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Virtually all crop plants are attacked by pathogenic
microbes, including bacteria, fungi, oomycetes, and
nematodes. In many cases, bacterial diseases are still
poorly controlled with century-old agents like copper,
and cause serious losses, as seen with the recent citrus
canker outbreak in Florida (Schubert et al., 2001).
Pathogenicity has evolved independently in diverse
phylogenetic lineages within the bacteria, resulting in
a range of pathogenic lifestyles that parallels those that
have evolved in the fungi and oomycetes. Thus, the
study of bacterial pathogens is casting light into the
interactions of plants with all microbes. This window
of investigation was flung open in 2000 with publica-
tion of the first complete genome sequence of a phy-
topathogen, Xylella fastidiosa 9a5c (Simpson et al.,
2000). Because it is a xylem-limited, nutritionally fas-
tidious pathogen, its mechanisms of pathogenicity had
been a complete mystery prior to analysis of the
genome sequence. Subsequent sequencing of experi-
mentally tractable pathogens in the genera Ralstonia
(Salanoubat et al., 2002), Xanthomonas (Da Silva et al.,
2002), Pseudomonas (Buell et al., 2003), and Pectobacte-
rium (Bell et al., 2004) had a similarly revolutionary
impact, revealing unexpected complexities in their
virulence systems.
Of particular importance to plant biologists is the

genome-enabled, comprehensive identification of pro-
teins and toxins that directly interact with plants and
are referred to here as effectors (Hogenhout et al.,
2009). Because effectors act during infection and out-
side of the bacterium, genes encoding them can be
systematically identified on the basis of expression in
planta and passage of their products through secretion
pathways known to be trafficked by virulence pro-
teins. Of the seven secretion systems described to date
in gram-negative bacteria, the type II secretion system
(T2SS) and type III secretion system (T3SS) are respon-
sible for extracellular localization of the majority of
critical virulence factors. Agrobacterium tumefaciens, an

important pathogen that relies on the type IV pathway
to deliver nucleoprotein T-DNA complexes into plant
cells, has also been sequenced (Goodner et al., 2001;
Wood et al., 2001) and is addressed in another Update
article in this Focus issue. Small molecule effector
candidates, which do not typically rely on a dedicated
secretion system, can be identified through character-
ization of nonribosomal peptide and polyketide syn-
thetases identified in the genome (Bender et al., 1999).
Since each effector interacts with at least one plant
molecule, and these targets involve diverse organelles
and metabolic processes, the newly expanded collec-
tion of effectors provides a vast new tool box for plant
biologists, revealing the unexpected extent of patho-
gen manipulations of plants (Speth et al., 2007). Im-
portantly, complete genome sequences also enable
investigation of how all of the effector parts work
together to enable parasitism in different plants and
specific plant niches.

This Update highlights insights gained from fully
sequenced bacterial pathogen genomes that are of
particular relevance to plant biologists. We will de-
scribe the range of bacterial phytopathogens and their
lifestyles in plants, lessons gained from type III effec-
tor repertoires (a focus of much study during this
period), major insights arising from each of the phy-
topathogen groups with completely sequenced ge-
nomes, and future challenges.

THE DIVERSITY OF PHYTOPATHOGENIC
BACTERIA AND AN EMERGING BIG PICTURE OF
THEIR INTERACTIONS WITH PLANTS

Plant pathogens of all classes are now considered to
have two broadly different pathogenic lifestyles, with
necrotrophs gaining nutrients from rapidly killed
tissue and biotrophs gaining nutrients from living
host tissue (or in the case of hemibiotrophs, from
living tissue that dies in a later stage of pathogenesis;
Glazebrook, 2005). The phytopathogenic bacteria
with complete and published sequences span this
continuum of pathogenic lifestyles, summarized in
Table I.

The soft-rot enterobacterium Pectobacterium atrosep-
ticum SCRI1043 (Bell et al., 2004) was the first se-
quenced representative of the necrotrophs. The
pioneer hemibiotrophs were Ralstonia solanacearum
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GMI1000 (Salanoubat et al., 2002), Xanthomonas cam-
pestris pv campestris ATCC33913 (Da Silva et al., 2002),
Xanthomonas axonopodis pv citri 306 (Da Silva et al.,
2002), and Pseudomonas syringae pv tomato DC3000
(Buell et al., 2003). Although sharing the basic prop-
erty of dependence on type III effectors, the hemi-
biotrophic pathogens have interesting differences in
their interactions with plants. For example, R. solana-
cearum is a wilt pathogen with a potentially broad host
range that colonizes the xylem after entering plants
through roots. X. campestris pv campestris also can
colonize the xylem, but it attacks aerial parts of the
plant and has a narrow host range. In further contrast,
X. axonopodis pv citri and P. syringae are narrow-host-
range pathogens that colonize the mesophyll rather
than the xylem. All of these bacteria are gram negative,
with R. solanacearum in the b-Proteobacteria and the
others in the g-Proteobacteria.

Clavibacter michiganensis subsp. michiganensis
NCPPB382 (Gartemann et al., 2008), C. michiganensis
subsp. sepedonicusATCC33113 (Bentley et al., 2008), and
Leifsonia xyli subsp. xyli CTCB07 (Monteiro-Vitorello
et al., 2004) are the pioneer, sequenced bacteria in the
high G + C content, gram-positive group Actino-
bacteria. These bacteria are closely related and are all
xylem colonizers. Analogous to X. fastidiosa, L. xyli
subsp. xyli is a fastidious bacterium with a small
genome size (2.6 Mb) that appears to be a product of
reductive evolution (Moreira et al., 2004). The end
point in the continuum toward biotrophic specializa-
tion for life within a specific plant niche and associated
genome reduction is represented by wall-less bacteria
in the low G + C content, gram-positive group,
Firmicutes. These bacteria are obligate colonizers of
the phloem and their phloem-feeding insect vectors
(Hogenhout and Loria, 2008). Notably, the Candidatus
Phytoplasma asteris OY-M pioneer genome is only 860

kb (Oshima et al., 2004). In contrast, the largest genome
among this pioneering set of phytopathogens is that of
P. syringae pv tomato DC3000, which is 6.5 Mb.

A conceptually and agriculturally significant feature
of these pathogenic lifestyles and phylogenetic groups
is that the plant defenses against necrotrophs and
(hemi)biotrophs are different and antagonistic. Specif-
ically, major gene resistance is only effective against
hemibiotrophic gram-negative bacteria injecting type
III effectors that are recognized by cytoplasmic resis-
tance (R) proteins in the host (Spoel et al., 2007; Poland
et al., 2009). A recently formulated model for the
interactions of plants with hemibiotrophic Proteobac-
teria has broad explanatory power (Jones and Dangl,
2006; Gohre and Robatzek, 2008). According to this
model, bacteria in the apoplast display pathogen (or
microbe)-associatedmolecular patterns (PAMPs), such
as flagellin, lipopolysaccharide, peptidoglycan, and
elongation factor EF-Tu, which are recognized at the
plant cell surface by pattern recognition receptors that
elicit PAMP-triggered immunity (PTI). Pathogens de-
feat this defense by injecting type III effectors that
suppress PTI. The T3SS, required for delivery of these
effectors and thus essential to virulence in all hemi-
biotrophic Proteobacteria pathogens, is discussed in
another Update in this issue. Although effectors sup-
press PTI, they may also elicit defenses. Specifically, if
the host carries an appropriate R gene for detecting the
activity of one or more of these effectors inside plants
cells, effector-triggered immunity (ETI) is activated,
typically manifested as a defense-related programmed
cell death referred to as the hypersensitive response.
PTI is addressed in more detail in another Update in
this issue but this model, based on plant interaction
with hemibiotrophic Proteobacteria, raises important
questions about other groups of phytopathogenic bac-
teria. Are PAMPs also perceived in the xylem or the

Table I. Salient properties of representative phytopathogenic bacteria with published genome sequences

Host names followed with an ellipsis denote a broader host range. Column headings: V, obligately vectored by insects (as denoted by +); T, tissue
primarily colonized in plant (M, mesophyll; X, xylem; P, phloem); CW, cell wall-degrading enzymes; TE, translocated effectors acting within plant
cells; SP, extracellular Ser proteases; SM, small molecules. Symbols in Effectors columns: +, one or a few present; ++ many present and major role;
2, none present; blank cell, not studied. References are in text.

Bacterial Groups and

Representative Pathogens
Disease Host(s) V T

Effectors

CW TE SP SM

Proteobacteria (necrotrophs)
P. atrosepticum Black leg Potato MX ++ + +

Proteobacteria (hemibiotrophs)
P. syringae pv tomato Bacterial speck Tomato, Arabidopsis, other Brassica M + ++ +
R. solanacearum Bacterial wilt Tomato, Arabidopsis… X ++ ++ +
X. axonopodis pv citri Canker Citrus M ++ ++
X. campestris pv campestris Black rot Arabidopsis, other Brassica X ++ ++
X. fastidiosa Variegated chlorosis Citrus + X + 2

Actinobacteria
C. michiganensis subsp. michiganensis Wilt and canker Tomato X + 2 ++
C. michiganensis subsp. sepedonicus Ring rot Potato X + 2 ++
L. xyli subsp. xyli Ratoon stunting Sugarcane + X + 2 +

Firmicutes
Candidatus P. asteris Yellows Wide host range + P 2 +
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phloem? How does Clavibacter, which does not appear
to inject effectors, evade or suppress PTI? How do
necrotrophs defeat PTI? What determines the differing
levels of host specificity and tissue specificity observed
in various pathogen groups?

THE TYPE III EFFECTOR REPERTOIRES OF
HEMIBIOTROPHIC PROTEOBACTERIA

The greatest impact of bacterial phytopathogen ge-
nome sequencing so far has been the discovery of large
numbers of type III effectors in various phytopatho-
genic Proteobacteria. Because of gene duplication and
functional redundancy, many type III effectors are
individually dispensable. In hindsight, it is not sur-
prising that the corresponding genes were largely
missed in pregenomics era screens for mutants with
reduced virulence. Genomics bypassed this problem
by enabling various functional screens and character-
ization of sequence patterns to identify all probable
candidates in each strain, many of which have been
experimentally validated. Patterns used have included
promoter motifs, amino acid biases associated with
type III targeting signals, motifs predicting eucaryote-
like functions, and presence in genomic islands (Cunnac
et al., 2004; Lindeberg et al., 2006; Vinatzer and Yan,
2008; Furutani et al., 2009). These efforts have revealed
complex effector repertoires for several strains, as well
as provisional super repertoires for the pangenomes of
three phytopathogen groups, as tabulated in recent
reviews addressing Xanthomonas spp. (Kay and Bonas,
2009), R. solanacearum (Poueymiro and Genin, 2009),
and the P. syringae pathovars (Cunnac et al., 2009).
Effector repertoires are highly variable, even for

pathogens of a single plant species. The relative size
and variability of these repertoires can be seen in three
well-studied tomato (Solanum lycopersicum) pathogens:
X. campestris pv vesicatoria 85 to 10 (17 effectors con-
firmed), R. solanacearum GMI1000 (28 confirmed + 46
candidates), and P. syringae pv tomato DC3000 (28
confirmed; Cunnac et al., 2009; Kay and Bonas, 2009;
Poueymiro and Genin, 2009). Of the 17 effectors in-
jected by X. campestris pv vesicatoria, five have homo-
logs in R. solanacearum and three have homologs in P.
syringae pv tomato (Kay and Bonas, 2009). This varia-
bility in type III effector repertoires is particularly
striking in two strains of P. syringae pv tomato: DC3000
and T1. Both strains cause bacterial speck of tomato,
but only half of their effector repertoires are shared
(Almeida et al., 2009). Complete genome sequences are
now published for seven Xanthomonas strains repre-
senting diverse species and pathovars, and three
pathovars of P. syringae (Da Silva et al., 2002; Buell
et al., 2003; Feil et al., 2005; Joardar et al., 2005; Lee
et al., 2005; Qian et al., 2005; Thieme et al., 2005;
Salzberg et al., 2008; Vorholter et al., 2008). Compari-
son of their effector repertoires similarly reveals a high
degree of variability, with no obvious correlation be-
tween repertoire composition and host specificity or

tissue specificity (Salzberg et al., 2008; Almeida et al.,
2009). Thus, it appears that there are many ways for
bacteria to defeat plant defenses with type III effectors.

Enormous progress has been made in identifying
the diverse biochemical activities, subcellular targets,
and host interactors of type III effectors. These prop-
erties of individual effectors are summarized in recent
reviews (Block et al., 2008; Gohre and Robatzek, 2008;
Cunnac et al., 2009; Kay and Bonas, 2009; Poueymiro
and Genin, 2009), and we are limited here to a few
highlights that indicate the scope and sophistication of
the effector assault on plants. In general, type III
effectors manipulate host cell protein turnover, RNA
synthesis and stability, and protein phosphorylation
(Block et al., 2008). Effectors can insert themselves into
host protein processing and targeting pathways, re-
sulting in localization to the plasma membrane, chlo-
roplasts, the nucleus, and other subcellular sites
(Gohre and Robatzek, 2008; Dowen et al., 2009). Their
molecular targets can range from pattern recognition
receptors essential for PAMP perception to promoters
for genes controlling cell size (Gohre and Robatzek,
2008). The biological function of most type III effectors
appears to be suppression of PTI and/or ETI, and
some effectors, such as AvrPtoB, have multiple do-
mains that suppress both defenses (Abramovitch and
Martin, 2005; Rosebrock et al., 2007). The bewildering
range of activities and subcellular and molecular tar-
gets of type III effectors is best appreciated by scan-
ning the tables of recent reviews (as cited above).
However, it is worth noting that only a small fraction
of the known effectors have been characterized, and
the known effectors represent only a fraction of the
total that are likely encoded in the pangenomes of the
hemibiotrophic Proteobacteria.

THE IMPORTANCE OF REDUNDANT EFFECTOR
GROUPS IN PHYTOPATHOGENIC BACTERIA

The model described above of pathogenesis based
on translocated effectors suppressing PTI while being
under R protein surveillance evokes a coevolutionary
war between plants and pathogens that can generate
large and polymorphic repertoires of effectors and R
proteins (McHale et al., 2006; Stavrinides et al., 2008).
Importantly, this process appears to generate effector
repertoires that are collectively essential but where
individual effectors are typically dispensable. Because
of this dispensability, effector genes can be lost with
little or no virulence penalty by pathogen populations
facing a cultivar that relies on R-gene-mediated resis-
tance. Thus, R-gene-mediated resistance is often de-
feated after a few years of agricultural use, as has been
observed with many important bacterial, fungal, and
oomycete pathogens (Jones and Dangl, 2006; Poland
et al., 2009).

The availability of complete genome sequences and
complete type III effector repertoires has enabled
investigation of an important property of most effector
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repertoires, that is, the dispensability of individual
effectors. Such dispensability has been inferred from
the results of numerous mutant screens involving
various hemibiotrophic Proteobacteria and has been
systematically explored with R. solanacearum GMI1000
and P. syringae pv tomato DC3000. Mutagenesis of 42
effector and effector candidate genes in GMI1000
revealed that only two had a virulence phenotype in
host tomato, manifested as only a slight delay in
symptom development (Cunnac et al., 2004). Similarly,
a screen of P. syringae pv tomato DC3000 transposon
mutants with a sensitive virulence assay based on dip-
inoculated Arabidopsis (Arabidopsis thaliana) plants
yielded only a single effector gene, which only quan-
titatively contributes to lesion formation (Brooks et al.,
2004; Badel et al., 2006).

Through the efforts of multiple research groups, the
type III effector repertoire of DC3000 has been partic-
ularly well established and is thought to comprise 28
actively deployed effectors (Lindeberg et al., 2006).
Combinatorial deletions involving 20 of the active
effector genes have revealed a redundancy-based
structure in the effector repertoire, such that some
deletions diminish growth in planta only in combina-
tion with other deletions (Kvitko et al., 2009). It was
found that two redundant effector groups are partic-
ularly important in promoting DC3000 growth in
planta, and based on the known activities of some of
the members, these internally redundant groups were
proposed to target different high-level processes in
PTI: perception of PAMPs and vesicle trafficking of
antimicrobial factors. These observations suggest that
successful pathogenesis by DC3000 depends on block-
ing of a few key defense processes, with each process
targeted redundantly. Host surveillance of the effec-
tors and, possibly, the polymorphic nature of effector
targets may explain the apparent need for redundancy.

The phenomenon of redundant effector groups ap-
pears widespread in phytopathogenic bacteria. For
example, the extracellular components of the T3SS that
have been genetically implicated in forming the trans-
location pore in the host plasma membrane are con-
served and individually essential in animal pathogens
but more numerous, variable, and individually dis-
pensable in plant pathogens (Kvitko et al., 2007). R.
solanacearum and many Xanthomonas spp. also have
candidate redundant effector groups represented by
the multiple copies of F-box-containing GALA family
effectors and transcription activator-like effectors that
their respective genomes encode (Angot et al., 2006).
Experiments thus far with both effector families indi-
cate that combinatorial mutations are required to
produce significant virulence phenotypes (Yang et al.,
1996; Angot et al., 2006). As will be discussed in the
next section, redundant groups of candidate effectors
(broadly defined) can also be found in Pectobacterium
and Clavibacter spp.

Systematic identification of redundant effector
groups has the potential to reveal processes within
plants that contribute to defense against microbial

pathogens and may provide clues to the specific plant
proteins targeted by and/or involved in the recogni-
tion of individual effectors. For example, AvrPto and
AvrPtoB, though showing no sequence similarity, are
members of a redundant effector group that inhibits the
kinase activity of the FLS2 pattern recognition receptor
and interacts with Pto, now thought to function as a
decoy kinase under R protein surveillance (Shan et al.,
2008; Xiang et al., 2008; Zhou and Chai, 2008). Identi-
fication of redundant effector groups may also have
practical utility in suggesting more durable combina-
tions of R genes less likely to be overcome by pathogen
mutation. Ultimately, the genomics-enabled character-
ization of type III effector repertoires and interacting
plant proteins is serving to unravel the complex net-
work of host-pathogen interactions in a manner that is
biologically significant and agriculturally useful.

OTHER LESSONS FROM PATHOGEN GENOMES

The P. atrosepticum genome highlights two other
important classes of effectors: pectic enzymes and
phytotoxins. Like other soft-rot enterobacteria, P. atro-
septicum (formerly Erwinia carotovora subsp. atroseptica)
produces multiple pectic enzymes, secreted via the
T2SS (Toth and Birch, 2005). Studies with various soft-
rot enterobacteria involving mutations in T2SS genes
and either single or multiple pectic enzyme genes
suggest that pectic enzymes are collectively essential
but individually dispensable for the maceration of
parenchymatous plant tissues characteristic of soft-rot
diseases (Toth et al., 2006). The P. atrosepticum genome
sequence revealed 11 new putative pectic enzyme
genes, thus bringing the repertoire to 20 (Bell et al.,
2004). However, there is no evidence that plant surveil-
lance or inhibitors are driving amplification of the P.
atrosepticum pectic enzymes or causing diversification
in the repertoire encoded by related species (Glasner
et al., 2008). Subtle specialization for substrates and
reaction conditions in the cell walls of different plants
may account for the amplification of effectors in this
class. In contrast, T2SS mutants are only partially
reduced in virulence, and pectic enzymes appear to
have only a minor role in P. syringae pathogenesis
(Bauer and Collmer, 1997; Bronstein et al., 2005).

A surprising discovery in the P. atrosepticum genome
was the presence of homologs of P. syringae genes
directing biosynthesis of the toxins syringomycin and
coronafacic acid (Bell et al., 2004), mutations that
strongly reduced black leg disease in potato (Solanum
tuberosum; Bell et al., 2004). In P. syringae pv tomato
DC3000, coronatine, an amide-linked conjugate of
coronafacic acid and an Ile derivative, mimics jasmonic
acid Ile, promotes the opening of stomates and bacteria
entry, and suppresses salicylic acid-dependent plant
defenses (Brooks et al., 2005; Melotto et al., 2008). The
biosynthetic capacity for this toxin family is encoded in
a horizontally acquired region in DC3000 and is present
in only a subset of other P. syringae pathovars and in

Collmer et al.

1626 Plant Physiol. Vol. 150, 2009



only P. atrosepticum among the sequenced Pectobacteria
spp. (Hwang et al., 2005; Glasner et al., 2008; Lindeberg
et al., 2008). Like P. syringae, P. atrosepticum encodes a
functional T3SS, but the only effector candidate is a
homolog of the widespread P. syringae effector AvrE
(Bell et al., 2004). In summary, although P. atrosepticum
and P. syringae are in different bacterial families, they
appear to have acquired effector genes by horizontal
transfer, with their respective effector repertoires being
differently expanded in association with their distinct
pathogenic lifestyles.
Comparison of phylogenetically divergent organ-

isms with similar pathogen lifestyles provides yet
another opportunity for exploring the nature and
evolution of bacterial pathogenesis through compara-
tive genomics. For example, the .50 P. syringae path-
ovars and.100Xanthomonas species/pathovars are all
T3SS-dependent, host-specific pathogens that are
often good epiphytes and commonly cause diseases
characterized by scattered lesions on foliage (although
some Xanthomonas spp. also invade the xylem and
cause extensive tissue death). Most crops are attacked
by at least one member of each group. Importantly,
genome sequencing suggests that phytopathogenicity
in these two genera has evolved convergently. For
example, not only are their type III effector repertoires
largely different, but they also possess independently
acquired and distinct T3SS (Alfano and Collmer, 1997).
Thus, functional genomic comparisons of strains with
common hosts from the parallel pseudomonad and
xanthomonad series could indicate the potential range
of interactions plants may have with microbes that
attack via translocated effector proteins.
R. solanacearum represents a versatile pathogen,

unique among the major bacterial phytopathogens
given its ability to attack plants via the roots (Genin
and Boucher, 2004) and particularly devastating to a
variety of tropical crops. The bacterium has large
repertoires of candidate effectors traveling the T2SS
and the T3SS, and appropriate mutants indicate that
the two pathways and their respective repertoires are
important for pathogenesis (Poueymiro and Genin,
2009). The type III effector repertoire features three
expanded families with multiple members as well as
multiple effectors with repeat domains implicated in
the recognition of host proteins (Poueymiro and Genin,
2009). The GALA proteins mentioned above provide a
good example, with strain GMI1000 producing seven
such proteins predicted to target host proteins for
degradation via the 26S proteosome (Angot et al.,
2006). Analogous to P. syringae pv tomato in its manip-
ulation of hormone signaling with a small-molecule
effector, GMI1000 produces ethylene, which affects the
expression of ethylene-response host genes during
infection (Valls et al., 2006).
Genomic analyses suggest that effector families may

be similarly subject to amplification in gram-positive
pathogens as well. Pregenomics research had identi-
fied two C. michiganensis subsp. michiganensis proteins,
CelA endo-b1 to 4 glucanase and Pat-1 Ser protease

(Hogenhout and Loria, 2008), which appear to be effec-
tors given their role in virulence and predicted extra-
cellular location. One or more yet to be identified
proteins in the extracellular fluids from both subspe-
cies have additionally been shown to elicit the hyper-
sensitive response in tobacco (Nicotiana tabacum;
Nissinen et al., 1997; Alarcon et al., 1998). Genome
sequences reveal that homologs of celA family mem-
bers and pat-1 family members are present in subspe-
cies michiganensis and sepedonicus, as well as in L. xyli
subsp. xyli (Monteiro-Vitorello et al., 2004; Bentley
et al., 2008; Gartemann et al., 2008). Intriguingly,
subspecies michiganensis encodes at least 28 Ser prote-
ases of which 10 are Pat-1-like members of the Chp
family. These gene families have several characteristic
properties of effector genes including an atypical G + C
content suggestive of horizontal acquisition and a
demonstrated role in elicitation of the hypersensitive
response on nonhost plants for at least one of the
family members. Subspecies sepedonicus harbors 11
Chp family genes, and L. xyli subsp. xyli has one. It is
tempting to speculate that the Chp family Ser pro-
teases are acting extracellularly to degrade either
pattern recognition receptors or antimicrobial peptides/
proteins and that ETI surveillance of these proteins or
their activities has driven amplification of the family.
The Chp Ser proteases thus could provide new clues to
how plants defend the xylem against pathogens. It is
also noteworthy that C. michiganensis subsp. michiga-
nensis and L. xyli subsp. xyli encode tomatinase and a
fatty acid desaturase, respectively. Tomatinase can
release defense-suppressive products from the anti-
fungal saponin tomatine (Bouarab et al., 2002), and the
fatty acid desaturase may produce abscisic acid, which
could contribute to the major symptom of ratoon
stunting of sugarcane (Saccharum officinarum; Monteiro-
Vitorello et al., 2004). Thus, both of these proteins have
the potential to generate small-molecule effectors.

In contrast to the other pathogens discussed, the
phytoplasmas can inhabit the intracellular space of
both insects and plants and may evade plant defenses
in large part through absence of PTI-triggering PAMPs
that have been lost during genome reduction. Nonethe-
less, identification of extracellular effector candidates on
the basis of conserved targeting motifs (in this case,
N-terminal signal peptides facilitating secretion via a
functional Sec pathway) represents a valuable approach
for effector identification. Eukaryotic nuclear localiza-
tion signals have been identified in two of the effector
candidates with SAP11 from Candidatus P. asteris AY-
WBshownto inducenecrosis andalter transcription (Bai
et al., 2006; Hogenhout and Oshima, 2008).

NEW CHALLENGES

A primary challenge of genomics research involves
discovery of patterns in the DNA and protein se-
quences. Fortunately, because typical effector genes
encoding type III effectors, cell wall-degrading en-
zymes, extracellular proteases, and biosynthetic en-
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zymes for toxins and phytohormones carry a variety of
predictive patterns, we have been able to make sub-
stantial progress toward comprehensive identification
of effectors in the pioneer pathogen genomes. The
subsequent sequencing of strains related to the pio-
neers has enabled a second round of pattern searching
focused on differences in virulence and host or tissue
specificity and an initial glimpse of the pangenomes
for several species. In the near future, we can expect
publication of pioneer genome sequences for other
important pathogens, such as Streptomyces scabies,
Erwinia amylovora, Pantoea stewartii, and Dickeya da-
dantii (formerly Erwinia chrysanthemi). Furthermore,
next-generation sequencing methods have the poten-
tial to yield low-cost draft genomes for a virtually
unlimited set of relatives for each pioneer. These
advances, coupled with continuing refinements in
the iterative process of effector function analysis and
pattern recognition, should yield the complete effec-
terome for each of these pathogen groups.

The next fundamental challenge will be to discern
patterns in these effector repertoires that underlie their
evolutionary assembly into viable systems for defeat
of host defenses and adaption to plant-associated
niches. For example, it appears that diverse phyto-
pathogenic bacteria (with the possible exception of the
Firmicutes) produce both protein effectors and small
molecule effectors. Do these two classes of effectors
work coordinately? And, how do effector repertoires
function in coordination with the rest of the bacterial
genome and physiology? In this regard, it is important
to note that effector repertoire composition has so far
failed to explain either the host or tissue specificity of
different members of the hemibiotrophic Proteobac-
teria. Furthermore, although R protein surveillance of
type III effectors certainly explains race-cultivar spec-
ificity in the field, it may not explain the specificity of P.
syringae pathovars, R. solanacearum strains, or Xantho-
monas spp. for their different plant species. The latter
specificity is generally stable in the field despite the
observation that loss of just one or two effectors can
expand host range to new plant species (Castaneda
et al., 2005; Lin and Martin, 2007; Wei et al., 2007;
Poueymiro et al., 2009). It is possible that multiple
adaptations involving PAMP perception, nutrition, and
antimicrobial factors underlie host and tissue specificity.

The ultimate challenge of effector identification and
functional characterization involves the integration of
their various individual roles into a comprehensive
picture of host-pathogen interaction. As one means of
managing the increasingly complex data on DC3000
effectors, Gene Ontology annotation is being used to
systematically document the biological processes, mo-
lecular functions, and cellular locations of individual
effectors, enabling comparison among effectors de-
ployed by a single strain as well as among those
deployed during the course of other, diverse host-
pathogen interactions.
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