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The paper deals with a diffusing particle that escapes from a cavity to the outer world through a
narrow cylindrical tunnel. We derive expressions for the Laplace transforms of the particle survival
probability, its lifetime probability density, and the mean lifetime. These results show how the
quantities of interest depend on the geometric parameters �the cavity volume and the tunnel length
and radius� and the particle diffusion coefficients in the cavity and in the tunnel. Earlier suggested
expressions for the mean lifetime, which correspond to different escape scenarios, are contained in
our result as special cases. In contrast to these expressions, our formula predicts correct asymptotic
behavior of the mean lifetime in the absence of the cavity or tunnel. To test the accuracy of our
approximate theory we compare the mean lifetime, the lifetime probability density, and the survival
probability �the latter two are obtained by inverting their Laplace transforms numerically� with
corresponding quantities found by solving numerically the three-dimensional diffusion equation,
assuming that the cavity is a sphere and that the particle has the same diffusion coefficient in the
cavity and in the tunnel. Comparison shows excellent agreement between the analytical and
numerical results over a broad range of the geometric parameters of the problem.
�DOI: 10.1063/1.3160546�

I. INTRODUCTION

In the present paper we study a diffusing particle that
escapes from a cavity to the outside world through a narrow
cylindrical tunnel. While earlier studies of the problem1–3 are
focused on the mean particle lifetime, which is only the first
moment of the distribution, we develop a theory that allows
us to derive expressions for the Laplace transforms of the
particle lifetime probability density and its survival probabil-
ity. The former is used to obtain an expression for the mean
lifetime that contains the results earlier reported in the litera-
ture as special cases, which correspond to different escape
scenarios. This is a consequence of the fact that our approach
is quite general in the sense that it does not assume any
particular scenario. The results obtained in the paper show
how the escape kinetics depends on the geometric and trans-
port parameters of the system, namely, the cavity volume, the
length and radius of the tunnel, and the particle diffusion
coefficients in the tunnel and cavity, which may be different.

The model of a diffusing particle escaping from a cavity
through a narrow tunnel has been proposed and used when
discussing escape of signaling ions and proteins from den-
dritic spines,1–4 which are small, micrometer in size protru-
sions on dendrites. Although there is enormous variability in
spine morphology,5 the classical dendritic spine consists of a
bulbous head connected to the parent dendrite by a narrow
neck. It is believed that dendritic spines are important for
communication between nerve cells, since the majority of

excitatory synapses in the brain are on spines rather than
dendrites. Cells use spines as sites where sufficiently high
concentrations of signals can be generated and kept long
enough to initiate signaling cascades.1–4 Therefore, the signal
lifetime in the spine is an important parameter.

The dependence of the mean lifetime on spine geometry
has been considered in Refs. 1–3. Denoting the volume of
the head by V and the length and radius of the cylindrical
spine neck by L and a, we can write the formula for � sug-
gested in Ref. 1 as

��1� =
LV

�a2D
, �1�

where D is the particle diffusion coefficient in the neck. This
formula fails when L or V tends to zero. An alternative for-
mula, which has correct asymptotic behavior in both limiting
cases, was suggested in Ref. 2 assuming the same diffusion
coefficient of the particle in the head and neck of the spine,

��2� =
L2

2D
+

V

4aD
. �2�

In Ref. 3 this result was modified and the following formula
was suggested:

��3� =
L2

2D
+

LV

4�a2D
, �3�

where �=0.84 is a parameter found by fitting the formula to
the results for � obtained in Brownian dynamics simulations
with 500–1000 trajectories which started from the center of
the spherical cavity used as a model of the spine head. Thea�Electronic mail: berezh@helix.nih.gov.
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lifetime ��3� like ��1� vanishes as L→0 in contrast to ��2�,
which remains finite in this limit.

The results in Eqs. �1�–�3� correspond to different sce-
narios of the escape process. The expression in Eq. �1� can
be obtained assuming that the rate of escape is controlled by
the signal passage through the neck. Imposing absorbing
boundary conditions at the neck-dendrite boundary and as-
suming that the neck volume is small compared to that of the
head, one can write the flux escaping from the cavity con-
taining N�t� particles as D�a2N�t� / �LV�. Then variation of
the number of particles in the spine satisfies the following
rate equation:

dN�t�
dt

= −
�a2D

LV
N�t� , �4�

which leads to the result for ��1� in Eq. �1�.
Expression in Eq. �2� was obtained for a different escape

scenario, which assumes that a particle entering the neck
could not return to the head. As a consequence, Eq. �2� gives
the mean lifetime as the sum of two mean first passage times,
�neck and �head. The former is the mean first passage time
through the neck to the dendrite while the latter is the mean
first passage time from the head to the neck entrance. The
expression for �neck can be obtained by solving one-
dimensional diffusion equation on the interval of length L
terminated by reflecting and absorbing end points. For a par-
ticle starting from the reflecting boundary �blocked entrance
from the neck to the cavity�, the result is �neck=L2 / �2D�. To
find �head one has to consider a particle diffusing in a cavity
with a small circular absorbing spot �entrance to the neck� on
the wall. When the spot size is small enough and the particle
starting position is not too close to the spot, the particle
lifetime in the cavity is much larger than the longest intrac-
avity relaxation time. As a consequence, the particle survival
probability decays as a single exponential with the rate con-
stant, which is equal to the inverse of the mean particle life-
time �head. One can find a heuristic, back-of-the-envelope
derivation, which leads to �head=V / �4Da� and explains why
the mean lifetime depends only on the cavity volume and is
independent of the shape of the cavity in Ref. 6. In this work
the formula for �head was also compared with the mean life-
times obtained in Brownian dynamics simulations. It was
found that numerical results for spherical and cubic cavities
were in excellent agreement with the formula when the spot
radius is small enough. Rigorous analysis of the problem,
which validates the formula for �head, can be found in Refs.
2�b�, 7, and 8.

When deriving the expression in Eq. �3�, the authors of
Ref. 3 dropped the hypothesis that the particle entering the
neck could not return, which underlies the result in Eq. �2�.
They considered the scenario, in which a particle entering
the neck either went through and escaped to the dendrite
�reached the absorbing neck-dendrite boundary� or returned
to the spine head and entered the neck again later. Eventu-
ally, after several unsuccessful attempts, this particle escapes.
However, when the length of the neck significantly exceeds
its radius, L�a, it takes the particle much more time to
escape than it is suggested by the no return scenario, which

leads to the estimate in Eq. �2�. Note that the ratio 4� /� is
very close to unity. Therefore, the second term in ��3� is
practically identical to ��1�.

We will see that the general, scenario-independent ex-
pression for the mean lifetime reduces to the sum of the
mean lifetimes given in Eqs. �1� and �2�, �=��1�+��2�, if the
diffusion coefficient does not change when the particle enters
the tunnel from the cavity. This expression is obtained in
Sec. II using the approximate solution for the Laplace trans-
form of the particle lifetime probability density. To check the
accuracy of our approximate theory, we compare theoretical
predictions with the results obtained by solving numerically
the three-dimensional diffusion equation. This is done in Sec.
III assuming that the cavity is of the spherical shape and that
the particle has the same diffusion coefficient in the tunnel
and in the cavity. Excellent agreement between analytical
and numerical results over a broad range of the geometric
parameters of the problem can be considered as corrobora-
tion of our approximate theory. In Sec. IV we summarize our
results and the approximations that are used when develop-
ing the theory. In this section we also discuss possible appli-
cations of the theory and its relation to diffusion in spiny
dendrites.

II. THEORY

Consider a particle diffusing in a cavity of volume V
with a cylindrical sleeve �tunnel� of length L and radius a,
which ends in a perfectly absorbing spot. The particle is
trapped as soon as it reaches the spot for the first time that
models escape of the particle to the outer world. We assume
that radius a is much smaller than all other characteristic
lengths associated with the cavity. In addition, we assume
that the particle starting point is located sufficiently far away
from the tunnel entrance, so that the first passage time to the
entrance is much larger than the longest relaxation time in
the isolated cavity.

To derive the probability density of the particle lifetime,
one has to find the particle propagator in the cavity and in the
tunnel and to match the two propagators at the tunnel en-
trance. This problem is too complicated to be solved exactly.
Two approximations are used to bypass the difficulties. �i�
We replace diffusion in the cylindrical tunnel by diffusion on
a line between absorbing and radiation boundaries. The
former describes trapping of the particle by the tunnel end
facing the outer world, while the latter describes escape of
the particle from the tunnel back to the cavity. Such replace-
ment was suggested and validated by three-dimensional
Brownian dynamics simulations in Ref. 9. �ii� Using the fact
that a is small, we ignore the intra-head relaxation and de-
scribe escape of the particle from the cavity to the tunnels as
a single-exponential process characterized by the rate con-
stant k=4Dcava /V, where Dcav is the particle diffusion coef-
ficient in the cavity. These two approximations allow us to
find analytical solutions for the Laplace transforms of the
particle lifetime probability density and its survival probabil-
ity as well as the mean lifetime of the particle.

Let G�x , t� and P�t� be the two components of the par-
ticle propagator. The former is the probability density of
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finding the particle at distance x from the absorbing end of
the tunnel at time t, while the latter is the probability of
finding the particle in the cavity at time t. Taking that the
perfectly and partially absorbing ends of the tunnel are lo-
cated at x=0 and x=L, respectively, we can write the evolu-
tion equations for G�x , t� and P�t� as

�G

�t
= Dtun

�2G

�x2 , 0 � x � L , �5�

dP�t�
dt

= − Dtun� �G�x,t�
�x

�
x=L

= − kP�t� + �G�L,t� , �6�

where Dtun is the particle diffusion coefficient in the tunnel
and �=4Dcav / ��a�.9 In addition, G�x , t� satisfies absorbing
boundary condition at x=0, G�0, t�=0, and the initial condi-
tions are G�x ,0�=0 and P�0�=1.

The probability density of the particle lifetime, ��t�,
which is one of the quantities of our interest, is given by

��t� = Dtun� �G�x,t�
�x

�
x=0

. �7�

Its Laplace transform �̂�s�, respectively, is

�̂�s� = �
0

�

e−st��t�dt = Dtun� dĜ�x,s�
dx

�
x=0

, �8�

where Ĝ�x ,s� is the Laplace transform of G�x , t�. Another
quantity of our interest is the particle survival probability for
time t, S�t�, defined as

S�t� = �
t

�

��t��dt� = �
0

L

G�x,t�dx + P�t� . �9�

As follows from Eq. �9� the Laplace transform of the sur-

vival probability, Ŝ�s�, is given by

Ŝ�s� =
1

s
�1 − �̂�s�� . �10�

To find �̂�s� we first find Ĝ�x ,s� by solving the equations
obtained by the Laplace transformation of Eqs. �5� and �6�,

sĜ = Dtun
d2Ĝ

dx2 , 0 � x � L , �11�

sP̂�s� − 1 = − Dtun� dĜ�x,s�
dx

�
x=L

= − kP̂�s� + �Ĝ�L,s� .

�12�

Then we substitute the solution into Eq. �8� and obtain

�̂�s� =
1

�1 +
sV

4Dcava
�cosh L̃ +	 s

Dtun

V

�a2sinh L̃

, �13�

where L̃=L	s /Dtun. The Laplace transform of the survival
probability can be obtained by substituting this expression
for �̂�s� into Eq. �10�. The mean particle lifetime can be
found using the relation

� = �
0

�

t��t�dt = − �d�̂�s�
ds

�
s=0

, �14�

which leads to

� =
L2

2Dtun
+

LV

�a2Dtun
+

V

4aDcav
. �15�

As might be expected, the mean lifetime increases when the
cavity volume gets larger and/or the tunnel gets longer
and/or narrower. When Dtun=Dcav=D, Eq. �15� reduces to
the sum of the mean lifetimes given in Eqs. �1� and �2�, �
=��1�+��2�.

When L=0, Eq. �13� takes the form

�̂�s� =

4aDcav

V

4aDcav

V
+ s

. �16�

This corresponds to the single-exponential probability den-
sity of the particle lifetime in the cavity with a circular ab-
sorbing spot of radius a on the cavity wall,

��t� =
4aDcav

V
exp�−

4aDcav

V
t� . �17�

The mean lifetime of the particle in this case is � 
L=0

=V / �4aDcav�.
When V=0 the Laplace transform in Eq. �13� reduces to

�̂�s� =
1

cosh L̃
. �18�

One can check that this is the Laplace transform of the life-
time probability density for a particle diffusing in a cylindri-
cal tube with perfectly reflecting and absorbing ends. The
particle starts from the reflecting end of the tube and is
trapped at the first contact with the absorbing end. The mean
particle lifetime in this case is given by � 
V=0=L2 / �2Dtun�.
The fact that Eq. �13� has correct asymptotic behavior when
V=0 is kind of surprising since the theory has been devel-
oped assuming that a is much smaller than all characteristic
lengths associated with the cavity.

In contrast to Eqs. �1� and �3�, the lifetime in Eq. �15�
has correct asymptotic behavior when L or V tends to zero.
When L�a and V�Vtun, where Vtun=�a2L is the volume of
the tunnel, the mean lifetime in Eq. �15� reduces to ��1� given
in Eq. �1�. This happens since under such conditions the
rate-limiting step determining the escape kinetics is just pas-
sage of the particle through the tunnel to its end opened to
the outside world. In this case �̂�s� in Eq. �13� is well ap-
proximated by the dependence

�̂�s� =

�a2Dtun

LV

�a2Dtun

LV
+ s

. �19�

Inverting this Laplace transform we obtain
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��t� =
�a2Dtun

LV
exp�−

�a2Dtun

LV
t� �20�

and

S�t� = exp�−
�a2Dtun

LV
t� . �21�

These expressions agree with the kinetics predicted by Eq.
�4�, which is based on the scenario that realizes when L�a
and V�Vtun.

The mean lifetime in Eq. �15� reduces to ��2� given in Eq.
�2� when Dtun=Dcav and L	a. In the opposite limiting case,
L�a, the last term in Eq. �15� can be neglected and the
mean lifetime in Eq. �15� reduces to ��3� in Eq. �3�, in which
parameter �=0.84 is replaced by � /4.

III. NUMERICAL TEST

To check the accuracy of the approximate theory devel-
oped in Sec. II, we compare theoretical predictions with the
results obtained by solving the three-dimensional diffusion
equation numerically �finite element method� assuming that
the cavity has the spherical shape as shown in Fig. 1. In our
numerical study we take that Dcav=Dtun=D and choose time
and length scales so that a=D=1. The numerical solutions
were found for several lengths of the tunnel, L=0, 1, 2, 3, 5,
7, 10, 20, and several values of the cavity radius, R=2, 5, 10,
20.

When developing the theory we neglect the intra-cavity
relaxation. This implies that we have assumed that our re-
sults are independent of the particle initial position inside the
cavity. �Of course, this assumption fails when the particle
starts very close to the tunnel entrance.� To test this assump-
tion we compare numerical results found for two initial dis-
tributions of the particle starting point, namely, �1� the par-
ticle starts from the center of the cavity and �2� the particle
starting points are uniformly distributed over the cavity vol-
ume. We saw some differences only in the lifetime probabil-
ity densities ��t� at the very early stage of the process and
only for the smallest cavity, R=2, at L=1 and 2. For all other

values of the parameters the results for ��t� obtained for the
two distributions of the particle initial position are practically
indistinguishable. The results for S�t� and � are indistinguish-
able for all value of the parameters.

Our numerical results are presented in Fig. 2. In Fig. 2�a�
we compare our theoretical predictions for the mean lifetime,
Eq. �15�, with the numerical results. The solid line in this
figure represents the dependence ��−L2 /2� /V. According to
Eq. �15� this is a linear function of the tunnel length,

� − 1
2L2

V
=

1

4
+

L

�
, �22�

which is independent of the cavity volume. Symbols are the
values of ��−L2 /2� /V obtained using � found numerically at
different values of the tunnel length and the cavity volume.
One can see that our numerical results are in excellent agree-
ment with the theoretically predicted dependence, Eq. �22�.

In Fig. 2�b� by the solid lines we show the particle sur-
vival probability S�t� and the probability density of its life-

0

L

x 2R

2a

FIG. 1. Spherical cavity of radius R connected to the outside world by a
narrow cylindrical tunnel of radius a and length L. The tunnel end opened to
the outside world is considered as a perfectly absorbing boundary. When
solving the problem numerically we choose the length and time scales so
that a=D=1.

FIG. 2. Numerical test of the theory. �a� Solid curve corresponds to function
��−L2 /2� /V, which is 0.25+L /� independently of V, Eq. �15�. Symbols are
numerical results for cavities of different head radii: R=2 �squares�, 5 �tri-
angles�, 10 �circles�, and 20 �diamonds�. �b� Solid cures are survival prob-
ability S�t� and the probability density ��t� �inset� obtained by inverting

numerically Ŝ�s� and �̂�s�, Eqs. �10� and �13�, for the cavity and tunnel with
R=2 and L=10. The circles are numerical results. The dashed line, which
provides a reasonably good approximation for S�t�, is S�t�=exp�−t /��, with
� given by Eq. �15�. Deviations from Markovian behavior at short times are
clearly seen in the inset.
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time ��t� �insert� obtained by inverting numerically the
Laplace transforms in Eqs. �10� and �13� at R=2 and L=10,
while circles show our numerical results. One can see excel-
lent agreement between the theoretical and numerical results.
Dashed line in Fig. 2�b� is the single-exponential approxima-
tion for the survival probability, S�t�=exp�−t /��, with the
mean lifetime � found by means of Eq. �15�. One can see that
the single-exponential S�t� provides a good approximation
for the survival. At the same time, deviations from the
single-exponential Markovian behavior at short times are
clearly seen in the inset.

The case of R=2 and L=10 is not special. We found
excellent agreement between our numerical results and theo-
retically predicted S�t� and ��t� for other values of the geo-
metric parameters also. The only exception was the behavior
of ��t� at very short times in the case of R=2 with L=1 and
2. Here the theoretical curves lied in between the numerical
results obtained for the two distributions of the particle start-
ing points. These distinctions in the behavior of ��t� did not
manifest themselves in the behavior of the survival probabil-
ity since they occurred at the very beginning of the process
when the particle had not had enough time to escape and,
therefore, deviations of S�t� from unity were negligibly
small.

IV. CONCLUDING REMARKS

In summary, we have developed a theory that describes
escape of diffusing particles from a cavity to the outside
world through a narrow tunnel. One of the main results of
our analysis is the expression for the Laplace transform of
the probability density of the particle lifetime, Eq. �13�. This
expression allows one to find the Laplace transform of the
particle survival probability, Eq. �10�, and its mean lifetime,
Eq. �15�, i.e., the time it takes a diffusing particle to reach the
end of the tunnel opened to the outside world. This time is
found as a function of the geometric parameters �volume of
the cavity, radius, and length of the tunnel� and diffusion
coefficients of the particle in the cavity and in the tunnel,
which may be different. The expression in Eq. �15� contains
the results for the mean lifetime previously reported in the
literature1–3 as special cases.

Two approximations were made when developing the
theory. �i� Three-dimensional diffusion of the particle in the
tunnel is described as one-dimensional diffusion on a line
terminated by perfectly and partially absorbing end points.
The former models exit of the particle from the tunnel to the
outside world while the latter models its return to the cavity.
�ii� Transition of the particle from the cavity to the tunnel is
described as a single-exponential Markov process with a pre-
scribed escape rate. This implies that we neglect the effect of
the intra-cavity relaxation on the escape kinetics.

To test our approximate theory we compare its predic-
tions with the results obtained by solving the three-
dimensional diffusion problem numerically. This was done
for the particle survival probability, its lifetime probability
density, and the mean lifetime. Excellent agreement between
the theoretical predictions and numerical results over a broad

range of the geometric parameters of the problem validates
the applicability of the theory developed in the paper.

Concerning possible application of the theory to signal
diffusion in dendritic spines, we note that although our
analysis above is focused on the geometric aspect of the
problem, there are some other factors that may affect the fate
of the signal in the spine. These factors include reversible
binding of the signal to buffers and intracellular stores, hy-
drodynamic effects due to the signal interaction with the
crowded intracellular environment and the neck walls, spine
motility, as well as escape from the spine through different
pumps located on the walls of the spine head and neck. To
analyze how these factors affect the fate of the ligand in the
spine, it is necessary to know what happens with the ligand
in the absence of these factors. The theory developed in the
present paper provides an answer to this question. Therefore,
this theory can be considered as a first step on the way to a
comprehensive theory, in which all these factors will be
taken into account.

While earlier studies1–3 were focused on the mean signal
lifetime in the spine, our results allow one to analyze com-
plex kinetics which is not necessarily single exponential.
This may be important since multiexponential escape kinet-
ics has been observed in some experiments. Based on the
expression for �̂�s�, Eq. �13�, it can be shown that the kinet-
ics becomes multiexponential when the mean time spent by
the signal in the neck is comparable with time �head

=V / �4Da�. Using the fact that the former time is propor-
tional to La /D,10 we find that deviations from single-
exponential behavior of S�t� are important only when the
neck volume Vneck=�a2L becomes comparable with the head
volume V. Typically Vneck is much smaller than V, and the
escape kinetics is single exponential. Therefore, when non-
exponential decay of S�t� is observed in spines with Vneck

	V, one can be sure that there are some other factors differ-
ent from the spine geometry, which are responsible for this
nonexponential decay.

Our results show how the kinetics of the signal escape
from the spine depends on the geometric parameters. It turns
out that the only geometric parameter of the spine head en-
tering into the expressions for �̂�s�, Eq. �13�, and �, Eq. �15�,
is the head volume. This implies that the kinetics is indepen-
dent of the shape of the spine head. This is true only when
the intra-head relaxation is fast in the sense that the charac-
teristic relaxation time is much smaller than the mean time
required for the signal to find the entrance to the neck.6 As-
suming that the spine head is not too asymmetric, we can
roughly estimate the relaxation time by V2/3 /D. Comparison
of this relaxation time with �head leads to the inequality a
	V1/3 that restricts the range of applicability of the theory to
spines, which satisfy this inequality, for example, spines with
bulbous heads studied in Ref. 1. Surprisingly, the theory also
leads to the exact results for �̂�s� and � in the opposite lim-
iting case when V=0 and the spine is purely cylindrical.

While our discussion above is focused on the signal
compartmentalization in the spines, we note that spines can
also play a different role, namely, they can affect diffusion of
signals in the parent dendrite.11,12 The model suggested in
Ref. 11 treats signal diffusion in a spiny dendrite as diffusion
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in a tube with dead ends. A particle diffusing in such a tube
occasionally enters the dead ends. This leads to slowdown of
its spreading along the tube. The problem of diffusion in
tubes with dead ends has much in common with the problem
analyzed in the present paper. To see this one can compare
the analysis above with that in Ref. 13 devoted to time-
dependent diffusion in tubes with periodic dead ends. The
spine effect on diffusion in the parent dendrite should be
taken into account when analyzing experiments that monitor
the time course of diffusional exchange between the spine
head and dendrite.1 Such experiments are important since
they allow direct characterization of the diffusional coupling
between spines and dendrites that is crucial for understand-
ing neuronal integration and synaptic plasticity.1–4
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