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Plant hormones regulate growth and responses to environmental change. Hormone action ultimately modifies cellular
physiological processes and gene activity. To facilitate transcriptome evaluation of novel mutants and environmental
responses, there is a need to rapidly assess the possible contribution of hormone action to changes in the levels of gene
transcripts. We developed a vector-based algorithm that rapidly compares lists of transcripts yielding correlation values.
The application as described here, called HORMONOMETER, was used to analyze hormone-related activity in a
transcriptome of Arabidopsis (Arabidopsis thaliana). The veracity of the resultant analysis was established by comparison
with cognate and noncognate hormone transcriptomes as well as with mutants and selected plant-environment interactions.
The HORMONOMETER accurately predicted correlations between hormone action and biosynthetic mutants for which
transcriptome data are available. A high degree of correlation was detected between many hormones, particularly at early
time points of hormone action. Unforeseen complexity was detected in the analysis of mutants and in plant-herbivore
interactions. The HORMONOMETER provides a diagnostic tool for evaluating the physiological state of being of the plant
from the point of view of transcripts regulated by hormones and yields biological insight into the multiple response
components that enable plant adaptation to the environment. A Web-based interface has been developed to facilitate
external interfacing with this platform.

Mutations that lead to aberrant phenotypes or to
altered physiological responses are major tools in
delineating gene function. Such mutations generally
lead to varying degrees of primary and secondary
transcriptome effects when compared with the tran-
scriptomes of wild-type tissue and can be useful to
establish pathways. For example, mutant lines in
yeast were used to extract gene signatures of drug
applications and thus identify primary and second-
ary drug target effects (Marton et al., 1998). In addi-
tion, environmental input can affect gene expression.
Hence, monitoring the genome-wide expression of
transcripts from these mutants or treated plants offers
a useful portal to the initial understanding of gene
functions. The concerted behavior of transcripts is
commonly analyzed by hierarchical cluster analysis
that extracts the degree of biological relatedness
(Eisen et al., 1998). In Arabidopsis (Arabidopsis thali-

ana), an ever-growing data set (e.g. 3,110 microarray
experiments compiled by Genevestigator version 3;
https://www.genevestigator.ethz.ch/gv/index.jsp)
can provide highly refined and elaborate hierarchical
structures.

However, insightful understanding into the effect of
a particular mutation can also be drawn by simplify-
ing and limiting the choice of the databases used for
comparison. As hormonal changes will initiate or
reflect many plant responses, a choice database would
be one that specializes in the transcriptome response to
hormones and growth regulators. Thus, deriving a
coherent hormone signature to a particular mutant or
physiological state can be a useful starting point for
further investigation. The large-scale transcriptome
database developed by the AtGenExpress interna-
tional consortium has provided detailed developmen-
tal (Schmid et al., 2005), abiotic stress (Kilian et al.,
2007), and hormonal response (Goda et al., 2008) data
sets. The hormonal data sets are based on the treat-
ment of 7-d-old seedlings with hormones or small
molecules. These include examples of the major
growth regulator groups: auxin, indole-3-acetic acid
(IAA); cytokinin, zeatin (ZEA); gibberellin (GA); bras-
sinosteroids (BRs); abscisic acid (ABA); jasmonate (JA);
ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC);
and salicylic acid (SA). The data generated was further
validated by comparison with mutants and with hor-
mone inhibitor applications (Goda et al., 2008).

To utilize such databases, a variety of bioinformatic
techniques have been applied that specialize in com-
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paring the concerted and usually major changes in
gene expression. Each technique has its advantages
and disadvantages. For example, Goda et al. (2008)
have harnessed the hormonal data sets by hierarchi-
cal cluster analysis (Eisen et al., 1998) to help retrieve
coexpressed transcripts and thus enhance gene func-
tion discovery. In addition, they show examples of
Pearson correlation between select experiments
based on a relatively small number of transcripts
that survived stringent statistical constraints. In yet
another method, preset gene thresholds were used to
create select gene lists that were compared in order to
describe functional overlap (Nemhauser et al., 2006).
This was further refined in a method called functional
association by response overlap (FARO; Nielsen et al.,
2007). The strength of an association was determined
by the size of the overlap between the experiment and
a compendium of ranked gene expression responses.
The qualitative nonparametric rank-based pattern-
matching scheme in FARO is a simplification of the
“connectivity map concept” found to be useful in
human drug discovery (Lamb et al., 2006). There is a
need for a tool whereby user-defined input can be
compared by robust methodology to provide quanti-
tative gene expression comparisons.
Transcriptome results of different experiments can

be compared by vector-refined correlation. In this
method, each experiment is represented as a vector
in a space where every gene assayed represents a
separate axis and the fold changes of the gene ex-
pression determine the geometric coordinates of the
experiments. The analysis offers a rigorous transcript-
by-transcript comparison by defining each transcript’s
“similarity” and setting up correlation tables. The
final correlation value represents an unbiased factor
of the number of transcripts scanned by the signature
that essentially measures how two experiments
(represented as two vectors in the space described
above) are similar across the changing pattern of
each individual gene expression measurement.
Thus, even small changes, compiled over a large
number of genes, can affect the correlation score. A
variation of this method was first applied to the
analysis of Saccharomyces cerevisiae and showed ro-
bust data management of yeast environmental re-
sponses (Kuruvilla et al., 2002). Here, we apply
vector-refined correlation to interpret transcriptome
response through a multihormonal lens composed of
indexed transcript responses to different hormone
treatments. The application is called HORMONOM-
ETER. The resultant correlation values are projected
onto a simple color-coded clustergram that helps
identify the key hormone pathways that have been
activated in a particular experiment. We first vali-
date and calibrate HORMONOMETER by applying
it to the hormone data sets themselves and to the
transcriptome of a series of mutants. We then show
examples of how HORMONOMETER can be applied
to the analysis of complex environmental interac-
tions.

RESULTS AND DISCUSSION

Building Indexes of Hormone Action and
Calculating Correlations

The hormone signature was built in a two-step
process. In the first step, a hormone expression index
was compiled for each time point of the hormone
treatments. In the subsequent step, the index was
correlated by vector analysis to any transcriptome
measurement to obtain a singular correlation value
that is part of a hormone signature. The process was
repeated for all of the hormone indexes. Vector analysis
essentially measures how the changed gene expression
pattern of a particular experiment is similar to the
hormone index by computing the angle between two
vectors generated by all of the participating transcripts.
The numeral 1 indicates a complete correlation in terms
of direction and intensity of the hormone indexwith the
queried experiment, the numeral 0 indicates no corre-
lation, and the numeral 21 indicates the highest pos-
sible anticorrelation for each transcript in the index. The
angle between two vectors is essentially analogous to
the Pearson correlation coefficient (Kuruvilla et al.,
2002). For example, the Pearson correlation is used in
the Sample Angler application, which identifies sam-
ples exhibiting similar expression profiles to a data
set of transcriptomes and provides a correlation
value (http://www.bar.utoronto.ca/). The difference
between vector analysis and Pearson correlation is
that the latter uses centered data points, meaning that
it normalizes the values of the vectors to their arith-
metical means. For example, in Pearson’s correlation, a
set of transcripts with expression values of 2-, 3-, and
4-fold is the same as the expression values 5-, 6-, and
7-fold. In our case, in which we extract a subset of
transcripts from an experiment that matches the par-
ticular index, we chose not to center the data. A detailed
description of the algorithm and other statistical con-
siderations, such as the application of false discovery
rate (FDR; Benjamini and Hochberg, 1995), are elabo-
rated in “Materials and Methods.” In addition, a sim-
plified example of how the vector correlation is
calculated is provided in Supplemental Figure S1.

In order to arrive at an optimal index size for each
hormone treatment, we analyzed the contribution of
changed transcripts to the correlation value. In theory,
an index can be composed for all of the transcripts that
show significant change (e.g. P , 0.05); however, in
practice, in any experiment the overwhelming major-
ity of the transcripts remain nearly unchanged after
normalization, and for economy of computation most
information is gained from building an index of lim-
ited size. To arrive at an optimal hormone index size,
we noted that when the average vector correlation
values were computed using different size indexes, the
values rapidly converged and hardly changed be-
tween index sizes of 500 and 1,000 (Fig. 1). This is
due to the fact that the maximum number of detect-
ably changed genes is generally less than 1,000 for
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most treatments (Goda et al., 2008). Furthermore, the
screening of larger numbers of transcripts in the
queried experiment with an index that is composed
of transcripts that essentially do not change will com-
pare transcripts that change randomly (up and down)
and do not contribute to the correlation. Therefore, we
adopted 1,000 as the index size for all hormones. The
indexed transcripts for each treatment (hormones and
time points) are tabulated in Supplemental Table S4.

Vector-Refined Correlation Yields Robust

Hormone Signatures

To illustrate the use of HORMONOMETER, we first
calculated the correlation values of BR after 180 min
(BR180) and ZEA after 180 min (ZEA180). These were
chosen because independent applications that are not
part of AtGenExpress are available. The calculated
correlation results were then used as the input to the
Matlab function “clustergram” from the bioinformat-
ics toolbox (http://www.mathworks.com/products/
matlab/). The clustergram arranges the experiments
using hierarchical clustering with a Euclidean distance
metric and average linkages to generate a hierarchical
tree, as shown in Figure 2A. In order to facilitate
visualization of the results, the range of correlations is
color coded for positive (red) neutral (white), and
negative (blue) correlation. The index used is shown
on the x axis, while the experiments screened are on
the y axis. Supplemental Table S1A contains the exact
numerical values and number of transcripts scanned
in each case. Examination of BR180 shows that it yields
the expected value of 1 for its cognate index and lower
values for the other, shorter BR time points. The values
obtained with the other indexes range from negative to
positive and represent hormonal cross talk that will be
discussed further below. In an independent experi-
ment, a higher concentration of BR (BR_ind; 1 mM as
opposed to 10 nM in BR180) was applied to seedlings of
identical age (7 d old) and examined after 180 min. The

results (Fig. 2A; numerical values in Supplemental
Table S1A) are very similar to those obtained with
BR180. In contrast, in an independent experiment in
which ZEA was applied at higher concentrations
(ZEA_ind; 20 mM compared with 1 mM in ZEA180)
and to older plants (21 d compared with 7 d), consid-
erably less overlap was obtained. In this case, the ZEA
signatures remain prominent, although results of other
signatures show change, yet the hierarchical designa-
tion to ZEA180 is correct. The results indicate that the
HORMONOMETER is sensitive to the seedling’s age,
likely reporting an age-dependent transcriptome reac-
tivity to exogenous hormone applications.

Calibration of HORMONOMETER Values

A characteristic of statistical comparisons is that
they always generate a number; the question then is,
can biological meaning be attached to the levels of
correlation values generated by the vector methodol-
ogy? In order to approach this question, we analyzed
the hormone data sets generated for AtGenExpress
(Goda et al., 2008). As shown in Figure 2C, the ex-
pected correlations of value 1 appear along the diag-
onal as the index is used to analyze its own
transcriptome data. The numerical values and number
of transcripts screened are shown in Supplemental
Table S1B. Generally, a three-by-three matrix (due to
the three time points) surrounds the mid-time-point
value and reflects the expected high cross-correlation
between the different time points of the same hormone
treatment. Note that the correlations are not necessar-
ily symmetrical (above and below the diagonal). This
is due to the fact that indexes presented on the hori-
zontal axis comprise a select fraction of data in the
experiments presented on the vertical axis; hence, the
reciprocal correlations will differ slightly.

In some hormone treatments, the early, intermedi-
ate, and late treatments are highly correlated. For
example, for IAA, they are all above the value of
0.65. In other cases, the corresponding values are
lower (e.g. only above 0.4 for the GA time points). In
those cases, discussed below, cognate hormone treat-
ments do not cluster together, contributing, in part, to
off-diagonal results. Inspection of the range of corre-
lation values obtained in the different time points for
the same hormone treatment can serve as a benchmark
value used to “calibrate” the meaning of a “strong”
vector-derived correlation value. In this case, values
above 0.4, which represent the lowest correlation value
among the different cognate hormone applications,
signify the beginning of strong correlations. To esti-
mate the lowest correlation values that need to be
considered, one can examine the values obtained from
comparing the indexes to randomized databases. To
this end, the fold induction values and the P values of
the MJ180 (for methyl jasmonate at 180 min) treatment
were shuffled and screened by all of the hormone
indexes. The MJ180 treatment was chosen because this
treatment was one of the most effective treatments in

Figure 1. Average correlation values obtained for varying index sizes.
Index sizes of 50, 200, 500, and 1,000 were extracted by arranging the
values of statistically valid changes by decreasing absolute fold change
values (i.e. the up- and down-regulated transcripts of ANOVA, P ,
0.05). They were correlated to all noncognate hormone experiments,
and the average correlation value is shown.

Volodarsky et al.

1798 Plant Physiol. Vol. 150, 2009



terms of the number of transcripts that changed. The
average of the resultant correlation scores was near 0
(Fig. 2B; average value = 0.05, s = 0.04; Supplemental
Table S1B). Thus, if correlation values of a particular
experiment are distributed normally, values beyond
3.2906s SDs (i.e. 0.13) have only a 0.1% chance of being
random. In summary, correlation numbers above 0.4
are seen between cognate hormone treatments and can
be considered strong correlations, while numbers be-
tween 0 and 0.13 can be the result of chance and need
not be considered. The significance of negative corre-
lation values is discussed below.

Vector-Refined Correlation of Hormone Signatures
Shows Overlap in Hormone Action

Alternative views have been reported using the
hormone data generated by AtGenExpress (Goda
et al., 2008); one conclusion states that hormones
influence a low number of common target genes
(Nemhauser et al., 2006), whereas another analysis
showed that a significant amount of overlap exists
between genes activated by different hormones (Goda
et al., 2008). Low correlations are indicated in areas a
and b (Fig. 2C). They indicate that IAA has no MJ
signature and that ZEA has practically no ABA signa-
ture. However, other areas (Fig. 2C, areas e–g) depict
regions of strong signature cross-correlations between
noncognate hormone treatments. Thus, any high cor-
relation values that are off the diagonal lend clear
evidence to the conclusion that strong noncognate

interactions exist. In addition, as exemplified in area c
(Fig. 2B), negative correlations exist between ZEA and
late treatments of ACC and SA. Furthermore, hierar-
chical distribution shows that time points for BR, ACC,
and GA do not always cosegregate. The most promis-
cuous correlations are associated with early MJ and all
of the BR treatments. The overlaps detected here are
somewhat analogous to the analysis carried out by
pairwise comparisons with Fisher’s exact test by Goda
et al. (2008). However, the vectorial analysis and
subsequent clustergram presentation lend a global
viewpoint and uniform quantification basis to the
degree of hormone cross-correlations.

Cross-correlation of signatures for hormone action
can arise due to many scenarios, for example: (1) the
direct activation by one hormone of other hormone
biosynthetic pathways; (2) increased sensitivity to
existing basal hormone levels; and (3) independent
activation of a subset of the signaling pathways by
bifurcating signaling input. In many cases, the corre-
lations observed are strongest for the earlier time
points measured and would seem to argue against
the scenario of direct activation of noncognate hor-
mone biosynthesis. However, in the case of overlap
detected at later times (e.g. measurements at 3 h),
direct activation is a distinct possibility. Indeed, partial
overlap between hormonal signatures is supported in
many cases by experimental observations. For exam-
ple, BR plays a role in apical hook formation, as does
ethylene, which has been suggested to jointly control
BR biosynthesis (De Grauwe et al., 2005). In addition,

Figure 2. Hierarchical clustering matrix for correla-
tion between gene expression profiles under different
hormone treatments. The indexes are shown on the
horizontal axis. The experiments screened by
HORMONOMETER are shown on the vertical axis.
A, Correlation values between independent hormone
treatment experiments and the hormone expression
index. Treatments are as follows: ZEA180, ZEA (cy-
tokinin) at 1 mM, 180 min, 7-d-old seedlings;
ZEA_ind, ZEA at 20 mM, 21-d-old seedlings; BR180,
BRs at 10 nM, 180min; BR_ind, BRs at 1mM, 180min.
B, Correlation values between the hormone expres-
sion index and MJ180 hormone treatment and shuf-
fled values of the MJ180 hormone treatment
(MJ180_shuffled). C, Correlation values between
the hormone expression index and the original hor-
mone treatments used to build the indexes. The
experiments listed on the vertical axis are clustered
together according to the similarity of their profiles
(the entire range of correlation values for each ex-
periment). The hormone indexes on the horizontal
axis are listed in the same order as the hierarchical
clustering to emphasize correlations between cog-
nate and noncognate hormones. The lowercase let-
ters indicate areas as explained in the text.
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BR has been shown to directly down-regulate the level
of ACC oxidase and to up-regulate JA biosynthetic
enzymes (Mussig et al., 2000; Deng et al., 2007),
consistent with the cross-activation detected here.
The significant correlation of BR with early IAA and
GA responses is also readily detected in the signature.
This is expected, as BRs are able to rescue GA-deficient
mutants, which normally fail to germinate, and BRs
can act synergistically with IAAvia common elements
in the promoters of the transcripts (Nemhauser et al.,
2004) and also additively with GAs (Mandava, 1988).

An antagonistic relationship between GA and cyto-
kinins and ABA has been recorded (summarized in
Weiss and Ori, 2007) and is observed here by low
correlation values with ABA180 and ZEA signatures.
In contrast, the up-regulation of GA biosynthetic genes
by auxin is evident in the presence of GA signatures in
the IAA applications. A clear positive BR signature is
present in GA applications, as is also true for the
reciprocal signature of GA in BR applications. Yet, for
some specific genes, a reciprocal relationship between
GA and BR was recorded (Bouquin et al., 2001).
Application of BR can induce GA biosynthetic genes
(Olszewski et al., 2002), and the overall effect as
observed here is one of cross-activation.

SA application appears to have an IAA signature. Yet,
SA has been shown to desensitize the plant to some
auxin responses; indeed, some pathogens actively se-
crete auxin to achieve SA repression, enhancing their
infectivity (Wang et al., 2007). However, the continuous
and unambiguous coverage offered by the vector-based
analysis shows that, on a global level, not only is the
expected negative correlation for IAA absent but a
positive auxin signature appears. Thus, the vectorial
approach reveals unappreciated selectivity in the re-
pression that auxin supplies to SA-derived processes. In
addition, a significant ethylene response (ACC180 sig-
nature) in SA application is evident that was previously
overlooked. The contribution of enhanced ethylene
responses brought about by SA may be as significant
as the auxin response and could contribute to the
selectivity wrought by SA application.

A clear example of the effect of sequential hormone
activation is found in the ethylene mediation of in-
creased auxin levels by the induction of auxin biosyn-
thetic genes (Stepanova et al., 2007; Swarup et al.,
2007). Inspection of Figure 2C reveals that ACC180
application shows robust association with auxin late
gene profiles. Indeed, ethylene was recently shown to
directly influence local auxin biosynthesis through
activation of the WEAK ETHYLENE INSENSITIVE8
gene product that encodes for a Trp aminotransferase
activity necessary for auxin biosynthesis (Stepanova
et al., 2008). ACC180 signatures show robust negative
correlation with ZEA, as ethylene is known to be
antagonistic to cytokinin (Kudryakova et al., 2001).
For example, the homeobox gene KNOTTED-LIKE
FROM ARABIDOPSIS THALIANA2 acts synergisti-
cally with cytokinins and antagonistically with ethyl-
ene (Hamant et al., 2002).

The analysis carried out here documents a high
degree of overlap in transcriptional responses and is
consistent with the conclusions drawn by Goda et al.
(2008). The vector-based algorithm allows continuous
quantitative monitoring of comparisons, yielding a
robust and revealing picture of hormone interactions.

Hormone Signatures of Mutants in Hormone Pathways

We further validated HORMONOMETER analysis
by screening experimental data from hormone biosyn-
thesis and signal transduction mutants. Figure 3 (for
numerical values, see Supplemental Table S2) illus-
trates examples of such analysis for a series of mutants
compared with their wild-type control.

CORONATINE INSENSITIVE1 (COI1) is required
for JA-induced growth inhibition and encodes for an
F-box protein (Xie et al., 1998). Its effect was previously
examined in the context of JA responses, and 84% of
JA-sensitive genes were found to be changed in the
coi1mutant (Devoto et al., 2005). Vector-based analysis
of this mutant (grown under nonstressed conditions)
shows consistent negative correlation of the MJ signa-
ture. The negative signature indicates that the stress-
associated JA hormone exerts a significant effect during
normal physiological growth. Interestingly, additional
negative signatures appear, particularly for all GA
signatures, while ABA (60 and 180) has a significant
positive signature. GA and JA were shown to act syn-
ergistically on trichome induction (Traw and Bergelson,
2003). Apparently in seedlings, as revealed by
HORMONOMETER analysis, additional cooperative

Figure 3. Clustergram representation of hierarchical tree groups of
transcriptomes from experiments conducted in hormone biosynthesis
or hormone signal transduction mutants. The following experiments
were screened: det3_22, det3_22NO3, and det3_16 are det3 mutants
at 22�C with or without nitrate and at 16�C; nahG, salicylate hydrox-
ylase-expressing mutant; arrOX, ARR21C overexpression mutant; ein2,
ethylene-insensitive mutant ein2; ga, GA biosynthetic mutant ga1;
coi1, JA signaling mutant coi1; ctr1, constitutive ethylene response and
wounding mutant ctr1. The hormone data and color-coded evaluation
are as in Figure 2, while the sources of the particular experiments are
tabulated in Supplemental Table S7.
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interactions are present that are abrogated in coi1. ABA
deficiency causes an increase in the basal levels of JA
response genes (Anderson et al., 2004), and application
of JA strongly down-regulates ABA biosynthetic genes
(Jung et al., 2007). Thus, the lack of basal JA responses
in the coi1 background appears to promote the ap-
pearance of an ABA signature.
JA and SA are known to exhibit antagonistic rela-

tionships (Koornneef and Pieterse, 2008). However, this
is not strongly registered in the transcriptome of coi1,
where the SA signature is slightly repressed. Nonethe-
less, that relationship is clearly seen in the analysis of
NahG plants. NahG plants express salicylate hydroxy-
lase and cannot accumulate SA (Delaney et al., 1994).
The signature for SA is strongly negative, as expected,
and strong positive values are registered for all MJ
signatures due to the loss of basal-level suppression by
the lack of endogenous SA (Fig. 3). Inspection of the coi1
hormonal signature exemplifies another striking prop-
erty. With the exception of ABA responses, all other
hormones are, to a greater or lesser degree, negatively
correlated. This may have to do with the evidence that
auxin, jasmonic acid, GA, and ethylene signaling are
mediated by specific F-box protein-encoding genes. As
the specific F-box proteins compete for binding to the
SCF complex (for Skp1, cdc53/cullin, and F-box pro-
teins), it may be that the coi1 mutation interferes with
the control of individual hormone signals through this
interaction. In this respect, ABA is exceptional, as it is
not known to be associated with the SCF complex, and,
as noted above, its positive signature in coi1 plants is
evident (Yu et al., 2007).
Inspection of JA relationships among the recently

described de-etiolated3 (det3) mutants of the vacuolar
ATPase subunit C can provide insight about the quan-
titative nature of the hormone signatures. This mutant
was originally identified as a negative regulator of
photomorphogenesis (Schumacher et al., 1999). It
shows a conditional defect in hypocotyl elongation
in dark-grown seedlings (i.e. it exhibits either a re-
duced or a complete absence of phenotype at room
temperature, a mild phenotype at 16�C, and a more
severe phenotype in the presence of 5 mM nitrate). The
manifestation of the unstable phenotype was shown to
be correlated with JA accumulation and was abro-
gated in the double mutant det3/OPDA-reductase3
(Brux et al., 2008). The average correlation values (of
the three time points) using the hormone index for the
JA signature are 0.35, 0.37, and 0.47 for det3 at 22�C,
16�C, and 22�C + 5 mM nitrate, respectively (Fig. 3;
Supplemental Table S2). The similarity of the pheno-
type gradations and the JA hormone signature values
testify to the ability of the HORMONOMETER to
detect fine differences in physiological states.
The ethylene insensitive2 (ein2) mutant shows the

expected negative ACC signature, particularly at later
times (i.e. ACC60 and ACC180). Interestingly, the ein2
mutant shows a consistent ABA-positive up-regulated
signature. The relationship between ABA and ethylene
is complex. In seed germination, ethylene has been shown

to be a negative regulator of ABA, although in root
growth, ein2 is required for ABA response (Beaudoin
et al., 2000). ABA was also shown to inhibit ethylene-
induced hyponastic (upward) leaf growth (Benschop
et al., 2007), although, in all, this result is unexpected.
The hormone signature of ethylene can also be seen in
examination of the constitutive triple response1 (ctr1)
mutant. CTR1 encodes for a Raf-like kinase, and the
ctr1 mutant constitutively exhibits the phenotypes
observed in plants treated with the plant hormone
ethylene. The analysis shows a marked ethylene sig-
nature for ACC60 and particularly for ACC180, con-
sistent with the constitutive nature of ethylene
perception in the ctr1 mutant (Fig. 3). The reciprocal
nature of ein2 and ctr1 behavior is notable across all
signatures. Where ABA and BR signatures are prom-
inent in ein2, they are negatively correlated in ctr1,
lending credence to the significance of the signatures.
The significant repression of the JA signature in ctr1
is less expected, as JA can show synergy with ethylene
for the induction of plant defensins (Penninckx et al.,
1998). However, in other cases, antagonistic relation-
ships were shown. For example, the JASMONATE
RESISTANT1-dependent JA pathway halts oxidative
cell death promoted by ozone by directly suppressing
ethylene signaling (Tuominen et al., 2004).

In GA requiring1 ( ga1) mutants, GA biosynthesis is
repressed due to the lack of ent-kaurene synthase A,
which catalyzes the first committed step in the bio-
synthetic pathway of GA (Sun and Kamiya, 1994).
Along with the expected absence of a GA signature,
the complete hormonal signature response shows en-
hanced ABA and early BR signatures. The strong ABA
signature is expected, as GA and ABA not only mu-
tually inhibit each other’s biosynthesis but also pro-
mote each other’s catabolism. GA negatively regulated
DELLA proteins, and they, in turn, targeted XERICO,
which promotes the accumulation of ABA (Zentella
et al., 2007). Strikingly, the repression of the SA signa-
ture in ga1 is even more negative than the missing
cognate GA signatures. The reciprocal antagonistic
relationship of SA and GA (note the result of NahG
above) has not been noted before and needs to be
further investigated.

ARABIDOPSIS RESPONSE REGULATOR21 (ARR21)
is a representative of the type-B ARR transcription
factors and positively regulates cytokinin responses.
Overexpression of the constitutively active ARR21C
protein results in abnormal development, with tissues
resembling in vitro callus (Tajima et al., 2004). Analysis
carried out by the FARO algorithm showed strong
associations between ARR21C and ZEA treatments
(Nielsen et al., 2007). That result is confirmed here (Fig.
3, ARRox) and further extended to show low-level but
consistent ACC signatures. In summary, the results
using mutants in hormone biosynthesis or signal trans-
duction validate the vector-based HORMONOMETER
strategy and show both expected and unexpected find-
ings underlining the considerable complexity of hor-
mone signatures.
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Hormonal Signal Signatures during Plant-Insect and

Plant-Pathogen Interactions

Plant surveillance and response systems have
evolved to provide an answer to the diversity of
pathogen lifestyles. Plant-pathogen or plant-pest in-
teraction triggers the biosynthesis of SA, ethylene/
ACC, and JA. The balance of these hormone systems
determines resistance to particular pathogens and pests.
Broadly put, SA has been implicated in local and sys-
temic resistance to biotrophic pathogens (Glazebrook,
2005), hypersensitive responses are associated with
ethylene production (Bouchez et al., 2007), and JA and
ethylene contribute to resistance against necrotrophic
pathogens or chewing insects (Glazebrook, 2005). The
defense hormones show both antagonistic and coop-
erative actions that are further tempered by growth-
stimulating phytohormones such as those controlling
auxin, ABA, and GAs (Wang et al., 2007). The tran-
scriptome of herbivory, pathogenesis, and environ-
mental stress has been well articulated in relation to
stress-hormone relationships. Less emphasis has been
devoted to following concomitant growth hormone
responses, although it is well appreciated that the
cessation of growth plays an important role in the
diversion of metabolic potential to defense. HOR-
MONOMETER analysis of the hormone indexes is
well suited for exemplifying these interactions, as
shown below.

De Vos et al. (2005) monitored the dynamics of SA,
JA, and ethylene accumulation and the concomitant
transcriptome response due to attack by a range of
plant pests. Among the microbial pathogens investi-
gated were Pseudomonas syringae pv tomato, the causal
agent of bacterial speck disease that will initiate sys-
temic acquired resistance pathway responses when it
contains avirulent genes, and Alternaria brassicicola, a
necrotrophic plant pathogenic fungus that grows on
the Arabidopsis phytoalexin deficient3 mutant, causing
spreading necrotic lesions. Among the herbivorous
insects were Pieris rapae and the thrip Frankliniella
occidentalis. The former chews leaf parts, while the
latter punctures the leaves and sucks up the exuding
sap. In contrast, the aphid Myzus persicae passively
feeds on sap of phloem vessels through a stylet. In
addition to these data, a second type of phloem feeder
is also examined here, the silverleaf whitefly (Bemisia
tabaci type B; Kempema et al., 2007).

As shown in Figure 4 and Supplemental Table S3,
the highest correlation values for the MJ signature are
observed for the scraping-type herbivorous insects P.
rapae (Prap) and the thrip F. occidentalis (Focc), while
the lowest are forM. persicae (Mper) and B. tabaci (Btab).
These results confirm and broaden the “attacker-
specific” profile described for the MJ response (De
Vos et al., 2005). Surprisingly, B. tabaci interaction
leaves a strongerMJ footprint thanM. persica, although
the former is thought to cause less damage to epider-
mal or mesophyll cells prior to phloem puncture
(Kempema et al., 2007).

P. syringae-infected leaves accumulated relatively
high levels of SA (De Vos et al., 2005), and analysis
of the transcriptome reveals a high SA signature
correlation (0.54; Fig. 4). However, the other treat-
ments also show a degree of SA-dependent signature
(.0.26). These results could indicate a potentiation of
sensitivity to SA rather than SA accumulation, as has
been observed in other systems (Shirasu et al., 1997).
Alternatively, herbivores like the aphidM. persicae and
B. tabaci attempt to evade wound response by SA-
induced repression of JA. This mechanism has been
suggested for stylet feeders and particularly B. tabaci
(Walling, 2008). Yet, inspection of Figure 4 shows that
in the other herbivores, similar SA signature correla-
tions are evident without accompanying repression of
jasmonate-dependent responses. Indeed, in contrast to
previous reports, in these experiments M. persicae
appears to be more effective in the repression of global
MJ signatures than B. tabaci (Kempema et al., 2007).
These results likely indicate that additional mecha-
nisms for wound stress avoidance in M. persicae-plant
interactions come into play beyond direct repression
of MJ responses through SA action.

Interestingly, most insect-plant interactions shown
here appear to have a slight negative impact on ZEA
signatures, which may reflect the decrease in growth
rates brought about by the insect infestation. Another
unexpected common feature is the increased 6-h and 9-h
GA signatures (GA6h and GA9h). If this observed trans-
ciptome response is a direct result of GA biosynthesis, it
may be related to a distinct phytochemical defense
response. Indeed, GA has a specific negative effect on
insect growth and is used as such in specific chemical
applications (Alonso, 1971; Kaur and Rup, 2002; Uckan
et al., 2008). Alternatively, changes common to all treat-

Figure 4. Clustergram representation of hierarchical tree groups of
transcriptomes from plant-pathogen or plant-pest interactions. The
indexes of hormone action appear on the abscissa, and the treatments
appear on the ordinate. Treatments are as follows: Mper, M. persicae;
Prap, P. rapae; Focc, F. occidentalis; Psyr, P. syringae pv tomato; Abra,
A. brassicicola; Btab, B. tabaci. The hormone data and color-coded
evaluation are as in Figure 2, while the sources of the particular
experiments are tabulated in Supplemental Table S7.
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ments may represent an age-dependent effect for these
particular experiments, as pointed out in Figure 2A.
Actual increased production of the hormone ethyl-

ene was measured in P. syringae and A. brassicicola (De
Vos et al., 2005). However, all other plant-pest interac-
tions except B. tabaci show an unexpected early and
sometimes late correlation with ethylene signatures.
Aphids are known to induce ethylene production in
cereals (Anderson and Peters, 1994; Argandona et al.,
2001), but this has yet to be shown in dicots.
Remarkably, the vector-based analysis detects a

significant auxin signature specific for P. syringae in-
fection. The infections above were carried out using an
avirulent strain that contains the avrRpt2 effector
protein. It was recently shown that transgenic seed-
lings expressing avrRpt2 protein exhibit increased
auxin sensitivity and increased auxin levels (Chen
et al., 2007). As application of auxin can enhance
disease symptoms, it was hypothesized that avrRpt2
may enhance the virulence of P. syringae by activating
host auxin physiology. In this case, the higher SA
levels/sensitivity that are evident may be part of a
plant defense shift, as enhanced SA levels have been
shown to decrease auxin sensitivity (Wang et al., 2007).
In diverse plant-pathogen interactions, exemplified

by P. rapae, F. occidentalis, and M. persicae, a significant
correlation signal is detected in early BR signatures
(Fig. 4). The possibility that direct MJ applications
induce such BR signatures as seen in Figure 2C does
not explain the M. persicae BR responses, as it has no
MJ signature. Alternatively, elevated BR levels/sensi-
tivity have been shown to enhance tolerance in plants
toward biotic and abiotic stresses (Dhaubhadel et al.,
1999; Nakashita et al., 2003). A gene expression profile
of lines defective in a step leading to BR biosynthesis
shows lower transcript levels of stress-related genes
(e.g. RAS-RELATED IN BRAIN18 and COLD REGU-
LATED47), which indicates that brassinosteroids are
required for these responses (Mussig et al., 2002). As a
dual role for brassinosteroid receptors in development
and pathogenesis has been reported (Montoya et al.,
2002), it is not difficult to envision multiple inputs to
this pathway. The results in Figure 4 exemplify the
sensitivity of the vectorial approach to identify the
underlying complexity of plant physiological re-
sponses related to hormones.

CONCLUSION

The HORMONOMETER application uses a vector-
based correlation algorithm to compare transcrip-
tomes with indexed data sets of hormone treatments.
It was shown here to accurately discern gene signa-
tures as related to plant hormone action. Importantly,
the algorithm is not limited to this application and can
readily be generalized for the treatment of other rel-
evant biological circumstances by thoughtful selection
and processing of select data sets. For example, it can
be applied to discriminate the developmental stage of

a leaf based on microarray data obtained from differ-
ent ages of leaves or to discern the physiological state
of a plant based on microarray data acquired from
plants under different abiotic stresses. The HORMON-
OMETER application detailed here offers a novel
portal by providing the user with calibrated correla-
tion values that reflect a change in hormone-related
transcript levels caused by external stimuli or muta-
tion. The utility of HORMONOMETER is in providing
a facile overview of hormone signatures that permits
primary analysis of new mutants and novel environ-
mental insults. HORMONOMETER can be accessed
through user interface by submission of data in a
“comma separated values” file format that includes
fold change and the P value for each gene in the
transcriptome to be examined. The user receives the
computed correlation ranks for each of the hormones
in a table and a clustergram that arranges the exper-
iments according to their similarity to each other in
terms of the ranks. The tool can be accessed at http://
genome.weizmann.ac.il/hormonometer/.

MATERIALS AND METHODS

Microarray Experiments and Data Processing

CEL files for the Affymetrix ATH1microarray data were downloaded from

the following Web-available databases: The Arabidopsis Information Re-

source (Swarbreck et al., 2008) and Gene Expression Omnibus (Edgar et al.,

2002). The experiments included in this work are summarized in Supplemen-

tal Table S7. The data arising from the microarray experiments were analyzed

utilizing the Partek genomics solution (Downey, 2006). The processing of the

data included quantile normalization according to the Robust Multiarray

Analysis algorithm (Irizarry et al., 2003) and a one-way standard ANOVA

model, treating each condition as a factor (seven treatments with three time

points and one treatment with one time point = 22 conditions).

Building the Vector-Based Algorithm for the Hormone
Response Index

In order to build the index, the results were first processed by quantile

normalization as described above. The transcripts were then arranged by their

decreasing absolute fold change values (i.e. up- and down-regulated tran-

scripts). A Perl script was written to find for each condition the 1,000

transcripts with the most variable expression between the treatment and its

control (i.e. the 1,000 highest absolute values of the fold change that have P ,
0.05 from ANOVA modeling). The script utilizes fold change comparisons

versus control samples to extract a gene expression index representing each

experiment of individual hormone application. A summary of indexes gen-

erated for all hormone treatments is tabulated in Supplemental Table S4. The

script uses an algebraic vector-based comparison to compare two experi-

ments. When this is carried out over the 1,000 transcripts that constitute the

index, they describe a Euclidean space of a multidimensional space.

Thus, for a particular signature:

V ¼ ðv1; v2; v3:::vnÞ

where v1, v2, v3, etc. represent the fold changes for each transcript in an

index of size n. The list is used to define the vector in the particular experiment

being scanned:

U ¼ ðu1; u2; u3:::unÞ

where u1, u2, etc. are conditionally included if their P value is ,0.05. The

cosine of the angle between the two vectors is then calculated:

V×U=ðjVj×jUjÞ

The resulting rank score is between 21 and 1. The closer the two vectors

are, the higher the result. Two opposite vectors will result in a rank of21. A
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simplified example and figure are provided in Supplemental Figure S1. A

table of transcripts used for each hormone treatment is provided in Sup-

plemental Table S4, and a Perl script of the algorithm will be provided on

request.

FDR and Random Sampling Methods

When dealing with large numbers of individual measurements, the appli-

cation of multiple hypothesis testing, FDR, can be appropriate to reduce the

chance of false values (Benjamini and Hochberg, 1995). However, as detailed

below, the vector-based algorithm used here can distinguish false values, as

they have an equal chance of being positive or negative, effectively canceling

each other out. Therefore, no further statistical processing is necessary.

We examined the appropriateness of further data processing by imple-

menting FDR in the following manner. We first generated lists of 1,000

transcripts for each individual hormone treatment by applying a predefined

fold induction criterion. For example, an index was generated for the MJ30

transcriptome by selecting 1,000 transcripts that were expressed at least 1.28-

fold (absolute value) without considering their P values. The data sets to be

screened by the index were then corrected by FDR for n = 1,000 and a = 0.05.

The results are shown in Supplemental Table S5. When these results were

compared with non-FDR processed correlation values (Supplemental Table

S1), in which the selection criterion was noncorrected P , 0.05 (both to build

the index and in the transcriptome data set screened), some differences were

noted. As expected, the number of retrieved genes after FDR computation was

much reduced. FDR correction tends to remove the lower fold induction

values preferentially, as they tend to have lower P values. However, the low

fold induction values are precisely those that are expected to be prominent

when, for example, a hormone experiment is screened by its noncognate

index. Furthermore, after FDR correction, only a few results are left, and the

correlation values obtained by the vector analysis become erratic and can even

change signs. For example, the results of the MJ30 index used to screen ZEA

are as follows (2FDR/+FDR): ZEA30 (20.01/20.25), ZEA60 (0.25/0.23), and

ZEA180 (0.19/21; compare Supplemental Tables S1 and S5). On the other

hand, without applying FDR prescreening, the numbers of transcripts

scanned for the vector analysis is much larger and the correlation results are

more consistent. That is because the vector-based algorithm easily distin-

guishes between signal and noise. “Noise” in the signature (i.e. false values)

has an equal chance of being positive or negative, which would cancel each

other out in vector analysis. This supposition is readily illustrated when the

fold induction values and the P values are shuffled for a given index. For

example, when the MJ180 transcriptome data were shuffled and then ana-

lyzed by the hormone index, a mean of 181 genes was scanned in each ex-

periment but the absolute value of the correlation scores was near zero (0.056
0.04; Supplemental Table S6). In the case of correction for FDR, the results are

based on a lower number of genes scanned (mean = 48) but a much larger SD of

the correlation scores 0.138 6 0.1. Importantly, the vector algorithm can

discern the low fold induction trends within the transcripts scanned if these

are coherent with the signature. Hence, an increase in noise, the result of using

larger indexes (i.e. uncorrected FDR input), will tend to reduce the correlation

value but only slowly (Fig. 1). Thus, application of FDR, while perhaps

providing amore secure database, also removes useful information that can be

used safely by vector analysis. Due to these considerations, uncorrected P ,
0.05 values were adopted throughout.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Example of the application of the vector-based

correlation for comparison of the expression of three transcripts under

two different conditions.

Supplemental Table S1. A, Table of correlation values for Figure 2A. B,

Table of correlation values for Figure 2C.

Supplemental Table S2. Table of correlation values for Figure 3.

Supplemental Table S3. Table of correlation values for Figure 4.

Supplemental Table S4. Summary of indexes generated for all hormone

treatments.

Supplemental Table S5. Correlation values obtained by correction for FDR

(the FDR correction used was n = 1,000 and a = 0.05).

Supplemental Table S6. Correlation values and signature size for ran-

domized MJ180 data.

Supplemental Table S7. Source of CEL files used in this work.
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