabbits
[12,13]. In contrast, another human isolate of C. albicans,
strain VE175, was significantly less virulent and formed
pseudohyphae that were largely limited to the superficial
stroma [12]. O’Day [12] hypothesized that “fungal genes that
control morphogenesis may be involved”.

Using these same fungal strains in an immunocompetent
mouse model of experimental fungal keratitis, Mitchell and
associates [14] confirmed that strain SC5314 produced
significantly worse keratomycosis than VE175 [15].
Additional studies with fungal mutants provided evidence that
fungal filamentation is an important virulence factor for
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keratomycosis [15-17]. Fungal genes associated with hyphal
morphogenesis may account for differences in corneal disease
severity produced by disparate strains of C. albicans [18].

Our present study further evaluated these two wild-type
strains of C. albicans. We examined their phenotypic growth
characteristics under various environmental conditions and
used comparative genomics to explore genetic differences
between the two strains. We then developed an ex vivo model
of human corneal infection to test the ability of each fungal
strain to invade explanted tissue. Finally, we used a C.
albicans mutant to demonstrate that fungal genes associated
with hyphal morphogenesis are important to the pathogenesis
of fungal corneal infection.

METHODS
Fungal strains: C. albicans strains included SC5314, a human
clinical isolate recovered from a patient with generalized
candidiasis [19,20], and VE175, a human corneal isolate
obtained from a patient with candidal keratitis [21]. After
reviewing the genomic differences between SC5314 and
VE175, a mutant strain DSY459 deficient in secreted aspartyl
proteinase  (SAP) SAP4,  SAP5,  and SAP6  genes  ( Δsap4-6 )
was obtained  from  Sanglard  and  associates  who derived this
triple-null  homozygote  from SC5314 using a  Ura-blaster
cassette [22].
In vitro growth kinetics: Yeast strains were grown in 1%
yeast-extract, 2% peptone, and 2% dextrose (YPD) liquid
medium at 30 °C, harvested during exponential growth, and
suspended in sterile phosphate-buffered saline (PBS). Optical
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density (OD) was measured with an Ultraspec 2000
spectrophotometer (Pharmacia Biotech, Princeton, NJ) at a
wavelength of 600 nm (OD600). A conversion factor of one
OD600 unit equivalent to 3×107 colony-forming units (CFU)/
ml was used to determine fungal concentration [23]. Triplicate
samples of 3×105 CFU for each strain were inoculated into 25
ml M199 liquid media (Invitrogen, Grand Island, NY) at pH
6.0, pH 7.3, and pH 8.0 and incubated at 27 °C with continuous
shaking. C. albicans concentrations were determined
spectrophotometrically at 1.5, 3, 4.5, 6, 9, 12, 15, 21, 27, 35,
and 48 h post inoculation (pi).
Filamentation assay: C. albicans strains were grown
overnight on Sabouraud dextrose agar (Difco, Detroit, MI) for
3 days at 25 ºC. Yeasts were harvested, diluted in sterile PBS
to yield 1 CFU/μl, inoculated onto M199 agar plates
containing Earle’s salts and glutamine but lacking sodium
bicarbonate  that  were  buffered  with 2 M Tris-HCl  to yield
media pH values of 7.3 and 8.0, and incubated at 37 ºC.
Colonies were observed daily by inverted microscopy for 10
days.
Genomic microarray: C. albicans strains SC5314 and VE175
were separately inoculated into 10 ml of YPD media and
incubated in a room-temperature (22 ºC) shaker until the late
exponential growth phase. Ten replicate 1 ml fungal

suspensions in 50 ml M199 media at pH 8.0 were held at 37
°C in a 180 rpm incubator, and fungi were harvested after 4 h
[24]. Hot acidic phenol extraction was performed to prepare
yeast ribonucleic acid (RNA) [25]. The RNA concentration
was measured with a ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE), followed by gel
electrophoresis to confirm purity and integrity.

Twenty µg of total RNA were labeled by an aminoallyl-
derivative protocol using the Micromax RNA labeling kit
(PerkinElmer, Waltham, MA). Samples were mixed and
hybridized to a glass-slide microarray in the C. albicans Array
Ready Oligo Set (Operon Biotechnology, Huntsville, AL)
composed of 8,117 70-mer oligonucleotides representing
6,655 genes from Assembly 19 of the C. albicans genome
[26], plus specific and non-specific controls, resulting in
slightly more than the predicted 6,354 protein-coding genes
due to the inclusion of some tRNA genes and spurious genes
predicted in earlier assemblies [27]. The array was printed in
duplicate on Codelink II (GE Healthcare, Princeton, NJ) slides
(Microarrays, Nashville, TN). Labeled samples were mixed
and hybridized to the arrays. Two technical replicates and two
biological replicates were processed for each sample for a total
of eight spots for each gene. Arrays were scanned using an
Axon 4000B scanner (Molecular Devices, Sunnywale, CA),

TABLE 1. FUNCTIONAL CATEGORIES OF GENES EXPRESSED IN C. ALBICANS STRAIN SC5314 COMPARED WITH VE175 AT PH 8.0.

Functional categories Upregulated genes Downregulated genes
Filamentation/virulence SAP5, SAP6, DPP3, HYR1, SAP8, SKN1,

SSA2, PHR1, CEK2, IHD1, CSA1, FAV2,
MAL2, KAP114, RAS2, NCE103, SAM2,

FGR16, TPM2, HGT12, RSR1

FGR13, RHD1, PHR2, NRG1, FGR14, KRE6,
CAT1, RIM8, SFL1, TPS1, RBF1, SAP10,
RCF3, DEF1, CLB4, CHA1, AHP1, BNR1,

TUP1, BCY1, FGR17, RNR1, EFG1
GPI-anchored protein PGA26, PGA31, PGA7, PGA34, ALS1,

ECM331, PGA45
ALS4, RBR1, YWP1, ALS2, PGA1, PGA57,

PGA18, PGA38, PGA37, PGA5
Other cell surface HYR2, EXG2 FMP45, MNN1, GCA1, PIR1, ENG1, RBE1,

ALS7, ECM17
Iron metabolism FRP1, SIT1, IRO1, HMX1, FET35, ATX1,

HAP3, FRE9
FET3, FRE7

Other metabolism PHO89, ERP1, FRP2, PDC12, SFC1, CA1,
HAL21, IFD6, CTN1, FAA21, AOX2, ACB1

LEU4, GAD1, LIP4, ACO2, CAR2, PUT1,
HBR2, ALD6, AAT21, FDH1, THR4, MET3,
ARO3, GLT1, BAT21, CAN1, GIT1, IFG3,

PHO81, HOM6, DLD1, OYE2, DPP1, OPT9,
APE3

Transcription & gene regulation ARG1, INO2 CRZ2, CAT8, LAP3, GST3, RME1, UPC2,
ADAEC, HHO1

Membrane transport HGT20, ENA2, FTH1, AAP1, GIT2 HGT17, PHO87, AQY1, IFC3, HXT5, HGT19,
CRP1, IRT2, PHO84, CDR4, XUT1, GIT4

Others XOG1, PRN3, CAG1, TOM22, SOD5, GRP2,
MEC3, STE2, SOL1, ARG3, RAD16, IFM1

SSY5, SMC3, ASM3, ECM42, TIF11, ILV3,
TPS3, LYS22, CWH8, SYS1, CSH1, SMC1,
CCP1, ZRT2, HSP30, CYS3, MXR1, GLN4,
SSP96, MSH6, SWE1, POL30, SFI1, POL1,
EST3, ASR1, CDC34, AMO2

Genes in each categorical group were expressed by 2 fold or greater (p <0.05) and are ordered from greatest to least expression
ratio. Genes assignable to more than one category are listed only once. In the table, GPI indicates glycosylphosphatidylinositol.
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and data were analyzed using GenePix Pro 6.0 software
(Molecular Devices, Downingtown, PA) as previously
described [28]. Inconsistent or saturated spots were filtered,
and spot values were calculated by subtracting the background
intensity from the median pixel intensity of each spot. Values
were then normalized to equalize median intensities between
the two channels across the entire array. From the eight
replicate spots, geometric means of the ratios and p-values
were estimated. Genes having an expression ratio of at least
2 fold difference and p <0.05 between the two strains were
grouped into functional categories using information curated
by the Candida Genome Database [29].
Reverse transcription (RT) of RNA and RT-polymerase chain
reaction (RT-PCR): Total RNA was separately isolated from
C. albicans strains SC5314 and VE175 following cultivation
for 4 h at pH 7.3 and pH 8.0, respectively. First-strand cDNA
was synthesized from 1 μg total RNA with Ready-To-Go
You-Prime First-Strand Beads (GE Healthcare) and random
hexamers (Applied Biosystems, Foster City, CA). RT-PCR
was performed using PuReTaq Ready-To-Go PCR beads (GE
Healthcare). Primers for SAP4 (P1: GTC AAC GCT GGT
GTC CTC TT; P2: GCA GGA ACG GAA ATC TTG AG,
197 bp), SAP5 (P2: CCG AAT TCC TTT TCC AAA CA; P2:
TGG AGC CAT GGA GAT TTT CT, 158 bp), and SAP6 (P1:
GTC AAC GCT GGT GTC CTC TT; P2: TTC ACG AAC
ACG AAT TTC ACA; 270 bp) were synthesized (Sigma, St.
Louis, MO), with ACT1 (TGC TGA ACG TAT GCA AAA
GG; P2: TGA ACA ATG GAT GGA CCA GA; 186 bp) as
the housekeeping gene. Semiquantitative RT-PCR was
established by terminating reactions at intervals of 18, 20, 22,
24, 26, 28, 30, 32, 34, 36, and 40 cycles for each primer pair

to ensure that PCR products were within the linear portion of
the amplification curve. All products were separated by 2%
agarose gel electrophoresis and visualized with 0.5 mg/ml
ethidium bromide. Fidelity of RT-PCR products was
confirmed by comparing cDNA bands and by sequencing
PCR products.
Ex vivo human cornea model: Thirty-six human corneas were
obtained from the Lions Eye Bank of Texas, Houston, TX
after informed consent for research use was obtained from the
decedent donors’ next-of-kin. Donor corneas were maintained
at 4 ºC in Optisol-GS (Bausch & Lomb, Irvine, CA) before
being transferred to modified supplemented hormonal
epithelial medium (SHEM), consisting of equal volumes of
Dulbecco’s modified Eagle’s medium and Ham’s F12
medium that contained 5 ng/ml epidermal growth factor, 5
μg/ml insulin, 5 μg/ml transferrin, 5 μg/ml sodium selenite,
0.5 μg/ml hydrocortisone, 30 ng/ml cholera toxin A, 0.5%
dimethylsulfoxide, 50 μg/ml gentamicin, and 5% fetal bovine
serum, and was buffered with 2 M Tris-HCL to pH 7.3 or 8.0.
Corneas were superficially scarified using a 22 gauge needle
to produce a 15x15 cross-hatch pattern, similar to a protocol
previously described for an experimental fungal keratitis
model [14]. A Horizon artificial anterior chamber (Refractive
Technologies, Cleveland, OH) fixated the corneal button
during superficial scarification, followed by topical
application of 10 μl of 1×105 CFU C. albicans per cornea.
Inoculated corneas were put epithelial side up into a 6 well
culture dish (Corning, Corning, NY) so that the sclera was
immersed in modified SHEM and the central cornea vaulted
upward. Tissues were incubated at 34 °C in 5% CO2 with 95%
humidity, and culture medium was changed daily. After 24

Figure 1. Differential gene regulation
comparing strain SC5314 to strain
VE175 of 44 C. albicans genes involved
in fungal filamentation.
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and 72 h, corneas were embedded in OCT compound (Sakura
Finetec, Torrance, CA) and frozen at -80 °C for subsequent
histopathologic processing.
Hyphal penetration: Frozen sections (10 µm) were cut, and
three sections were examined for each cornea at 10 μm
intervals for 100 µm from the corneal mid-point. Sections
were stained with periodic acid-Schiff (PAS) reagent (Sigma-
Aldrich, St. Louis, MO). Images were captured of an entire
limbus-to-limbus section from each cornea with a DS-Fil
digital camera (Nikon, Tokyo, Japan) attached to a Nikon Y-
FL microscope. We measured the overall hyphal depth with
10X magnification at 5 different points at equidistant
intervals. The entire corneal thickness was then estimated at
5X magnification at the same positions for each section using
the NIS-Element 3.0 image analysis system (Nikon). The
overall average depth of penetration was calculated as the
percentage of corneal thickness. The maximal percentage of
hyphal penetration was also estimated from measurements
taken at regions of each corneal section demonstrating the
greatest depth of corneal penetration. To assure that points of
maximum hyphal penetration were selected, results from the
three largest hyphal-depth percentages were averaged from 5

measurements taken for each histological section and
calculated as percentage of corneal thickness. Results were
compared by the Student t-test.

RESULTS
In vitro comparison of C. albicans strains: Strains SC5314
and VE175 demonstrated similar lag, log-growth, and plateau
phases. The doubling time of both C. albicans strains use the
same at pH 6.0 (1.94±0.04 h for SC5314 and 1.92±0.04 h for
VE175) and similar at pH 7.3 (2.21±0.04 h for SC5314 and
1.94±0.01 h for VE175) but showed that SC5314 grew slightly
faster (2.27±0.03 h) than VE175 (2.72±0.05 h) at alkaline pH
(p=0.02). Mock-inoculated control cultures remained
negative for growth throughout 24 h of observation. On M199
agar, numerous filaments surrounded SC5314 colonies 24 h
after inoculation and continued growing during the following
10 days. Few filaments emerged from VE175 colonies, and
while dissimilarity was present at physiologic pH, the
difference with in vitro filamentation was more apparent at
pH 8.0.
Genomic comparison of C. albicans strains: Among 6,655
genes detected by microarray, 601 (9.03%) genes in SC5314

Figure 2. RT-PCR analysis of SAP4,
SAP5, and SAP6 expression in C.
albicans strains SC5314 and VE175
cultured on pH 7.3 and pH 8.0 media.
SAP5 and SAP6 bands were more
apparent from SC5314 than VE175.
ACT1 gene expression appeared similar
between both strains at each pH. SAP4
was not detected.
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were significantly (p<0.05) and differently (≥2 fold change)
regulated compared to VE175. Of these, 69 named
upregulated genes and 116 named downregulated genes were
categorized into functional groups (Table 1), including 44
genes involved in hyphal filamentation and virulence (Figure
1). mRNA expression of SAP4, SAP5, and SAP6 was further
examined by RT-PCR (Figure 2). No difference of ACT1
expression occurred between SC5314 and VE175 at either pH
7.3 or pH 8.0. mRNA expression of SAP4 was not detected in
either strain at either pH. SAP5 and SAP6 mRNA were

expressed higher in SC5314 than VE175 at both pH
conditions.

Corneal virulence: One day after inoculation of strains
SC5314 and VE175 onto human corneas incubated at pH 7.3,
fungal hyphae were present in the anterior corneal stroma. By
the third day SC5314 invaded toward the central stroma
(Figure 3A). VE175, however, failed to continue hyphal
invasion between 1 and 3 days pi and remained limited to the
anterior cornea. At pH 8.0, hyphal penetration into corneal
tissue was consistently greater for SC5314 than VE175. The
overall and maximal penetration percentage are shown in

Figure 3. Histopathology of human
keratomycosis induced by C. albicans
strains SC5314 and VE175. A: At pH
7.3 SC5314 established superficial
infection by day 1 post inoculation, and
hyphae proliferated and invaded
centrally by day 3. Strain VE175
produced few pesudohyphae in the
superficial cornea that did not penetrate
through anterior lamellae by day 3. B:
At pH 8.0 strain SC5314 formed hyphae
that extended around superficial
scarification site on day 1 post
inoculation and continued to invade by
day 3. Strain VE175 produced few
filamentous forms on day 1 or day 3.
Periodic acid-Schiff stain. Scale bars,
50µm.

Molecular Vision 2009; 15:1476-1484 <http://www.molvis.org/molvis/v15/a158> © 2009 Molecular Vision

1480

http://www.molvis.org/molvis/v15/a158


Table 2 and Table 3. Initially, few conidia of VE175 were
present on the corneal surface and no hyphal formation was
observed (Figure 3B). Pseudohyphae subsequently formed
with VE175 but did not penetrate to the same extent as
SC5314.
Δsap4-6 deletion mutant: Fungal mutant DSY459 grew well
at pH 6.0 and pH 7.3 and slightly more slowly at pH 8.0.
Moderate filamentation was found in vitro at pH 7.3 and pH
8.0 (Figure 4). In explanted corneas at 1 day pi (Figure 4), the
overall penetration was 5.2%±4.7% at pH 7.3 and 1.0%±2.1%
at pH 8.0 (p=0.24), and the maximal penetration was 5.6%
±8.5% at pH 7.3 and 2.7% ± 4.1% at pH 8.0 (p=0.38). At day
3 pi, the overall penetration was 11.1%±3.0% at pH 7.3 and

7.2%±2.1% at pH 8.0 (p=0.14), and maximal penetration was
23.8%±5.1% at pH 7.3 and 16.0%±11.3% at pH 8.0
(p=0.049). Compared to SC5314, the maximal penetration of
DSY459 was significantly less at pH 7.3 at day 1 (p<0.001)
and at day 3 (p<0.001) and was significantly less at pH 8.0 at
day 1 (p<0.001) and at day 3 (p=0.003), but there was no
difference at the overall hyphal penetration between these two
strains at both pH conditions at day 1 and day 3.

DISCUSSION
C. albicans is a common symbiont of mammalian microflora
and an important infectious agent. Impaired immunity and
altered defenses predispose a host to C. albicans ocular

TABLE 2. OVERALL PENETRATION (%) OF C. ALBICANS STRAINS INTO EXPLANTED HUMAN CORNEAS UNDER PHYSIOLOGIC AND
ALKALINE PH CONDITIONS.

                                           pH 7.3                                                                      pH 8.0
Time                 SC5314              VE175 p value SC5314 VE175              p value
Day 1 8.1±4.9 2.0±2.4 0.12 1.7±0.8 0 0.02
Day 3 19.9±4.6 6.9±7.2 0.06 10.8±4.7 7.6±8.6               0.60

TABLE 3. MAXIMAL PENETRATION (%) OF C. ALBICANS STRAINS INTO EXPLANTED HUMAN CORNEAS UNDER PHYSIOLOGIC AND
ALKALINE PH CONDITIONS.

                                       pH 7.3                                                                      pH 8.0
Time              SC5314             VE175 p value             SC5314                 VE175          p value
Day 1 21.8±5.6 16.0±7.6 0.11 17.0±6.0 0 <0.0001
Day 3 41.9±6.1 16.0±6.7 0.0007 33.7±12.3 18.9±12.5           0.02

Figure 4. In vitro and ex vivo
filamentation of C. albicans ∆sap4-6
mutant strain. Compared with SC5314
and VE175, this mutant strain exhibited
low but intermediate capabilities to
produce filaments around fungal
colonies. At day 1 postinoculation, the
mutant strain formed hyphae in the
superficial stroma at pH 7.3 but did not
produce filamentous forms at pH 8.0.
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infection [5,14], but fungal virulence traits are also involved
[16]. Pathogenicity involves a dynamic interaction between
susceptible hosts and fungal pathogens [30].

The infectious nature of C. albicans and other fungi is
partly a result of their morphological plasticity. Microbial
survival depends on the ability to detect and to respond to local
conditions. During tissue invasion C. albicans transforms
from blastospores into invasive filamentous forms [16]. This
transition from commensal yeasts to pseudohyphae and
hyphae results from interrelated pathways that respond to
local cues [31,32]. Changes that bring about alterations in
fungal morphology include a rise from room to body
temperature and a shift in pH.

Adaptation to neutral and alkaline environments by fungi
uses the Rim101/PacC signal transduction pathway, a
mechanism conserved throughout yeasts and moulds [32-34].
This pathway regulates gene expression via transcription
factor Rim101/PacC during the pathogenesis of fungal
infection and links the ability to respond to environmental pH
with virulence and disease [35].

The Rim101/PacC protein, available as a full-length or
processed form, is inactive under acidic conditions and is
activated at neutral or alkaline pH by proteolytic processing,
becoming capable of inducing hyphal formation and
filamentation [33,34]. Proteolysis is regulated in part by
upstream members of the pathway including Rim8/PalF,
Rim13/PalB, Rim20/PalA, Rim21/PalH, and Snf7 proteins
[33,36] and downstream genes including EFG1,PHR1, and
PHR2 [37-39]. Mechanisms governing fungal morphogenesis
are closely related to the development of keratomycosis [16].

Fungi differ in virulence, even among strains of the same
species. C. albicans strains can produce differing levels of
infection severity [40,41]. C. albicans SC5314, a widely used
strain, shows substantially higher virulence for rabbit and
mouse eyes than C. albicans VE175, a human corneal isolate
[12,15]. Our ex vivo model of human corneal infection
confirms that SC5314 rapidly forms hyphae that penetrate into
the corneal stroma. On the other hand, based on overall
penetration and maximal fungal invasion, VE175 is less
invasive and is largely limited to epithelial adherence of
blastospores with few pseudohyphae in the superficial stroma.

Both SC5314 and VE175 have similar replication
kinetics. However, strain SC5314 readily produced
filamentary growth in vitro at neutral and alkaline pH while
VE175 had limited filamentation. VE175 also demonstrated
less hyphal penetration into corneal tissue compared to pH
7.3. We hypothesize that a defect in filamentation regulated
through the Rim101/PacC signal transduction pathway might
explain the dissimilarity in corneal pathogenicity produced by
these C. albicans strains.

Phenotypic differences in virulence can be due to
genotypic variations among C. albicans strains [42,43].
O’Day [12] pointed out that identifying “the intrinsic genetic

differences between such strains may help identify factors
responsible for fungal virulence”. Since the genome of C.
albicans has been sequenced [26], we compared the relative
genetic expression of SC5314 and VE175 to seek possible
reasons for their disparate pathogenicity.

C. albicans has numerous genes involved in nutrient
uptake, metabolism, cellular structure, and morphogenesis
that are needed for growth and survival. We found that a
preponderance of C. albicans genes to be similarly expressed
in SC5314 and VE175 strains, suggesting that relatively few
genes may contribute to virulence differences between these
clinical isolates. Nearly one fourth of named genes that were
differentially expressed were involved in hyphal formation.
Because VE175 displayed reduced filamentation in vitro and
within the explanted cornea, the formation of fungal hyphae
appears to be part of a causal pathway during infection by C.
albicans.

The ability of C. albicans to produce hyphae in vitro
correlates with the production of filamentous forms during
experimental corneal infection [16]. Mutations in fungal
genes involved in the yeast-to-hyphal morphogenesis of C.
albicans affect the development of C. albicans keratitis [15,
44]. Since a mild environmental shift activates a pathway
leading to fungal filamentation [31,33], we examined the
effect of pH in this study.

The expression levels of genes involved in the pH-
dependent Rim101 pathway were largely similar between the
two strains, but downstream differences were found. PHR1, a
pH-responsive gene that encodes a cell-wall glycosidase
acting on polysaccharide cross-linking during hyphal
morphogenesis [38,45], was significantly downregulated in
strain VE175. We also noted that VE175 tended to produce
round blastospores that were larger than SC5314 when grown
in vitro, resembling a PHR1-deletion mutant grown in an
alkaline medium [38]. In a neutral-to-alkaline milieu PHR1 is
induced following Rim101p activation, and deletion of the
RIM13 gene attenuates corneal virulence of C. albicans [15].
In addition, the relative upregulation of the transcriptional
repressor TUP1 in VE175 could contribute to this strain’s
attenuated virulence [16]. These findings indicate that the
dimorphic transformation from yeasts to hyphae is
incriminated in the onset and progression of C. albicans
keratitis.

Another virulence factor associated with hyphal
morphogenesis is the family of hypha-associated hydrolases
[46]. Among secreted aspartyl proteinases [47] Sap6p is
required for fungal invasion of the parenchyma and of the
cornea [44,48]. Downregulation of SAP5 and SAP6 in the less
virulent strain VE175 compared to the pathogenic strain
SC5314 may partly underlie their different abilities to invade.
To explore the role of these proteinases, we used a Δsap4-6
deletion mutant of C. albicans. This knockout strain was
intermediate between wild-type strains in the ability to
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penetrate corneal tissue at a physiologic pH. Proteinases
encoded by SAP5 and SAP6 may facilitate the penetration of
C. albicans hyphae through the epithelium and extracellular
matrix [49,50].

The molecular mechanisms responsible for myotic
infections are emerging. This study used phenotypic
screening, comparative genomics, and ex vivo corneal
infection to gain better insight into the molecular biology of
fungal keratitis. By demonstrating genetic variations between
fungal strains having different capabilities of producing
keratomycosis, this study supports the key roles of fungal
filamentation and hypha-associated proteins in the
pathogenesis of C. albicans keratitis.
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