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Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to
inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves
transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem
and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of
growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a
significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the
primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem
differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water
relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and
other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates
to the growth zone.

Plant growth involves water uptake by the cells and
expansion of the cell walls under the resultant turgor
(internal hydrostatic pressure). The water uptake and
increase in cell volume are accompanied by nutrient
and metabolite deposition. Thus, hydraulics of growth
(i.e. the energies, conductivities, and fluxes of water in
growing tissue) are fundamental to understanding
primary plant growth. Quantitatively, the driving
force for water movement in the plant, as in other
porous media, is considered to be the gradient in water
potential (C), an energy per unit volume given in MPa.
Thus, primary growth can be modeled by considering
plant tissue to be a distributed sink for water, with low
C and/or high hydraulic conductivity driving water
deposition into rapidly expanding regions. Molz and
Boyer (1978) developed the theoretical basis for pre-
dicting the radial water flux in one dimension within
the intercalary meristem of growing soybean (Glycine
max) hypocotyls. In this aerial tissue, water moves
from the xylem both outward to the epidermis and
inward to the pith. Thus, in the growing hypocotyls, C

is predicted to be least negative in the xylem and to
decrease toward the epidermis and the pith. These
predictions for growth-induced or growth-sustaining
C were confirmed when the experimental technology
became sensitive enough to detect the gradients in C
(Nonami and Boyer, 1993). Passioura and Boyer (2003)
expanded the theory to incorporate anatomical detail
and corresponding spatial patterns of hydraulic con-
ductivity. Their model explains experimental results
on water relations during growth transients for many
areas of the plant.

The hydraulics of root growth differ from shoot
growth because of differences in xylem anatomy. Root
xylem becomes functional perhaps 1 cm behind the tip
and well behind the growth zone. To enter the growing
cells near the maize (Zea mays) root tip, externally
supplied metabolites must move several millimeters
without phloem (Fig. 1), and any water supplied by
functional xylem would need to move more than 1 cm.
Silk and Wagner (1980) provided a theoretical frame-
work for a two-dimensional treatment of the growth-
sustaining C gradients in maize roots. They assumed
that the water source was external (the soil or root-
bathing medium) and that the root surface was in
equilibrium with the soil or bathing medium, so that
the flow path to growing cells in the root was pre-
dicted to be primarily inward. As in the shoot model,
growing tissue was seen as a distributed sink for
water. However, since the publication of that theory, ex-
perimental studies have revealed that the root tip is
not in equilibrium with the bathing medium (Pritchard
et al., 1996, 2000; Gould et al., 2004; Shimazaki et al.,
2005). Pressure probes combined with osmotic poten-
tial determinations have shown that the C of exterior
root cells ranges from 20.17 to 20.6 MPa, depending
on environmental conditions. This range is more
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negative than in the nutrient medium. Furthermore,
evidence has accumulated that at least some water
for root growth comes from the phloem. The most
obvious evidence is perhaps the growth of nodal
(adventitious) roots of maize, rice (Oryza sativa), and
other gramineous plants (Westgate and Boyer, 1985).
This growth is a normal part of crop development.
The nodal roots grow through air and then dry

layers of surface soil, making it unlikely that the
expanding root cells obtain water from the dry
media surrounding the root. Empirical and theoret-
ical studies have concluded that the phloem proba-
bly provides water for growth of the primary maize
root (Bret-Harte and Silk, 1994; Frensch and Hsiao,
1995; Pritchard, 1996; Pritchard et al., 1996, 2000;
Hukin et al., 2002; Gould et al., 2004).

The model described here follows the concepts of
Pritchard and colleagues (1996, 2000) in assuming a
pressure-driven bulk flow of solution through the
phloem to the region where phloem is beginning to be
functional (1–4 mm from the apex; Fig. 1). Water move-
ment can occur from both the surrounding soil and the
developing phloem. Henceforth, we refer to the ‘‘external
water source equilibrium’’ or EE model, for which the
boundary condition is solely an exterior medium of fairly
high C (20.005 to 20.05 MPa) and no conditions are
placed on the phloem C (Table I). This EE model assumes,
as did Silk and Wagner (1980), that the exterior of the root
is in equilibrium with its bathing solution. Empirical
studies have shown that this model is not realistic,
because the root maintains peripheral cells at more
negative C than the bathing medium. Since this is hy-
pothesized to occur by deposition of apoplastic solutes,
we will refer to a model with external water source and
apoplastic solutes near the exterior as the EASE model.

A ‘‘multiple source’’ model places boundary condi-
tions on the C of both the bathing medium and the
phloem to simulate both external and internal source
activity, so we will refer to this model as the PEWS (for
phloem and external water sources) model.

THEORETICAL BACKGROUND FOR THE MULTIPLE
SOURCE MODEL

Relationship between Growth and W

The relative elemental growth rate (L), equal to the
divergence of the growth velocity (g~), is a measure of

Figure 1. Primary root growth zone. The tip of the seedling root of
maize showing the meristem as part of the apical third of the elongation
zone. The boundary of this root section was digitized to provide the
computational body-fit grid used for the model. [See online article for
color version of this figure.]

Table I. Acronyms for models and definitions of symbols used in mathematical modeling

Acronym Boundary Condition

EE External water source Equilibrium

EASE External water source and Apoplastic Solutes near the Exterior

PEWS Phloem and External Water Sources

Symbol Physical Significance Units

L Relative elemental growth rate ð= � g~Þ h21

g~ Growth velocity vector mm h21

J~ Water flux vector mm h21

K
// Hydraulic conductivity tensor mm2 s21 MPa21

C Total water potential MPa
n~ Unit normal to the surface
s Control surface mm2

V Control volume mm3

r Radial coordinate mm
z Longitudinal coordinate mm
x, y Cartesian coordinates mm
J Jacobian Matrix of Transformation
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the local growth rate (see Table I for variable defini-
tions). Following Silk and Wagner (1980), it is assumed
that water moves via a version of Darcy’s law relating
water flux to the gradient in C. To cross a cell wall and
inflate the cell, water velocity ( J~) must be greater than
the velocity g~ with which the cell wall is being
displaced during growth.

Water Entering Cell [ J~2 g~5 2 K
!!� =C

By the Reynolds transport theorem, in three dimen-
sions Z

S

ðJ~2 g~Þ� n~dS 5

Z
S

ð2K
!!� =CÞ� n~dS

By the divergence theoremZ
V

=� ðJ~2 g~ÞdV 5

Z
V

=� ð2 K
!!� =CÞdV

Since water is incompressible, = � J~5 0 and L can be
related to the local C required to drive the growth-
sustaining water influx:

L 5 =� g~5 =� ðK
!!� =CÞ ð1Þ

The velocity with which a cell moves depends on the
rate at which it is displaced by those cells behind it and
its own expansion. If the divergence of velocity is 0, the
cell is simply displaced and not actually expanding.
Equation 1 predicts that in the absence of a C gradient
there would be no expansion. More generally, the
governing equations (1) can be used to calculate the
growth-sustaining C using experimental data for the L
and hydraulic conductivity (Silk and Wagner, 1980;
Boyer and Silk, 2004).

Assumptions

The PEWS model extends the previous external root
growth model by including the assumption that some
water is being supplied from nongrowing tissue via
the root phloem and protophloem. The phloem de-
velops closer to the root tip than the xylem and chan-
nels water from the mature regions into the growth
zone (Bret-Harte and Silk, 1994; Frensch and Hsiao,
1995; Pritchard, 1996; Pritchard et al., 2000). We as-
sume the following.

(1) The root tissue is cylindrical beyond the para-
bolic root tip, with radius r. Growth is radial and
longitudinal near the maize root tip and in the
direction of the long axis z beyond z 5 2 mm.

Figure 2. Model predictions of growth-sustaining C (MPa) displayed as a color or gray scale map (scale above the panels) on a
median longisection through the growth zone. Direction of flux of the water pathway is denoted by arrows of equal length. A, EE
model (external source, root in equilibrium with bathing medium). B, EASE model (external source, gradient at root boundary). C,
PEWS model (external and phloem sources, gradient at root boundary). [See online article for color version of this figure.]
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(2) The growth pattern does not change in time.

(3) Conductivities in the radial (K
!!r) and longitudi-

nal (K
!!z) directions are independent, so radial

flow is not modified by longitudinal flow.
(4) The water needed for primary root growth is

obtained from both the surrounding growth me-
dium and the internal protophloem sources. In
our PEWS model, this assumption is embodied by
maintaining the bathing medium C close to zero
(C 5 20.05 MPa in many empirical studies) and
the protophloem C less negative than the interior
cells (C 5 20.20 MPa; Pritchard et al., 1996).

(5) For both the EASE and the PEWS models, the
cells at the periphery of the root growth zone

have a total C gradient as measured by Pritchard
et al. (1996), increasing from 20.27 MPa below
z 5 2.5 mm to 20.15 MPa at z 5 12 mm.

Numerical Approach

The governing equations (1) were converted to
three-dimensional generalized coordinates, a method
that converts grid components (x, y, z) into orthogonal,
equally spaced grid components (j, h, z) related by the
Jacobian matrix of the transformation and a converted
generalized equation (Fletcher, 1991). (This model
does not convert the governing equations into a radial
coordinate system, which was the approach used by

Figure 3. Model predictions of growth-
sustaining C displayed on three-dimen-
sional views of radial cross-sections.
Legend is as for Figure 2. [See online
article for color version of this figure.]

Table II. Sensitivity analysis test values

Variable values tested for the mathematical model sensitivity analysis. Boldface values were those used to calculate typical root growth condition
results.

Variable Physical Significance Values Tested

rmax Maximum root radius at z 5 10 mm rmax 5 0.3 mm, 0.5 mm, 0.7 mm
phloem_stop Distance from root tip that the protophloem

source extends into the growth zone (mm)
phloem_stop 5 2.1 mm, 4.1 mm, 6.1 mm

K
//

Hydraulic conductivity K: K
//r 5 K

//z 5 1.3 3 10210 m21 s21 MPa21

K9: K
//r 5 K

//z 5 1.3 3 1029 m21 s21 MPa21

K11: K
//r 5 K

//z 5 1.3 3 10211 m21 s21 MPa21

L Relative elemental growth rate See Figure 8D for data used in simulations
rs Radius of protophloem sources rs 5 0.07 mm
ra Radial distance of sources from the center axis ra 5 rmax/4
Cs C value of source cells Cs 5 0 MPa, –0.2 MPa (Pritchard, 1996; Pritchard

et al., 1996), 20.46 MPa (Warmbrodt, 1987)
Cboundary C value of root boundary Varies from 20.27 MPa for z 5 2.5 mm, increasing

(becoming less negative) to 20.15 MPa at
z 5 12 mm (Pritchard et al., 1996)

Csoln C value of solution boundary Csoln 5 20.005 MPa (Pritchard et al., 1996)
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Silk and Wagner [1980] and Boyer and Silk [2004].) A
second order finite difference approximation is used to
solve the given generalized governing equations on
the computational orthogonal grid. A literature review
resulted in estimates of radial hydraulic conductivity

in the range 7.3 3 10211 m2 s21 MPa21 , K
!!r , 5 3 10210

m2 s21 MPa21. We choose K
!!r 5 1.3 3 10210 m2 s21

MPa21 as a reference value from the empirical value of
Frensch and Hsiao (1995). For more details, see ‘‘Ma-
terials and Methods.’’

RESULTS

The three models predict different distributions of
growth-sustaining C in the root tip (Figs. 2 and 3).
Figure 2 provides a two-dimensional summary of the
three-dimensional results of the models by showing the
median longisection (not to scale) with the calculated
Cs. The coloring or shading of all plots is contoured for
C relative to the minimal C value, with the colors
starting in blue at C 5 0 (pure water) and decreasing in
value to Cmin 5 20.35 MPa (red or darkest gray). The
EE and EASE models (Fig. 2, A and B, respectively)

produce a shallow gradient in growth-sustaining C. In
a root median longisection, the spatial pattern of C has
egg-shaped isopotential regions. The potential is most
negative in the center of the root and at the region of
fastest growth rate. The flux of the water pathway (Fig.
2, A and B, directional arrows) is primarily inward
radial water movement from the external soil water
source, with velocity of water movement decreasing
with distance from the source at the boundary. The flux
is also related to the growth pattern (L; see Fig. 8D), with
no water flux at the top boundary (z 5 10 mm) where L
5 0 h21 and a gradual increase of flux with an increase
of growth leading to maximum flux occurring at the
area of maximum growth.

The key difference between the EE and EASE re-
sults are shown in the coloration or shading of the
gradient. For the EE model, the root tissue C remains
close in value to the bathing solution (Figs. 2A and
3A). These results replicate the values produced by
the computational methods and boundary values
used by Silk and Wagner (1980); thus, Figures 2A
and 3A indicate that the more powerful program
developed for this study is capable of generating the
results of earlier approaches. However, this solution

Figure 4. Effect of the extent of internal source shown by the PEWS model with different locations for the start of the phloem
source. A, Location 1 mm from tip. B, Location 2.1 mm from tip. C, Location 4.1 mm from tip. D, Location 6.1 mm from tip. E,
EASE model (no phloem sources). [See online article for color version of this figure.]
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2096 Plant Physiol. Vol. 150, 2009



does not resemble the results of empirical studies.
Instead, we look to the EASE model, imposing a
boundary condition that is a steep differential be-
tween the C of the exterior cells and the bathing
solution. The results produce a steep gradient in
growth-sustaining C, with the root interior reaching
C 5 20.35 MPa (Figs. 2B and 3B).

The multiple source or PEWS model assumes that
there is an additional water source supplied from the
protophloem. Thus, the PEWS model imposes an
additional boundary condition, C 5 20.2 MPa, where
phloem and protophloem are present. The results of
this model are seen in Figures 2C and 3C. In a root
median longisection (Fig. 2C), the spatial pattern of C
no longer has the egg-shaped isopotential regions (Fig.
2, compare B and C). The magnitude of the growth-
sustaining C gradient is considerably less than re-
quired by the EASE model (Fig. 3, compare B and C).
Comparing the flux reveals that for both EASE and
PEWS, water movement (flux) decreases with distance
from the source. However, in the area of maximum
growth, EASE predicts that the water moves mostly
inward. In contrast, in PEWS there is both outward
flux from the protophloem and inward radial water
movement from the external water source (see flux
arrows in Fig. 2, B and C). The PEWS model results in a

C field closest to that found by Pritchard et al. (2000)
and Hukin et al. (2002).

Sensitivity Analysis

The mathematical models were used to determine
the sensitivity of the growth-sustaining C field to
morphological, anatomical, and hydraulic parameters:
root radius (rmax), the length and position of the

phloem source, and hydraulic conductivity (K
!!

) as
described in Table II. The results demonstrate that
the magnitude of the growth-sustaining C value be-
comes much less sensitive to root radius and hydraulic
conductivity when phloem sources are included; that
is, PEWS gives radial C gradients that are not much

influenced by root radius or a change in K
!!

. However,
the growth-sustaining C is particularly sensitive to the
location of phloem differentiation. To assess the im-
portance of the phloem anatomy, we first assumed that
all phloem and protophloem within the growth zone
acts as a source and tested the effect of the source
length (i.e. we solved Eq. 1 assuming phloem differ-
entiation at different distances from the tip). As the
length of the phloem source is made shorter (the
location to which phloem supplies water is decreased

Figure 5. Effect of internal source limited to 1 mm in length shown by the PEWS model with the limited source located at
different distances from the tip: 1 to 2 mm (A), 2 to 3 mm (B), 3 to 4 mm (C), and 4 to 5 mm (D). [See online article for color
version of this figure.]
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from z 5 1 mm to z 5 6.1 mm), Cmin becomes more
negative (Fig. 4). The shorter the source is, the more
closely the results of the PEWS model resemble those
of the EASE model (Fig. 4E). It is not known whether
all of the phloem in the growth zone provides water
(extended phloem source) or whether a short zone of
developing protophloem provides the osmotically di-
lute solution (limited phloem source). Figure 5 shows
the effect of 1-mm-long phloem sources located at
different distances from the apex. If the source is found
1 mm from the tip, the most negative C is found in the
region distal to 2 mm. If the protophloem acts as a
water source 3 mm from the tip, the more negative C is
found in the region apical to the source. If the source
extends from 4 to 5 mm, the PEWS model closely
resembles the EASE model. These profiles show that
the limited phloem sources have a very local influence
over the C of the root. At the end of the source, the C
values quickly (within less than 1 mm) come to ap-
proximate the values of the EASE model.

Although the C values for all three models are sensi-
tive to hydraulic conductivity, it requires variation of 2
orders of magnitude to see a substantial effect when
phloem sources exist. In contrast, the EASE model

indicates large effects of K
!!

on the C field (Fig. 7A).

Thus, in Figures 6 and 7A, we see that when K
!!

decreases
by 2 orders of magnitude (from 1029 to 10211 m2 s21

MPa21), PEWS shows that Cmin declines by only 0.15
MPa while with EASE the Cmin declines by an additional
0.50 MPa. Interestingly, the presence of phloem sources
also makes the C field much less sensitive to root radius
(Fig. 7B) for PEWS. An increase of root radius from 0.3
to 0.7 mm causes a progressive decrease in interior C
with EASE but hardly changes the radial pattern of
growth-sustaining C for the PEWS model (Fig. 7B).

DISCUSSION

The multiple source model developed here has
more powerful numerics, full three-dimensional
treatment, and more computational power than was
available in older models. The results of the previous
model of Silk and Wagner (1980) were replicated. The
PEWS or multiple source root growth model extends
the previous external source root growth model by
incorporating boundary conditions consistent with
the empirical evidence that the exterior cells of the
root growth zone have considerably lower C than the
bathing solution. This recognition of disequilibrium
between root and soil solution C parallels ecological
studies emphasizing that predawn plant C, including
leaf C and root xylem C, are often more negative than
root zone soil C (Donovan et al., 2001; James et al.,
2006). Our PEWS model also includes the new as-
sumption that there is an additional water source that
is transporting water into the growth zone via the
protophloem. Within root-growing regions, it is com-
monly observed that turgor and osmotic gradients
are rather uniform across the root radius during
steady growth (Spollen and Sharp, 1991; Pritchard
et al., 2000). The results of PEWS are consistent with
these empirical results.

The assumption of internal water sources is also
consistent with work showing transport of water and
sugars from protophloem to the more apical root tissue
(Hukin et al., 2002; Gould et al., 2004) and effects of
light intensity on sugar transport and associated
growth rate patterns in roots (Muller et al., 1998;
Nagel et al., 2006). The new results also support the
concept of the hydraulic isolation of the growth zone,
as our thermodynamic transport model replicates an
empirical study showing that apical regions of maize

Figure 6. Sensitivity analysis for the
effect of hydraulic conductivity on
growth-sustaining C. The PEWS model
was used assuming radial and longitu-
dinal hydraulic conductivities equal to
1.3 3 1029 m2 s21 MPa21 (A), 1.3 3

10210 m2 s21 MPa21 (B), and 1.3 3

10211 m2 s21 MPa21 (C). [See online
article for color version of this figure.]
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roots are not affected by negative Cs in mature, more
distal regions (Zwieniecki et al., 2003).

The sensitivity analysis explains several adaptive
morphological features if we assume that a small
growth-sustaining C gradient facilitates growth under
stressful conditions. As the phloem initiation sites
become farther from the root tip (and the length of
nonvascularized tissue in the growth zone becomes
longer), the growth-sustaining C gradients become
larger and the PEWS solution approximates the EASE
model. These results indicate the adaptive value of one
of the known physiological responses to water stress:
more apical vasculature development (Beauchamp
and Lathwell, 1966). Surprisingly, the presence of
phloem water sources makes the growth-sustaining
water relations of the root rather immune to changes in
root radius. Thus, the reported thinning of roots under
water stress (Sharp et al., 1988) may be adaptive as a
way to produce osmotic adjustment or to economize
carbon allocated for elongation, rather than as a way to
permit growth with small C gradients. A related
insight is that the commonly observed thickening of
roots growing in hard soils would not necessitate
enormous changes in growth-sustaining Cs. Growth

of the thicker root tips would be facilitated by in-
creased flux to root protophloem and more apical
differentiation of the phloem.

The PEWS model could be extended to explore the
hydraulic interactions between root and soil if our
model is embedded in a porous matrix with appropri-
ate properties: hydraulic conductivity that decreases
with water content and flow governed by Darcy’s
law. This is a complicated problem numerically but
worthy of future study. The millimeter-to-meter scale
of our approach would provide information on the
relationships of soil hydraulic properties to growth and
would be a useful complement to larger scale models
that have shown complex time-dependent patterns of
soil water depletion around root systems (Clausnitzer
and Hopmans, 1994; Garrigues et al., 2006).

MATERIALS AND METHODS

Root Grid

To facilitate the numerical approach to this problem, a body-fitted grid was

created that approximates an average maize root (Figs. 1 and 8). The outer grid

surface was generated by averaging the boundary coordinates of maize roots in

Figure 7. Radial profiles of C showing how the
presence of phloem water sources produces different
sensitivities to hydraulic conductivity and root radius.
EASE model results are shown with dashed lines, and
PEWS model results are shown with solid lines. A,
Hydraulic conductivity values color coded as shown.

K9 represents K
//r 5K

//z 51:3 3 1029 m2 s21 MPa21. K

represents K
//r 5K

//z 51:3 3 10210 m2 s21 MPa21. K11

represents K
//r 5K

//z 51:3 3 10211 m2 s21 MPa21. B,
Root radius color coded as shown for 0.3, 0.5, and
0.7 mm. [See online article for color version of this
figure.]
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micrographs. The internal computational grids were created using a parabolic

longitudinal grid combined with a modified cross-sectional H-grid (Fig. 8).

Solving for W

The governing equation (1) was converted to a three-dimensional gener-

alized coordinate partial differential equation. Finite difference approximation

was used to convert the partial differential equation into a linear system of

equations, represented in matrix form by:

[Coeff]C 5 L ð2Þ

This matrix equation is used to solve for the unknown internal C values

[C(i,j,k)] using the known L [L(i,j,k)] and the calculated sparse coefficient matrix

[Coeff]. Matlab was used to solve the matrix system via the biconjugate

gradient method.

Details of the numerical approach are presented for two dimensions. The

extension to three dimensions is straightforward.

Generalized Coordinates Applied to Equation 1

Recall from Equation 1, the two-dimensional equation in Cartesian coor-

dinates for C is given by: L 5 = � g~5 = � ðK
!!� =CÞ, where = [ ð @@x ;

@
@yÞ

T.

K
!! � =C 5 K

!!�
�
@C

@x
;
@C

@y

�T

5

�
K
!!x @C
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!!y @C
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Using the notation Cx5 @C
@x as the x partial derivative of C and Cxx5 @2C

@x2 as

the second partial derivative of C, Equation 5 becomes:

L 5 K
!!x

xCx 1 K
!!x

Cxx 1 K
!!y

yCy 1 K
!!y

Cyy ð6Þ

For the generalized coordinates, j and h, we have @
@x 5 @

@j
@j
@x 1 @

@h

@h

@x by the

chain rule. Since the equations for other variables are similar, we will only

present the generalized coordinate transformation for x.

Cx 5 Cjjx 1 Chhx K
!!x

x 5 K
!!x

jjx 1 K
!!x

hhx

Cxx 5 ðCxÞjjx 1 ðCxÞhhx ð7Þ

K
!!x

xCx 1 K
!!x

Cxx 5 ðK
!!x

jjx 1 K
!!x

hhxÞðCjjx 1 ChhxÞ1 K
!!x½ðCxÞjjx 1 ðCxÞhhx�

ð8Þ

Figure 8. The computational root grid with protophloem source grid placement. A, Three-dimensional (x, y, z) view of the root
grid (not to scale). B, Two-dimensional (x, z) view of the longitudinal section for the internal parabolic grid at z 5 2.0 mm. C,
Two-dimensional (x, z) view of the longitudinal section for the internal radial grid with the protophloem source grid placement.
D, Relative elemental growth rate values (L) shown on the z distance scale used in A and B. E, Two-dimensional radial transverse
(x, y) of the modified H-grid used in modeling the internal radial grid with rmax 5 0.5 mm. The protophloem sources, each with a
radius of 0.07 mm, are placed asymmetrically as shown. [See online article for color version of this figure.]
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Denoting the Jacobian matrix of transformation by J and differentiating the

right hand side of Equation 8 by parts, we get:

K
!!x

xCx1K
!!x

Cxx 5

�
K
!!x

j

yh

j J21 j

��
Cj

yh

j J21 j
1 Ch

2 yj

j J21 j

�
1

�
K
!!x

h

2 yj

j J21 j

�
�

Cj

yh

j J21 j
1 Ch

2 yj

j J21 j

�
1 K
!!x yh

j J21 j

�
Cjj

yh

j J21 j
1 Cjh

2 yj

j J21 j

�

1 K
!!x 2 yj

j J21 j

�
Cjh

yh

j J21 j
1 Chh

2 yj

j J21 j

�
1 K
!!x yh

j J21 j

�
Cj

�
yh

j J21 j

�
j

1 Ch

�
2 yj

j J21 j

�
j

�
1 K
!!x 2 yj

j J21 j

�
Cj

�
yh

j J21 j

�
h

1 Ch

�
2 yj

j J21 j

�
h

�

ð9Þ

Proceeding in a similar manner with the other variables results in an

additional set of equations similar to Equation 9 that can be substituted into

Equation 6 to get a formula for L.

Finite Difference Applied to Equation 9

Second order finite difference approximations are used to approximate the

derivatives, resulting in:

Lðx; yÞ5 K
!!x

xCx 1 K
!!x

Cxx 1 K
!!y

yCy 1 K
!!y

Cyy

5 ðCði11;jÞ2 2Cði;jÞ 1 Cði21;jÞÞ
K
!!x

j
2

x 1 K
!!y

j
2

y

Dj
2

1 ðCði;j11Þ2 2Cði;jÞ 1 Cði;j21ÞÞ
K
!!x

h
2

x 1 K
!!y

h
2

y

Dh
2

1 ðCði11;j11Þ2 Cði11;j21Þ2 Cði21;j11Þ 1 Cði21;j2 1ÞÞ
2K
!!x

jxhx 1 2K
!!y

jyhy

4DjDh

1 ðCði11;jÞ2 Cði21;jÞÞ
jxCKx

x
1 jyCKy

y
1 CKx

j 1 CKy
j

2Dj

1 ðCði;j11Þ2 Cði;j21ÞÞ
hxCKx

x
1 hyCKy

y
1 CKx

h 1 CKy
h

2Dh
ð10Þ

where discretization in the x direction is denoted by Ci, discretization in the y

direction is denoted by Cj, and

CKx
x

5 K
!!x

jjx 1 K
!!x

hhx CKy
y

5 K
!!y

jjy 1 K
!!y

hhy

CKx
j 5 K

!!x½jxðjxÞj 1 hxðjxÞh� CKx
h 5 K

!!x½jxðhxÞj 1 hxðhxÞh�
CKy

j 5 K
!!y½jyðjyÞj 1 hyðjyÞh� CKy

h 5 K
!!y½jyðhyÞj 1 hyðhyÞh� ð11Þ

Collecting terms on the right side:

Lðx; yÞ5 K
!!x
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!!x
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!!y
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!!y

Cyy
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y
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x
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1 CKx
h 1 CKy
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2Dh

�

1 Cði;j2 1Þ

�
K
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h
2

x 1 K
!!y

h
2

y

Dh
2 2

hxCKx
x

1 hyCKy
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1 CKx
h 1 CKy

h
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�
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2DjDh
ð12Þ

The values for L(x,y), K
!!x, and K

!!y are given and the values for Dh and Dj are

determined by the grid. From this, we can calculate xj ; xh; xjj ; xhh; xjh;

yj ; yh; yjj ; yhh; yjh;K
!!x

j ;K
!!x

h;K
!!y

j ;K
!!y

h; j J21 j; j J21 jj ; j J21 jh : Thus, Equation

12 reduces to Equation 2, [Coeff]C 5 L. Now the system is modified to

reflect the flux boundary condition.

Three-Dimensional Model of Root Growth with the

Flux Boundary

Pritchard et al. (1996) recorded an osmotic gradient that ran the length of

the root, ranging linearly from 20.27 MPa at 2.5 mm to about 20.15 MPa at 12

mm from the tip. This gradient motivated an expansion of the three-dimen-

sional EE model to include a flux boundary condition. The resulting model

was derived in two dimensions and then extended for three-dimensional

implementation, which consists of the following two equations:

Lðx; yÞ5 =� ðK
!! � =CÞ ð13aÞ

J~ðx; yÞ52 K
!! � =C ð13bÞ

Since the flux is in the radial direction, Equation 13b is replaced by

J~
rðx; yÞ52 K

!! r @C

@r
ð14Þ

where

J~rðx; yÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J~xðx; yÞ2 1 J~yðx; yÞ2

q
52 K

!! r
Cr ð15Þ

given K
!!r 5 K

!!x 5 K
!!y.

Writing the flux boundary in generalized coordinates, recalling that

Cr 5 Cjjr 1 Chhr, we have:

J~
xðx; yÞ52 K

!! rðCjjx 1 ChhxÞ J~yðx; yÞ52 K
!! rðCjjy 1 ChhyÞ ð16Þ

Substituting into Equation 15, we obtain:

J~
rðx; yÞ
K
!! r

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2

j
ðjx

2
1 jy

2Þ1 2CjChðjxhx 1 jyhyÞ1 C
2

h
ðhx

2
1 hy

2Þ
q

ð17Þ

This flux condition is being forced on the boundary of the grid where either

Cj 5 0 or Ch 5 0. At the boundary Cj 5 0, we can solve for Ch:

J~r

K
!!r

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2

h
ðhx

2
1 hy

2Þ
q

ð18Þ

Ch 5
J~

r

K
!! r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhx

2
1 hy

2Þ
q 5 Ch j

ð19Þ

Approximating C with the second order finite difference boundary ap-

proximations, we get:

Chði;jÞ 5
ð4Cði11;jÞ2 3Cði;jÞ2 Cði12;jÞÞ

2Dh
5 Chj ði;jÞ ð20Þ

which results in:

4Cði11;jÞ2 Cði12;jÞ 5 2DhChj ði;jÞ 1 3Cði;jÞ ð21Þ

A similar process is applied at the other borders to obtain:

4Cði11;jÞ2 Cði12;jÞ 5 2DhChj ði;jÞ 1 3Cði;jÞ ði 5 1 : m; j 5 1Þ ð22aÞ

4Cði;j11Þ2 Cði;j12Þ 5 2DjCji ði;jÞ 1 3Cði;jÞ ði 5 1; j 5 1 : nÞ ð22bÞ

4Cði21;jÞ2 Cði22;jÞ 5 2DhChj ði;jÞ 1 3Cði;jÞ ði 5 1 : m; j 5 nÞ ð22cÞ

4Cði;j21Þ2 Cði;j22Þ 5 2DjCjiði;jÞ 1 3Cði;jÞ ði 5 m; j 5 1 : nÞ ð22dÞ

The values for K
!!x, K

!!y, and J~r and the boundary points Cð1:m;1Þ;

Cð1;1:nÞ;Cð1:m;nÞ;Cðm;1:nÞ and Cð2:m21;2Þ;Cð2;2:n21Þ;Cð2:m21;n21Þ;Cðm21;2:n21Þ are

known. The values of Dj;Dh are again determined by the grid. This flux

equation is reflected in the following new coefficient matrix.

[Coeff V] [C] 5 [V] ð23Þ
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Comments on the Computational Flux Grids

Although the H-grid worked well for most of our simulations, it was not a

good computational grid for the implementation of the flux condition. In

order to address this, a new flux computational grid was used (Fig. 8) with

two radial rings added at a distance of Dr and 2Dr around the H-grid. In this

grid system, the outside ring was associated with the growth medium (Csoln)

and the inner ring was associated with the boundary of the growing root.

Solving the Two-Dimensional Method

For the flux boundary condition, the resulting matrix equations are as

follows:

[Coeff][C] 5 [L] ð24aÞ

[Coeff V] [C] 5 [V] ð24bÞ

Adding the two systems gives:

[Coeff 1 Coeff V] [C] 5 [L 1 V] ð25Þ

This resulting matrix equation incorporates the flux boundary condition

and can be solved for the C. This system is again sparse and is very large. The

Matlab implementation uses an iterative biconjugate gradient method to solve

for C. This approach was faster then the previous direct solver and resulted in

a solution within a tolerance of 1026 (Trefethen and Bau, 1997).

Experimental Data

A hydroponically grown maize (Zea mays) root was modeled. The average

primary growth zone for this root is 10 mm long, with an average root radius

of 0.5 mm within the elongation zone. The average width of the phloem source

tubes was a harder number to calculate. In reviewing the vascular system

physiology literature, many references refer to the difficulty of defining the

protophloem radius due to the small number of cells involved. The best

reference for source radius estimate was Beauchamp and Lathwell (1966), who

estimated 17 to 24 sieve tubes per transverse section in the 1.5-mm root radius

at 2.5 cm from the root tip. This information, combined with the estimate of

sieve element having a radius of 5 to 10 mm, was used to estimate proto-

phloem source radius of 0.16 to 0.06 mm. The sources were then placed, with

given radii, in a pentidiagonal (nonaxially symmetric) pattern around the root

cross-section (Fig. 8) and modeled to extend to within 1 mm of the root tip. The

source value C is C 5 20.2 MPa, which maintains the protophloem C less

negative than the interior cells (Pritchard, 1996).

L

Marking experiments can be found in the literature to establish L. Here, the

data were extended to the computational grid spacing using a cubic spline

interpolation (Fig. 8D; Erickson and Sax, 1956; Boyer and Silk, 2004; Silk and

Wagner, 1980).

K
!!

A literature review resulted in estimates of radial hydraulic conductivity in

the range 7.3 3 10211 m2 s21 MPa21 , K
!!r , 5 3 10210 m2 s21 MPa21 (Ginsburg

and Ginzburg, 1970; Bret-Harte and Silk, 1994; Frensch and Hsiao, 1995). The

empirically based calculation of Frensch and Hsiao (1995), K
!!r 5 1.3 3 10210 m2

s21 MPa21, is used in the reference calculations. The radial and longitudinal

hydraulic conductivities are assumed to be independent, with possible spatial

variation. Hydraulic conductivity of roots would be expected to vary with

growth conditions and to be especially sensitive to plant water status and

associated environmental conditions. Note that our transport coefficients are

phenomenological rather than mechanistic, as we use a bulk tissue coefficient

and have neglected cell structure. Nevertheless, the validity of the model is

supported by early demonstrations that coupled flows in apoplasm and

symplasm result in water movement that follows the simple transport law

(Molz, 1976).

Root Growth Conditions

The root growth medium defines the model boundary conditions. Models

assumed laboratory hydroponic growth, with a solution boundary condition

(C 5 20.02 MPa; Spollen and Sharp, 1991). For the internal boundary (at z 5

10 mm), the governing equations (1) were used to solve for the cross-section

boundary C values.

Sensitivity Analysis

A physiology sensitivity analysis was conducted using the multiple source

model. See Table II for the range of physiological variables that were tested,

including maximum root radius, hydraulic conductivity, and growth rate.
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