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Abstract
A coarse grained potential for protein simulations and fold ranking is presented. The potential is
based on a two-point model of individual amino acids and a specific implementation of hydrogen
bonding. Parameters are determined for distance dependent pair interactions, pseudo bonds, angles,
and torsions. A scaling factor for a hydrogen bonding term is also determined. Iterative sampling for
4867 proteins reproduces distributions of internal coordinates and distances observed in the Protein
Data Bank. The adjustment of the potential and re-sampling are in the spirit of the generalized
ensemble approach. No native structure information (e.g. secondary structure) is used in the
calculation of the potential, or in the simulation of a particular protein. The potential is subject to
two tests: (i) simulations of 956 globular proteins in the neighborhood of their native folds (these
proteins were not used in the training set), and (ii) discrimination between native and decoy structures
for 2470 proteins with 305,000 decoys, and the “Decoys ‘R’ Us” dataset. In the first test, 58% of
tested proteins stay within 5 Å from the native fold in Molecular Dynamics simulations of more than
twenty nanoseconds using the new potential. The potential is also useful in differentiating between
correct and approximate folds providing significant signal for structure prediction algorithms.
Sampling with the potential consistently regenerates the distribution of distances and internal
coordinates it learned. Nevertheless, during Molecular Dynamics simulations structures are found
that reproduce the learned distributions but are far from the native fold.
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Introduction
Hierarchical description of complex systems motivates the creation of coarse grained or
reduced models with two goals in mind: (i) capture essential features of the system with
simplified models that can be solved exactly (or almost exactly), and (ii) describe quantitatively
properties of complex systems with a reduced representation computed from detailed
experiment or theory. Examples for coarse grained models of type (i) are the HP model on a
square lattice [1], or the Elastic Network Model for protein flexibility [2,3]. Examples for type
(ii) models are detailed folding simulations on lattices [4], or coarse description of membranes
[5]. Approaches of type (ii) attempt to significantly reduce the computational cost and at the
same time maintain a high level of accuracy that approaches the results of more detailed models.

The potential we describe in the present paper belongs to class (ii). Our aim was to develop an
empirical force field with a reduced set of variables for physical simulations of proteins in the
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neighborhood of the native states. Simulations at the coarse level can be done more efficiently
than atomically detailed calculations. Indeed, we illustrate in the present manuscript test
simulations with accumulated time length of tens of microseconds that require only 12 hours
on 500 computer cores. A nanosecond simulation of a medium size solvated protein (200 amino
acids) can take a few days. The computational saving for simulations is about 3 orders of
magnitude. We expect that equilibrium distributions generated by simulations with the
designed potential will show characteristics of atomically detailed simulations. In parallel we
require that the potential will recognize native folds of proteins as the lowest energy minimum
when compared with an extensive set of “decoy” structures.

Our potential is purely empirical and the experimental observables which we use to fit the
potential parameters are native structures of proteins determined by experimental techniques
and deposited in the Protein Data Bank (PDB) [6]. These observables are clearly incomplete
and a correct energy function should reproduce also the thermodynamics and kinetics of the
system.

In the last twenty years many energy functions were estimated from empirical structures of
proteins using the methodologies initiated by the following studies: inverse Boltzmann formula
(statistical potentials) [7], memory associated Hamiltonians [8], Z score optimization [9], and
Mathematical Programming [10]. Learning potentials from empirical structures should be
contrasted with physically based energy functions. The usual design of a physical energy relies
on experiments (and/or ab-initio calculations) on small model systems [11-13]. From a learning
view-point, an advantage of physical potentials is the separation of types of input (the data to
learn)) from types of output (the data to predict). On the other hand, potentials that are learned
from empirical structures recognize correct folds with significantly less computational
resources compared to physical energies, allowing for more extensive exploration of
conformation space. The number of degrees of freedom is smaller by a factor between five and
ten even without explicit solvent.

The approach described in this paper is an extension of the usual implementation of statistical
potentials. We therefore start with a brief discussion of statistical potentials. After the
introduction of statistical potentials by Miyazawa and Jernigan [7], a number of groups,
including for example, Sippl [14], Skolnick et al. [15], Betancourt and Thirumalai [16], Bryant
and Lawrence [17], Hinds and Levitt [18] and others more recently [19-22] continue to develop
this concept and to examine the basic algorithm, functional form, and the data sets.

The basic concept of statistical potentials is similar in spirit to that of the potential of mean
force [23] but important differences remain. Let the complete coordinate vector in continuous
space representing the system be X, and the subset of coordinates that we use to describe the
protein be, yi=1,…,n, for example the set of backbone torsions or distances between amino acids.
The number of reduced degrees of freedom is n, while the number of total number of degrees
of freedom in the system is N. If the probability of a conformation, p(X), is known we can
determine the probability of a variable of interest, yi, by direct integration p(yi)= ∫ P(X)δ(yi−
ȳi(X))dX. The delta function matches the value yi with the function of the canonical coordinates
ȳi(X). If the probability P(X) obeys Boltzmann statistics (P(X)∝ exp[−βU(X)], U(X) is the
potential energy, and β is the inverse temperature) then the probability p(yi) is related to a

potential of mean force (PMF), .

The first assumption made in the derivation of Statistical Potentials (SP) is that the Protein
Data Bank (PDB) provides a Boltzmann sample of conformations, therefore a PMF can be
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estimated from the observed frequencies of certain degrees of freedom

 [7].

The second assumption made in the calculations of SP is the representation of the total potential
as a sum of PMF terms. An “energy” of the system is written as U(y1, y2,…, yn)= V1(y1)+
V2(y2)+ …+Vn(yn).

The problem with this assumption is easy to illustrate using the definition of the PMF. The
“energy” in the subspace of yi=1,…,n is used to sample conformations in the full coordinate
space of the protein X. The sampling is in the canonical ensemble with β for inverse temperature
and for all degrees of freedom X:

where we plugged in the integral the usual form of the statistical potential, dΓ is a volume
element of the remaining coordinates not in .yi.'s, and J(Y, X) is the Jacobian of the
transformation from X to Y. Note that X and Y are not of the same dimension and Γ denotes the
remaining degrees of freedom.

Instead of the statistical potential we can write a new effective energy that is used in the

sampling . If the Jacobian was a constant then
we would trivially recover the probability p(yi) ∝ exp(−βV(yi)) that we started with. However,
for most degrees of freedom used in statistical potentials (e.g. distances) this is not the case.
We can still seek an effective potential V* (yi) that will make the desired definition of the mean

force potential to hold, i.e. 
and at the same time p ̄(yi) is equal to the PDB distribution p(yi). A statistical potential used “as
is” will not reproduce the PDB distribution if it is implemented in an algorithm that generates
the canonical distribution. Note that the potential V* (yi) and the distribution p(yi) are no longer
related by the inverse Boltzmann relation. The algorithm proposed in the present paper attempts
to generate such a V* (yi).

Besides the basic difference between PMF and SP pointed above, writing the overall potential
as a sum of PMFs introduces additional approximations. The first is the factorization of the
overall probability to a product of probabilities. It suggests lack of correlations between the
yi's. The use of multiple internal coordinate probabilities [24-26] p(yiyj) addresses some of the
concerns. However the choice of correlations to focus on is not trivial and acquiring appropriate
statistics for these higher order interaction terms is another challenge. The second
approximation is the use of types. It is not obvious that probability distribution of type α (e.g.
a contact between phenylalanine and valine) will be the same in a different environment (e.g.
hydrophobic or polar medium).

SP most frequently aim at the fold recognition problem; i.e., given a set of plausible structures
that are all protein-like, how to choose a configuration that is the closest to the native fold. It
typically does not address the problem of direct and extensive sampling of configuration space
with a potential according to a pre-determined weight (e.g. canonical). In the present
manuscript we generate a potential that is consistent with both (MD simulations and fold
recognition). Not surprisingly new problems emerge. One practical problem is that the
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sampling of coordinate space in the PDB is incomplete. As a result MD simulations with
straightforward statistical potentials do not produce protein-like conformations.

The problem of generating a single potential, which is optimal for the task of fold recognition
and of MD simulations, can be solved by additional potential terms that take care of interactions
poorly sampled in the PDB. The combination of the statistical potential and the new terms is
not obvious. Once these terms are added to “traditional” statistical potentials the simulations
with the adjusted energy function no longer (necessarily) reproduce the distributions of the
yi's extracted from the PDB. The present manuscript is addressing this particular problem by
adopting an algorithm from condensed phase simulations which is a variant of the generalized
ensemble approach [27]. It generates iteratively a potential consistent with the PDB
distributions of internal coordinates and the supplements discussed above.

The resulting potential is significantly more complex than the usual form of statistical
potentials. It is also continuous and differentiable. We emphasize that even with these advances
the paper does not address the two basic approximations of statistical potentials (factorization
of the probability and transferability of parameters). It is therefore not surprising that significant
deviations from native folds are still observed in simulations for a significant number of
proteins, even if the design requirements are satisfied. Despite the drawbacks, the performance
we obtain with the final form of the potential is adequate for the usual fold recognition (and it
was used in CASP8 http://predictioncenter.org/casp8/index.cgi), and also for Molecular
Dynamics simulations. Another continuous and differentiable potential that learns its
parameters from the PDB with a different technique and can be used for energy minimization
and simulations was introduced recently [28]. Bridging potential parameters from small
molecule data to macromolecular modeling was also pursued recently by Z score optimization
[29]. These potentials are however designed for all atom models.

Potential functional form
In this section we present the functional form and the parameterization of a new coarse grained
potential which we call FREADY (a potential for Fold REcognition And DYnamics). The
starting functional form and parameterization of the potential were motivated by the simple
physical model of the group of Thirumalai [30] and its enhancements by the group of Head-
Gordon [31,32]. However, as we look in more detail into the conformation data available in
the Protein Data Bank and examine structures generated by Molecular Dynamics (MD)
simulations (using coarse grained potentials), a significantly more complex form becomes
necessary.

The number of degrees of freedom in the complex form remains relatively small, only two
points per amino acid are used - the position of the Cα atom and the side chain center of mass
(CM). It was also decided to keep the functional form independent of any information about
the native structure (e.g. secondary structure or native contacts); thus enabling unbiased
dynamical studies of biophysical processes where the information about the native
conformation is not available or well defined (e.g. large conformational transitions).

The potential employs the functional form (1.1) that includes bond, angular, and torsional terms
as well as non-bonded interaction and explicit hydrogen bonding. Solvent is treated implicitly
since the parameters of the potential are learnt from statistics of solvated protein. By insisting
that solvent induced structures (most structures in the PDB are reasonably well solvated) are
reproduced in the simulations we incorporate some solvent effects.
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(1.1)

We denote by τ the type of interactions (for example atom type, or the type of a bond between
two atoms). Typically, bond and angle interactions in other force fields (atomic or coarse
grained) are modeled by quadratic terms with a single minimum; however these functions do
not give acceptable fits to the statistics of bond lengths and angles we extract from the PDB
structures (Figure 1) and later from MD. The reason is that the internal degrees of freedom of
side chains and backbone that are removed in the coarse representation have internal structure
with multiple stable states that is reflected in multiple minima of the coarse variables. This
observation is especially true for covalent terms that include a side chain atom but is also correct
for angles of three sequential backbone atoms (Cα). Therefore, the bond energy as well as the
angle energy terms of FREADY, are described with a single, a double, or a triple well potential
(see Eq. (1.2) and (1.3)). The multiple well potentials we consider in this work are

(1.2)

(1.3)

where x denotes a bond length or an angle size and all variables with τ in the subscript are
potential parameters to be determined. The parameters xτ are equilibrium positions, kτ are force
constants, ατ are relative energy differences between the different minima, and βτ are
determining the barrier height between two wells. The coupling function C(U1,U2,β) joins the
two energy functions U1 and U2 as in empirical valence bond theory [33], a form that was used
in another coarse grained model [34,35]. Triple well terms require multiple parameters α and
β.

The current model has 22 different types of bonds and 58 different types of angles. There are
19 different bonds between Cα and CM particles for each of the different amino acid (GLY
does not have a CM particle), one bond type for the typical Cα-Cα backbone bond, one for a
bond between Cα of a proline in a cis-isomer and a preceding Cα atom. The last bond type is
for modeling the disulfide bridges between cysteine residues.

The 58 angle types are built from the following three templates Cαi-1-Cαi-Cαi+1, CMi-Cαi-
Cαi-1, and CMi-Cαi-Cαi+1 for each different type of a central (Cαi) atom with the exception of
GLY. The 20 types of angle templates Cαi-1-Cαi-Cαi+1 are all very similar and could be reduced
to a single backbone angle type. Since subtle differences may have remained we did not merge
all these terms in the first version of the potential.

The torsional terms UT(φ,τφ) take as input an angle φ and a type of the torsional angle τφ. The
torsional term is modeled as the following sum of cosine and sine terms:
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(1.4)

We have used five expansion terms for the periodic function. This number of terms is probably
unnecessary, however, in the present version of the potential they do not harm. It is still possible
that subtle effects are captured by the high order terms and therefore we left these terms “as
are” and did not attempt to simplify them further. There are almost 4 · 202 different types of
torsional/dihedral angles: A torsion (the angle between two planes) is defined by four points.
All torsions in our model are along Cαi-Cαi+1 backbone bonds (we do not consider torsions
related to CYS-CYS bonds). The type of a torsional interaction, τφ, is determined by the residue
types of the central Cα pairs and by the particle types (Cα or CM) of the two remaining points.
For a given Cα pair there can be up to four different dihedral angles present (Cαi-1-Cαi-
Cαi+1-Cαi+2, CMi-Cαi-Cαi+1-Cαi+2, Cαi-1-Cαi-Cαi+1-CMi+1, and CMi-Cαi-Cαi+1-CMi+1). The
number of different torsional types is not exactly 4 · 202 since glycine does not have a side
chain.

The function UNB(r,τ1,τ2), describes non-bonded interactions where τ1, τ2 are the types of the
interacting particles and r is the distance between them. There are 39 different particles
considered for non-bonded interactions (20 Cα atoms and 19 CM particles). Thus we have

 types of non-bonded interactions in the system. The function UNB(r,τ1,τ2) is continuous
and differentiable to the first order and is defined below.

(1.5)

(1.6)

We do not consider a pair of particles for non-bonded interactions if they are separated by one
or two bonds; if they are separated by three bonds (1-4 interaction) we scale the non-bonded
interaction down by a factor f14. S-S bonds between CYS residues are not considered for these
exceptions. If a scaling factor f14 = 1 is used the non-bonded energy distorts the local geometry
when CMi and CMi+1 are a strongly repulsive pair. At the other limit, if f14 = 0, some pairs of
neighboring sidechains may overlap. The value of f14 was set to 0.3 after some experimentation
and was found to reproduce well the local structure.

Backbone hydrogen bonding potential between residues i and j,UHB(i, j), is based on the model
developed by Liwo and coworkers [36,37]. These hydrogen bonds are modeled by dipole
interactions between the peptide centers which are implicitly assumed to be located in the
centers of Cα-Cα bonds. The explicit functional form of UHB(i, j) is given below
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(1.7)

where rij, αij, βij, and γij are the coordinates that determine the geometry of a hydrogen bond
(Figure 1). There are two types of peptide centers (τi ∈ {1,2}) defined in this work similarly
to reference [37]: a usual peptide bond and a proline-type peptide bond. The interaction

parameters to be determined are , Aτiτj, Bτiτj, and ετiτj. Eq. (1.7) is derived in [37] by
Boltzmann averaging over torsional degrees of freedom of the two interacting dipoles. Our

initial attempt to model backbone hydrogen bonding by  follows UNRES [36,37].
However, with other terms at hand, simulations with the UNRES potential generate
conformations that are often too compact and contain unnatural hydrogen bonding patterns.

Another observation was that typically each residue contributed to the sum  by 1
to 5 partners, five hydrogen bonds per residue are too many compared to the typical saturation
number of about two that we observed in the PDB. To reduce over bonding of the hydrogen
bonds within the context of FREADY potential, we retain at most the two strongest interactions
described by Eq. (1.7) per amino acid. The hydrogen bond energy of a site i is determined as
follows. The energies of all the candidates j for a hydrogen bond with i, UHB(i, j), are sorted

and the lowest energy,  is kept. We then examine the possibility of having two (lowest
energy) hydrogen bonds to the site i. The energy of the two hydrogen bonds depends on their

relative orientation φjik, , where φjik is the
angle between the dipole centers j, i, and k.

The optimal single bond energy is then compared to the optimal two-hydrogen-bond energy
and the option with the lowest energy is used

(1.8)

Learning the potential parameters
As discussed in the introduction the most common approach to derive parameters of a statistical
potential is based on the assumption of mutual independence of different interactions in the
protein. Based on statistics collected from experimental structures the potential function along
a degree of freedom q is obtained by Boltzmann inversion formula

(1.9)
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where kB is the Boltzmann constant, T is the temperature (300 K), and Pnative (q),
Preference(q) are probability distributions of a variable q in the experimentally solved dataset
and an expected probability distribution of q (also known as the reference state). Examples for
reference states are (i) a state of no interactions between amino acids (unfolded protein), and
(ii) a state of random interaction between the amino acids. A proper choice of the reference
state was a topic of much discussion in the literature [16,38]. The complete potential for a

particular protein is given by a sum of U(q) terms: . This functional
form assumes that the total probability of finding these variables factors into a product of
probabilities of individual terms.

We bridge the learning of potentials for fold recognition and potentials for Molecular Dynamics
simulations by iterative procedure to recover the native distributions of relevant degrees of
freedom Pnative(qj), where j is an index that goes through types considered in Eq. (1.1) (e.g.
distance between Cα particles of ALA and THR residues). Before the first iteration, the training
set of native structures is used to calculate Pnative(qj) and a zero-order potential Ū0(q1, …,q1)
is chosen. The particular choice of Ū0(q) is not important and any reasonable initial guess is
corrected in the following learning iterations. The potential Ūi(q) is then used to initiate long
Molecular Dynamics trajectories in the CG model producing canonical distribution of
structures at room temperature (300 K) consistent with Ūi(q). These simulations are run for
600 picoseconds (with a time step of 3 fs) and for all proteins (4867) in the training set.
Probability distributions Pi(qj) of bond lengths, angles, torsions, pairwise particle distances
and hydrogen bond lengths are collected from the final structures of simulated trajectories.
However, as discussed in the introduction, canonical sampling with statistical potentials does
not reproduce the PDB distributions because of the Jacobian coupling. An attempt to fix this
problem is to consider the ratio of the sampled and of the native distributions. The logarithm
of the ratio of these probabilities will be added to the potential to initiate a new iteration (new
Molecular Dynamics trajectories with the fixed potential). The formula for the adjustment
(following Reith and co-workers [39] and [40]) is

(1.10)

We reiterated the calculations of the potential and Molecular Dynamics simulations a number
of times until the correction to the potential parameters was negligible, in practice this happens
in about 20 iterations. It is similar in spirit to a generalized ensemble approach that was used
extensively by others (see for instance [41]). Reith and co-workers proposed this procedure to
derive coarse grained potentials for polymers. Atomically detailed simulations were used in
their work to define Pnative(qj). Instead of running expensive all-atom MD simulations on the
whole training set we infer Pnative(qj) from the structures deposited in PDB.

It is important to emphasize the difference of equation (1.10) from the usual statistical potential
approach [7] which is a one step calculation from probability to potential. The iterative form
of equation (1.10) allows us to add external terms (external to the probabilities determined
from the PDB) and use the iterations to merge the different terms such that the original
probabilities will be recovered in the canonical sampling. Such a potential refinement scheme
is new and is not part of the “traditional” statistical potential approach. The final distributions
P(qj) that we obtain are not identically equal to the native PDB distributions. However, the
deviations are within the usual statistical errors of this type of calculation (Figures 2 and 4)
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and are due to the discrete representation of the distributions and the finite size of the training
set.

Nevertheless, one must keep in mind that even with the iterations the potential is approximate.
First (as discussed above) the factorization is an approximate procedure and only a general P
(q1,…ql) is exact. Second, it is assumed that the potential is transferable, i.e. that we can have
one coarse grained potential to describe many proteins. Third, we assume that the iterative
process of running Molecular Dynamics trajectories and adjusting the potential as described
above converges to a stable solution (there is no proof of convergence). With the above
mentioned approximations, it is perhaps no surprise that the procedure we finally adopt to
compute all the potential parameters involved considerable heuristic, and that the resulting
potential is not perfect: (i) it does not recognize native folds as the lowest energy in all cases,
and (ii) MD simulations sampled with significant probability (for some proteins) structures
that are far from the native fold.

As a training set, we used a set of PDB protein structures that forms the prediction database
for our modeling program LOOPP (http://www.loopp.org, for a recent publication see [42]).
It includes 9513 native structures that have at most 70% sequence identity between any two
proteins in the set. This is higher sequence similarity than similarity used in other studies of
statistical potential (about 20%). Our data provides reasonably dense sampling in sequence
space. At least for fold recognition (after all, we wish to predict protein structure from a
sequence) we argue that folds with larger sequence capacity (the number of sequences that are
compatible with a given fold [43]) should have a higher weight than folds that capture only a
few sequences. This weight might be lost if the selection emphasizes structural diversity instead
of sequence variations. Another (pragmatic) reason that led us to broaden the set of structures
and sequences is that of statistics. We need more proteins in order to obtain reliable statistics
to fit our complex differentiable interaction terms (e.g. we need to sample at least 100 times
every pair of neighboring residues along the backbone to fit reliably each torsional interaction).

The training set is further refined by removing membrane proteins [44,45] and proteins
complexed with polynucleotides [46]. All occurrences of selenomethionines (MSE) were
replaced by regular MET residues and pyroglutamic acids (PCAs) were removed from the C-
terminals. Proteins that contain other non-standard amino acids were removed from the training
set. We used structures that correspond to the biological molecules (remarks BIOMT 350 in
the PDB files) rather than the units determined by crystallography. In the training process we
limited ourselves to globular proteins, therefore proteins with radius of gyration 15% larger
than expected were not considered. The formula for expected radius of gyration of globular

proteins  was taken from [47,48]. Lastly, since MD simulations for larger
proteins take longer time only proteins with at most 750 residues are used in the training
process. The final training set contains 4867 proteins. All MD simulations were performed in
the MOIL molecular modeling package [49] (http://clsb.ices.utexas.edu/prebuilt/) and the final
version of FREADY is fully integrated with other functionalities of the package such as energy
minimization or visualization. MD calculations conducted with FREADY potential are about
103 faster than an all-atom simulation in explicit solvation. The converged set of FREADY
potential parameters can be found in the file moil.mop/CG.PROP of the MOIL distribution
package or is also available in an extended form in the tar file
http://clsb.ices.utexas.edu/research/group/fready.tgz.

In practice, distributions Pi(q) and Pnative(q) are represented as discrete sets of bins. Bin sizes
used in this work are 0.1 Å, 1°, 3°, 0.3 Å, and 0.1 Å for bond, angle, torsion, non-bonded, and
hydrogen-bonding terms respectively. The discrete descriptions of Ui+1(q) are then fitted by
continuous functions described in Eq. (1.2) - (1.8). Fitting of bond and angle parameters has
been performed manually, since the convergence is reached after one or two iterations.
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Torsional terms are fitted in a straightforward manner by the Discrete Fourier Transform
algorithm.

The parameters Aτiτj, Bτiτj, and ετiτj of the backbone hydrogen bonding term UHB(i, j) are not
optimized independently in this work, but their ratios are taken from [50] where they were
optimized by fitting restricted free energy surfaces of UNRES model to those obtained from
all atom simulations. Only the overall multiplicative factor of these energy constants and the

parameters  are optimized so that the distribution of hydrogen bond lengths seen in MD
simulation in the FREADY model matches those seen in the experimental native structures.
The resulting distributions of angles describing the geometry of hydrogen bonds (α, β, γ) agree
with corresponding native distributions (even the parameters Aτiτj, Bτiτj were optimized only
relatively based on the hydrogen bonds length distribution).

We can use the hydrogen bonding functional form developed for UNRES since the coarsening
in FREADY is similar to that in UNRES model. UNRES, same as FREADY, represents each
residue by two beads. A difference is that in UNRES positions of the peptide centers are
considered explicitly and positions of Cα atoms are implicitly reconstructed. In FREADY, we
explicitly model the Cα particles and the centers of the hydrogen bonding groups are assumed
to be in the center of the Cα-Cα bonds. Conceptually UNRES relies on chemical physics
principles, while the main drive of the FREADY model is the requirement that hydrogen bond
distribution of MD simulations will mimic the hydrogen bond distribution observed in statistics
of experimentally determined protein structures. The use of a hydrogen bond term is also a
nice illustration of mixing different potential terms (from different sources) with the iterative
sampling.

Fitting of UNB(r, τ1, τ2) is more complex and has been fully automated. In order to speed up
convergence of our iterative algorithm it is a good idea to obtain a reasonable zero order guess
for non bonded interactions. The zero order guess we have used is a Lennard Jones like potential
between all pairs of CM particles and a repulsion r−12 term between all other particles which
are described by  in Eq. (1.6). For sake of simplicity,  does not depend on
interacting residues' types and residue dependent features of the non-bonded term are recruited
throughout the iterative learning process. The three adjustable parameters of  were
selected such that the average radius of gyration is conserved after 600 ps long MD simulation
for the structures in the training set.

For numerical reasons the functions UNB(r,τ1,τ2) are not fitted along the whole range of
distances at once. The non bonded interactions are constructed as piecewise continuous and
differentiable (to the first order) terms. The distances in range r∈〈4.2Å,13.5Å〉 are fitted by
least squares (LS) algorithm to nine degree polynomials. The optimization is constrained such
that the function UNB(r,τ1,τ2) and its first derivative vanish at r = 13.5Å. The parameters Aτiτj,
Bτiτj, and Cτiτj (from Eq. (1.5)) of the target functions are fitted against the distributions at
distances smaller than 4.2 Å with the constraints that UNB(r,τ1,τ2) has continuous first
derivative at r = 4.2Å. The function splitting at 4.2 Å was motivated by steep characteristics
of UNB(r,τ1,τ2) at shorter distances and by rather smooth behavior of the non-bonded potential
at larger separation.

Results
The iterative algorithm described in the previous section converged to a fixed set of parameters
for the FREADY potential after about 20 iterations. Covalent local interaction terms such as
bond lengths converge more rapidly and stabilize after a few (up to three) iterations. Figure 2
shows typical converged angular and torsional interactions. Comparisons of the native
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distributions to those obtained from the final training iteration are also shown. In Figure 3 we
illustrate how a non-bonded interaction term evolves during the training process and Figure 4
illustrates how the radial distribution functions between these pairs of residues evolved from
the initial to the final iteration. Overall individual distributions of the variables extracted from
the PDB are accurately represented by the converged distributions of the final iteration. The
small deviations from the PDB distribution that are observed in Figure 4 are typical.

The quality of the final set of FREADY parameters was verified by two different tests: a) a
stability test of the native protein conformations during MD simulations and b) a decoy
recognition task. The stability of native conformations in FREADY potential was tested on
native structures of proteins independent of the training set. The set used for the iterative
training was based on the non-redundant set of protein structures covering the shapes available
in PDB as of 6/28/2005. The test set for FREADY potential includes non-redundant
representation of the protein structures deposited to the PDB between 6/28/2005 and 6/13/2006
[42].

The test set was filtered, as was done for the training set. We remove membrane proteins, RNA/
DNA complexes, and PCAs (pyroglutamic acids). Group type MSEs (selenomethionines) are
replaced by MET. Proteins with other non-standard amino acids were removed. Only proteins
with typical radius of gyration were kept). Further on, we reduced the test set to single chain
proteins without any breaks in the backbone and limited the size of each protein to up to 500
residues. After all these constraints are met the test set consists of 956 native structures. A 21
ns MD simulation of each structure from the test set (driven by FREADY potential function)
was performed. Every simulation begins from the native conformation by a short (200 steps)
conjugate gradient minimization. The simulations are initiated with 300 ps linear heating from
1 K to 300 K followed by 20.7 ns constant temperature simulation (controlled by velocity
scaling).

Figure 5 shows a distribution of the RMSD of the final structure of each MD simulation and
the corresponding native conformation. Similarly Figure 6 shows distribution of the TM-score
[51], which is measure of structural similarity that scales between 0 and 1. It is calculated as

(1.11)

where L is the protein length, di is the distance between i-th pair of residues,
 is a distance scale, and maximum is taken over all structural

superpositions. In contrast to RMSD the TM score can capture local similarities while the
RMSD is sensitive to overall changes and to outliers. TM-score is calculated by an algorithm
described in [51] and available from http://zhang.bioinformatics.ku.edu/TM-score/. The mean
RMSD and TM-score against the native structures after 21 ns MD simulation are 4.95Å or
0.65, respectively. Figures 5 and 6 also show the distributions after 10 ns of MD. Only minor
differences between the final distributions are observed. This observation suggests that most
of the structures in the test set reach equilibrium after 10 ns.

The equilibrated distributions of internal degrees of freedom after 21 ns of MD are in good
agreement with the distributions obtained from the native folds. Nevertheless, as shown on
Figure 5 and 6, even when the target distributions of internal coordinates are preserved there
are structures that diverge significantly from the native fold (RMSD larger than 10 Å or TM-
score less than 0.4). This implies that the functional form of the potential chosen in the present
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manuscript (i.e. sum of local, pairwise terms and backbone HB) is not sufficient to fix the
average structure in the neighborhood of the native fold during room temperature simulations.

In Figure 7 we show results for three representative medium sized structures. Two of these
proteins (1ido, 1a3k) remain relatively close to the native structure (RMSD of 2.33 Å and 3.42
Å). The third protein shown (1ge6) is an example in which the MD simulation drives the
structure away from the native structure (9.87 Å). Figure 8 shows a comparison of mean square
displacements of Cα particles during the last 10 ns of the test simulation with experimental
crystallographic B-factors. The mean square displacements are in weak agreement with the
experimental values. The location of the large fluctuations along the sequence seems to agree
with experiment, but not the amplitudes. There are several residues in loop regions and close
to either N or C terminals that have significantly higher displacements than those implied by
B-factors. The same figure also shows that many of these overly-flexible parts of the structures
are predicted as flexible also by Anisotropic Network Model [52]. Crystal packing might
influence the reduced flexibility in some of these regions. Hence, the B factor may not represent
the properties of an isolated protein molecule in solution.

Structural alignments of the final MD structures with the native conformations for these three
proteins are given in Figure 9 - Figure 11. We have not found any correlation between stability
of the native conformations in FREADY potential and the secondary structure content or
composition (data not shown). We initially attempted to train FREADY without an explicit
hydrogen bonding term. However, MD simulations of the training set driven by a potential
trained without hydrogen bonding term resulted in the average deviation of 6.37 Å RMSD
from the native structures compared to 4.95 Å obtained with a potential trained with explicit
backbone hydrogen bonding term. The reduced accuracy in our initial attempt was caused
mainly by weak stability of native β sheets elements.

Better stability of native folds (3.92 Å from native in average) was reported recently by Minary
and Levitt [53]. They used a 3-bead model based on an all-atomistic statistical potential [54].
There are two major differences in their approach and results presented here. More extensive
conformational search with a combination of parallel tempering and equi-energy Monte Carlo
was performed in their work, whereas we only ran long MD simulations. Another important
difference is in the number of degrees of freedom. In the work of Minary and Levitt secondary
structure elements are fixed and the loop torsional angles are considered as the only degrees
of freedom. Fixing the secondary structures in the simulations that uses the FREADY potential
reduces the distance (RMSD) between the simulated structures and the native conformations
in the 21 ns MD simulations to 3.04 Å in RMSD. The similarity increases to 0.78 measured
with the TM-score.

The FREADY potential was also tested on native and near-native recognition from a set of
decoy structures. Two datasets of decoys used in this study are “Decoys ‘R’ Us” dataset [55]
and the set of decoys used for the training of LOOPP [42]. Both sets consist of a collection of
different models generated as possible conformations for protein sequences with known
structures (targets). “Decoys ‘R’ Us” dataset includes 34 targets, each target having from 500
to 2414 different models including the native structure. In the LOOPP dataset, there are 2470
protein targets, each having from 30 to 200 models. There is no overlap between the FREADY
training set and the set of targets used in the LOOPP testing dataset.

In the decoy recognition task a set of different structures with an identical sequence (i.e. the
sequence of the target) is provided. The task is to score the structure closest to the native (or
the native itself, if present in the input set) as the model with the lowest energy. To use FREADY
for this purpose only the sum of the non-bonded interactions and the torsional energies was
used. By construction, the structures of the decoys have reasonable covalent geometries.
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Moreover, the local interaction terms of the bond and angular stretching are quite sensitive to
local modifications in the structure and do not provide significant information about the overall
quality of the three-dimensional shape. Therefore bond and angle terms of FREADY are not
helpful in differentiating between native and decoy shapes.

Another type of interaction with a limited contribution is the short-range repulsion. The non-
bonded interaction term as learned from MD simulations has steep repulsion for short distances
(see Figure 3) which is not desirable for a structure recognition task (a single close contact can
significantly increase the energy of an overall good model), thus the non-bonded interaction
term UNB for short distances was reduced through a logarithmic transformation to yield an
adjusted value 

(1.12)

The last remaining term, the backbone hydrogen bonding, was not useful in recognition,
probably because decoys in the datasets were generated with methods that optimize backbone
hydrogen bonds.

FREADY performs similarly (see Table 1) to other statistical potentials on “Decoys ‘R’ Us”
dataset. Only OPUS-PSP potential [21], which uses more elaborate representation of side chain
packing, performs significantly better than FREADY. The detailed performance of FREADY
on “Decoys ‘R’ Us” dataset is provided in Table 2 and the contribution of different energy
terms to the recognition in threading experiments is shown in Table 3. Seven targets from this
dataset (1ctf, 1r69, 2cro, 1nkl, 1trl, 1dtk, 1shf) were present in the FREADY training set.

On the LOOPP dataset we tested the recognition of “native like targets,” since statistical
potentials tend to perform well in distinguishing the native structure from non-native ones but
often fail in recognition of “close to native” conformations. Thus, in the case of LOOPP dataset,
we ask how well does FREADY recognize native-like models (RMSD-wise) from other
structures. FREADY ranks the model with the lowest RMSD as the lowest energy structure
(within the top 5 lowest energy structures) in 50% (73%) of all 2470 targets. While clearly not
perfect, FREADY provides a useful signal for model selection that when combined with other
signals leads to more accurate prediction. FREADY signals were used in the LOOPP server
during CASP8 exercise [67].

It turns out that FREADY performs better in recognition of structures obtained by X-ray
crystallography than those obtained by NMR. The rate of best model recognition for targets
solved by NMR drops to 31% (compared to 64% for structures solved by X-ray). The
performance of FREADY on a subset of LOOPP dataset is shown in Figure 12. This set contains
338 targets that are single chain proteins, solved by X-ray crystallography, not forming
biological complexes with other proteins or RNA/DNA, and are not membrane proteins. The
correlation coefficient for this set between E/L−(E/L)native and the RMSD from the native
conformation is 0.68. As seen in the figure, only several models have lower scores than the
native (negative values on the figure) and most of the native-like models (low RMSD values)
do not have high scores.

Final remarks
In the present manuscript we discussed a coarse grained potential that was learned using a mix
of machine learning arguments and computational statistical mechanics. The potential was
tested and illustrated to perform adequately at the two extreme limits of structural biology: (i)
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maintaining the structure in the neighborhood of the native fold in Molecular Dynamics
simulations, and (ii) effectiveness in threading experiments. The significantly reduced number
of degrees of freedom enables more comprehensive sampling for longer times. The simpler
model (compared to all atom representation) is also effective in screening efficiently a large
number of candidates to the correct fold. On the other hand, we do not expect the potential to
work in domains it was not tuned for (e.g. protein folding).

We have addressed algorithmically two significant limitations of statistical potentials, that is,
(i) how to learn a statistical potential that recovers experimental statistics in canonical
simulations and (ii) how to effectively combine statistical potentials with other energy terms
that are necessary when comprehensive sampling is desired. Specifically in the present study
we illustrate that the addition of hard cores and hydrogen bonding potentials is straightforward
once generalized ensemble approach is applied. While hard cores could be added by statistical
means [68], the iterative procedure allows for easy combination of different energy terms,
potentially from different sources calibrated against the PDB distribution.

Perhaps the most intriguing observations made in the present study are the limitations of the
internal coordinate representation and of the assumption of potential transferability. We
typically assume that a potential can be represented by pair interactions between amino acids
(keeping the covalent geometry intact). The pair interaction is assumed to be transferable from
a protein to a protein. Mathematical programming studies illustrated however that the
parameters of such a potential do not have a feasible solution on typical protein-like decoy sets
[64,69,70]. It is intriguing that a related conclusion is reached in the present manuscript from
a different perspective and for more general functional form.

Further studies of plausible functional forms of potentials, building on innovative work on
modeling many-body potentials [24,26,71], with comprehensive sampling and iterative
refinement of potential parameters are of considerable interest.
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Figure 1.
Description of terms entering the calculation of the backbone hydrogen bonding term UHB(i,
j). The angle αij is defined as an angle between the bonds Cαi − αi+1 and Cαj − αj+1.
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Figure 2.
(a) left: Fit of the angle interaction term defined by Cα i-1, Cα i,CMi for i-th residue being a
TRP obtained by Boltzmann's inversion of the native distribution (gray) and the analytical fit
to a double-well function (black, dashed). right: Comparison of distributions for this type of
angles seen in the native structures (gray) and in the MD simulations driven by FREADY
(black, dashed). (b) same as in (a), only for the central residue being VAL. The angle is of
triple-well character in this case. (c) left: Fit by Discrete Fourier Transform (black, dashed) to
the final version of the torsion potential (gray) defined by four consecutive Cα particles (for
central two residues being TYR, ASN) right: Comparison of this torsion angle distribution in
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the native structures (gray) and in the MD simulations (black, dashed) for this dihedral angle
type.
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Figure 3.
Iterative adjustments to the non-bonded interaction term between (a) LEU particle Cα and LYS
particle CM; (b) ASP particle Cα and LYS particle CM. The interactions are evolving during
the training in the order gray-solid (1. iteration), gray-dashed (3.iteration), dotted (11. iteration),
and black-dashed (the final, 20th, iteration).
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Figure 4.
Radial distribution functions between pair of particles (a) LEU-Cα and LYS-CM (b) ASP-
Cα and LYS-CM. The solid line corresponds to the distribution in the native structures, gray-
dashed line depicts the distribution obtained after the first iteration of the training, and the
black-dashed one stands for the distribution seen in the structures simulated by the final version
of FREADY.
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Figure 5.
The distribution of RMSD from the native fold after 10 ns (gray) or 21 ns (black, transparent)
long MD simulation initiated from the native conformation.
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Figure 6.
The distribution of TM-score between the native fold and structures obtained by 10 ns (gray)
or 21 ns long (black, transparent) long MD simulation starting from the native conformation.
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Figure 7.
Behavior of three proteins 1a3k (an α/β protein, light gray), 1ido (an β protein, black), and
1ge6 (an α protein, dark gray) during the testing MD simulation driven by FREADY (21 ns).
The figure shows from the top to the bottom the potential energy, the percentage of native
contacts, the RMSD, and the TM-score.

Májek and Elber Page 25

Proteins. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Comparison of experimental B-factors (light gray) of Cα atoms with mean square displacement
in FREADY 21 ns MD simulations (black-dashed) and mean square displacements as predicted
by ANM [52] from the native conformation (dark gray). The values of all methods were scaled
to have equal average displacements, so only relative displacements are meaningful. The
graphs correspond from top to bottom to proteins 1a3k, 1ido and 1ge6. The correlation
coefficients between experimental B-factors and simulation displacements are 0.4, 0.33, and
0.3 respectively. Secondary structure elements are shown at the lower part of the figure.
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Figure 9.
Alignment of native structure (blue) of 1ido (an α/β protein) and the conformation obtained
after 21 ns of MD simulation (green). The RMSD is 2.33Å. Protein structures were aligned
and visualized with UCSF Chimera tool [72].

Májek and Elber Page 27

Proteins. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Alignment of native structure (blue) of 1a3k (a β protein) and the conformation obtained after
21 ns of MD simulation (green). The RMSD is 3.42Å.
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Figure 11.
Alignment of native structure (blue) of 1ge6 (an α protein) and the conformation obtained after
21 ns of MD simulation (green). The RMSD is 9.87Å.
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Figure 12.
The difference of FREADY energy normalized by protein length from that of the native as a
function of the RMSD from the native conformation. Each point in the figure corresponds to
a model for a structure of a protein. There are 6034 models (for 338 targets) shown in the figure
and only several structures score below the native conformations (negative values). On the
average the energy seems a linear function of the RMS from the native suggesting a broad
radius of influence for the FREADY potential.
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Table 1
The comparison of several statistical potentials on “Decoys ‘R’ Us” dataset. Results for all potentials (except FREADY)
are taken from the reference [21]. The second column lists number of targets which a given force field ranks as the
lowest energy structure versus the total number of targets evaluated by that force field. The third column shows the

average Z-score, , of native structures.

Top 1/Total Number Mean Z-sore

OPUS-PSP [21] 31/34 5.37

HPMF [56] 29/32 4.18

FREADY 28/34 4.62

DOPE [57] 28/32 -

MSE [58] 21/23 5.78

DFIRE [38] 27/32 4.52

MJ_2005 [59] 27/34 5.93

DFIRE-SCM [60] 23/32 4.36

MM-PBSA [61] 23/24 1.95

DGR [62] 21/25 5.25

DWL [63] 21/32 3.66

TE13 [64] 14/25 3.53

CALSP [65] 15/25 -

Rosetta [66] 14/32 -
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Table 2
Performance of FREADY potential on “Decoys ‘R’ Us” dataset. The table lists for
each target its PDB code, size of the decoy set, rank of the native structure in the
set of decoys based on FREADY energy evaluation and Z-score of the native
energy.

PDB code Decoy set size Rank Z-score

4state_reduced

1 1cft 631 1 3.91

2 1r69 676 1 3.84

3 1sn3 661 1 3.83

4 2cro 675 1 3.29

5 3icb 654 1 2.57

6 4pti 688 1 4.34

7 4rxn 678 1 3.14

fisa

8 1fc2 501 336 -0.27

9 1hhd-C 501 1 3.55

10 2cro 501 1 4.55

11 4icb 501 1 5.37

fisa_casp3

12 1bg8-A 1201 1 3.91

13 1bl0 972 2 2.83

14 1eh2 2414 3 2.71

15 1jwe 1408 1 4.60

16 smd3 1201 1 6.72

lattice_ssfit

17 1beo 2001 1 7.13

18 1cft 2001 1 8.37

19 1dkt-A 2001 1 7.71

20 1fca 2001 1 6.29

21 1nkl 2001 1 7.22

22 1pgb 2001 1 9.19

23 1trl-A 2001 1 4.98

34 4icb 2001 1 8.74

lmsd

25 1b0n-B 498 16 1.62

26 1bba 501 493 -2.10

27 1cft 498 1 4.99

28 1dtk 216 1 3.12

29 1fc2 501 4 2.74

30 1igd 501 1 7.02

31 1shf-A 438 1 6.18
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PDB code Decoy set size Rank Z-score

32 2cro 501 1 6.89

33 2ovo 348 1 3.57

34 4pti 344 1 4.48
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Table 3
Contributions of different energy terms to the recognition of native structures in Decoys R us dataset. For each energy
term the number of native structures recognize as the lowest energy structure by that term is given in the first column
and the average Z-score of the native structures is given in the second column. Based on this data the sum of non-
bonded and torsional energy terms was used for final prediction (the last row in the table).

Top 1(from 34) Mean Z-score

Bonds 9 0.55

Angles 2 0.65

Torsions 14 2.45

Nonbonded term 27 4.17

Hydrogen bonding 2 1.19

Proteins. Author manuscript; available in PMC 2010 September 1.


