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The authors are developing a computer-aided detection system for pulmonary emboli �PE� in
computed tomographic pulmonary angiography �CTPA� scans. The pulmonary vessel tree is ex-
tracted using a 3D expectation-maximization segmentation method based on the analysis of eigen-
values of Hessian matrices at multiple scales. A parallel multiprescreening method is applied to the
segmented vessels to identify volume of interests �VOIs� that contained suspicious PE. A linear
discriminant analysis �LDA� classifier with feature selection is designed to reduce false positives
�FPs�. Features that characterize the contrast, gray level, and size of PE are extracted as input
predictor variables to the LDA classifier. With the IRB approval, 59 CTPA PE cases were collected
retrospectively from the patient files �UM cases�. With access permission, 69 CTPA PE cases were
randomly selected from the data set of the prospective investigation of pulmonary embolism diag-
nosis �PIOPED� II clinical trial. Extensive lung parenchymal or pleural diseases were present in
22 /59 UM and 26 /69 PIOPED cases. Experienced thoracic radiologists manually marked 595 and
800 PE as the reference standards in the UM and PIOPED data sets, respectively. PE occlusion of
arteries ranged from 5% to 100%, with PE located from the main pulmonary artery to the subseg-
mental artery levels. Of the 595 PE identified in the UM cases, 245 and 350 PE were located in the
subsegmental arteries and the more proximal arteries, respectively. The detection performance was
assessed by free response ROC �FROC� analysis. The FROC analysis indicated that the PE detec-
tion system could achieve an overall sensitivity of 80% at 18.9 FPs/case for the PIOPED cases
when the LDA classifier was trained with the UM cases. The test sensitivity with the UM cases was
80% at 22.6 FPs/cases when the LDA classifier was trained with the PIOPED cases. The detection
performance depended on the arterial level where the PE was located and on the percentage of
occlusion. The sensitivity was lower for PE in the subsegmental arteries than in more proximal
arteries and was lower for PE with less than 20% occlusion. The results indicate that the PE
detection system achieves high sensitivity for PE detection on independent CTPA scans for both the
PIOPED and UM data sets and demonstrate the potential that the automated PE detection approach
can be generalized to unknown cases. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3157102�
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I. INTRODUCTION

Pulmonary emboli �PE� partially or completely occlude pul-
monary arteries after thrombi that usually form in the veins
of the lower extremities or pelvis embolize into the pulmo-
nary arteries. PE is a common condition and a leading cause
of deaths in hospitalized patients. Prompt diagnosis and
treatment of PE greatly influences patient outcome.1,2 The
majority of studies performed to date have shown that com-
puted tomographic pulmonary angiography �CTPA� is the
best choice for the evaluation of suspected PE, with excellent
accuracy for PE in the main, lobar, and segmental pulmonary
artery levels3–18 but lesser accuracy for PE in the subsegmen-
tal arteries.12,15,19,20 The reported sensitivity ranges from

3–18
53% to 100% and specificity from 75% to 100%, depend-
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ing on patient cohorts, imaging parameters, and CT scanner
generation. The recent prospective multicenter clinical trial,
prospective investigation of pulmonary embolism diagnosis
�PIOPED� II,18 reported an overall sensitivity of 83% with a
specificity of 96% and positive predictive values of 97%,
68%, and 25% for PE in main or lobar, segmental, and sub-
segmental arteries, respectively. The large variation in sensi-
tivity and specificity is due not only to the difficulty of PE
diagnosis in small subsegmental arteries but may also be due
to subtle PE with small percentages of arterial occlusion.
Although there are differing views about the clinical signifi-
cance of small peripheral PE in the absence of central em-
boli, small PE may produce significant morbidity in patients
with underlying cardiopulmonary disease21,22 and may indi-

cate a risk for recurrence of more significant PE among
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stable patients. In addition, it is important to estimate the
total burden of pulmonary vascular clots in patients with
acute PE to determine proper therapy and improve patient
outcome.23–28 Therefore, before a definitive study indicates
otherwise, accurate detection of PE at all arterial levels may
provide useful information for diagnosis and treatment.29

Figure 1 shows examples of PE visualized on CTPA images.
Thin-section multidetector computed tomography

�MDCT� pulmonary angiography examinations for suspected
PE routinely produce approximately 500–600 axial images
of the thorax.30 Radiologists have to visually track the pul-
monary arteries down to the sixth-order branches. False
negatives �FNs� are not uncommon because of the complex-
ity of the images and the large number of arteries to be
tracked in each case. Computer-aided detection �CAD� tech-
niques may be a viable approach for assisting radiologists in
the demanding task of PE detection and reducing the chance
of missing PE.30,31

Automated detection of PE on CT images is a challenging
area of computer vision application. This area has not at-
tracted the interest of the CAD community until recently.
Our recent review article indicated that the few studies per-
formed to date are very preliminary using relatively small
data sets.32 These previous studies have also suggested that
the characteristics of PE, such as PE size, percentage of ar-
terial occlusion, and the size of the involved arteries, as well
as the presence of other pulmonary diseases, and CT image
quality should be taken into consideration when evaluating
the performance of a CAD PE system. Before a common
data set is available, comparison among the performance of
different systems will be difficult.

Although very few studies have been conducted to evalu-
ate the value of CAD as a second reader in PE detection,
studies33–36 to date indicate that CAD is useful in improving
the performance for PE diagnosis and can help radiologists
as a second reader. For example, Engelke et al.36 assessed
the performance of a CAD system by a commercial company
and its effects as a second reader on the detection of PE by
two experienced and two inexperienced chest radiologists. A
total of 1116 PE was identified in the CTPA scans of 56
patients through an independent consensus panel of two ex-
perienced radiologists who had knowledge on the results of
the study readers and the results of CAD. Despite the low
sensitivity of the CAD system �sensitivity of 30.7 at 4.1 FPs/

FIG. 1. Examples of PE visualized on CTPA images. The PE identified by
radiologists were marked by white arrows.
patient�, the sensitivities of radiologists with CAD increased
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to a range of 83%–96%, from 77% to 93% without CAD.
The overall performance in terms of the area Az under the
receiver operating characteristic �ROC� curve of individual
radiologists also increased with CAD, and the improvement
for the inexperienced radiologists was statistically significant
�p=0.041�.

We are developing computer vision techniques for the au-
tomated detection of PE on CTPA images.37,38 In this study,
we developed a prototype system for PE detection using
multiscale vessel segmentation and vessel tree construction,
parallel multiprescreening method for suspicious PE detec-
tion, and linear discriminant analysis �LDA� classifier for
false positive �FP� reduction. The performance of our
method was evaluated on two relatively large independent
data sets to demonstrate the feasibility of our methods in PE
detection and the robustness of our method in independent
cases.

II. MATERIALS AND METHODS

II.A. Materials

With the approval of our Institutional Review Board
�IRB�, we collected 59 inpatient CTPA PE-positive cases ret-
rospectively from the patient files at the University of Michi-
gan �UM�. The images were acquired with GE multidetector
CT scanners, 120–140 kVp, 300–600 mA s, reconstructed
at 1.25 mm slice thickness. Of the 59 cases, 16, 3, 34, and 6
cases were acquired with a 4-, 8-, 16-, and 64-slice CT scan-
ner, respectively. Twenty-two of the 59 cases had extensive
lung parenchymal and/or pleural disease. With access per-
mission, 69 CTPA PE-positive cases were randomly selected
from the data set collected in PIOPED II trial, a multicenter,
prospective trial supported by the National Institutes of
Health and the National Heart, Lung, and Blood Institute.
This study was designed to assess the validity of contrast
enhanced spiral CT in the diagnosis of acute PE. According
to the latest report presented,18,39 PIOPED II study recruited
1090 patients that satisfied their protocol entry criteria. All
patients were examined with helical CTPA and CT venogra-
phy and a composite reference standard that included
ventilation/perfusion lung scan and ultrasound of the lower
extremities. CTPA examinations were obtained on MDCT
scanners of 4, 8, and 16 detector rows, at 1–1.25 mm colli-
mation and reconstruction interval. All diagnostic tests ex-
cept venous ultrasonography were interpreted based on the
agreement of two certified central readers not at the patient’s
clinical center. Additional readers were used until agreement
of two was obtained. Central readers were blinded to clinical
information and results of other imaging tests. The central
CT readers recorded which arteries contained PE and were
incorporated into the reference standard. The PIOPED II
study reported about 23% PE prevalence among 824 patients
with a reference diagnosis and a completed CT study.18 Of
the 69 PIOPED PE-positive cases selected for this study, 59,
7, and 1 cases were acquired with GE 4-, 8-, and 16-slice CT
scanner, respectively. Two cases were acquired with Siemens

4-slice CT scanner. The images were acquired at
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120–140 kVp and 170–400 mA s. Of the 69 cases, 26 also
had extensive lung parenchymal or pleural diseases.

For the UM cases, PE locations were marked by three
experienced thoracic radiologists on a computer graphical
user interface �GUI� developed in our laboratory. The PE
locations in the PIOPED cases were also marked by our ra-
diologists with reference to the documented diagnosis in the
PIOPED study. The GUI has functions allowing the radiolo-
gist to cine-page through the CT slices, scroll in and out of
individual arteries, adjust window setting, and zoom to im-
prove visualization. The radiologists marked the PE location
in every artery where it was present. For a contiguous vol-
ume of PE that occluded more than one level of the arteries,
and branches of arteries at the same level, the radiologists
virtually split the single PE volume by marking the PE seg-
ment in each branch as a separate PE. For each PE, radiolo-
gists marked the approximate location of its center and the
starting and ending slices of the PE segment with a cursor,
identified the anatomical level of the artery �trunk, main,
lobar, segmental, and subsegmental�, measured the diameter
of the artery with an electronic ruler, and visually estimated
the percentage of PE occlusion in the artery. To generate a
volume of the PE, we developed a semiautomatic computer
tool to segment the PE voxels within the radiologist-marked
PE volume of interest �VOI� using a supervised region grow-
ing method.40–43

Radiologists manually marked 595 and 800 PE in the UM
and PIOPED data sets, respectively. Table I shows the distri-
butions of PE identified in the two data sets according to
their major artery location and the percentage of arterial oc-
clusion. These marked locations were used as the reference
standard for algorithm development and evaluation. The PE
occlusion in the data sets ranged from 5% to 100%. Of the
595 PE identified in UM cases, 245 �41%� and 350 �59%� PE
were located in subsegmental arteries and the more proximal
arteries, respectively. Of the 800 PE identified in the PIO-
PED cases, 282 �35%� and 518 �65%� PE were located in the

TABLE I. Reference standard PE identified by radiologists by artery level and
percent arterial occlusion.

Data set
Percent

occlusion
Proximal PE

No. �%�
Subsegmental PE

No. �%� All PE

59 UM
cases

�20% 52 �8.7%� 33 �5.6%� 85 �14.3�

20%–80% 170 �28.6%� 94 �15.8%� 264 �44.4%�
�80% 128 �21.5%� 118 �19.8%� 246 �41.3%�

All occlusion 350 �58.8%� 245 �41.2%� 595

69 PIOPED
cases

�20% 53 �6.7%� 33 �4.1%� 86 �10.8%�

20%–80% 279 �34.9%� 153 �19.1%� 432 �54.0%�
�80% 186 �23.3%� 96 �12.0%� 282 �35.3%�

All occlusion 518 �64.8%� 282 �35.2%� 800
subsegmental and more proximal arteries, respectively.
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II.B. Methods

II.B.1. Pulmonary vessel tree segmentation

Because PE only occurs inside the pulmonary arteries,
automatic and accurate segmentation of the pulmonary ves-
sels in 3D CTPA images is an essential step for a PE CAD
system. We developed an automatic multiscale enhancement
and segmentation method to construct pulmonary artery tree.
Details of the method was described elsewhere.38 Briefly, all
CT scans were interpolated to have isotropic voxels before
processing for PE detection. The lung region was first ex-
tracted by applying expectation-maximization �EM� segmen-
tation method to the volume of the scan. A morphological
“closing” operation was then used to fill in the gaps along the
boundary of the segmented lung region and “holes” inside
the lung regions. The vascular structures in the lung volume
were enhanced by 3D multiscale filtering and analysis of the
eigenvalues of Hessian matrices using a vessel enhancement
response function specially designed to enhance pulmonary
vascular structures including the vessel bifurcations and to
suppress nonvessel structures such as the lymphoid tissues
surrounding the arteries. At each scale, the CT volume was
convolved with a 3D Gaussian filter and the Hessian matrix
was calculated at each voxel. A VOI containing the response
function value at each voxel was defined. In this VOI, voxels
with a high response indicated an enhanced vessel whose
size matched the given filter scale. An EM estimation was
then applied to the VOI to segment the vessels by extracting
the high response voxels at each scale. Finally, the vessel tree
was constructed using a hierarchical integration scheme to
combine the segmented vessels at all scales and retain their
size information.38 The centerline of the constructed vessel
tree was extracted based on the morphological “hit-and-
miss” transform.44 A 3D morphological hit-and-miss trans-
form with a structuring element of 3�3�3 cross was suc-
cessively applied to the segmented vessel volume to remove
the voxels from the vessel boundary until no more voxel
could be removed. The points along the centerline can be
expressed in term of the hit-and-miss transform as

Center Point�I,J� = I − �hit-and-miss�I,J�� , �1�

where I is the set of voxels of the segmented vessel, J is the
morphological structuring element, and the subtraction is a
logical subtraction.

II.B.2. Parallel multiprescreening of suspicious PE

PE can exist anywhere within the arteries, from the main
pulmonary artery to the subsegmental arteries and smaller,
over which the radius of the arteries may change from over
10 mm to less than 2 mm. The percentage of observable PE
occlusion on the CT images ranges widely from 100% to
5%. It is difficult to use one single method to effectively
detect all PE because of the large variations in the character-
istics of the PE in the patient population. We developed a
multiprescreening scheme to identify VOI that contained
suspicious PE.45,46 In this study, two independent prescreen-
ing methods were developed to search for suspicious PE lo-

cally and globally in parallel in the constructed pulmonary
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arterial tree. The scale information on the vessels was simul-
taneously recorded and each voxel of a vessel was labeled by
the scale value when the vessel tree was reconstructed using
our multiscale segmentation and integration methods.38 The
labeled scale of each voxel therefore provided the approxi-
mate local vessel size information from which the size of the
search region was estimated, for example, the cubic VOI
along the segmented vessels for local search �method 1 de-
scribed below�, and the vessel tree stratified to different scale
ranges for multiscale global search �method 2 described be-
low�. The suspicious objects detected by each prescreening
method were added to a candidate pool subjected to subse-
quent false positive reduction. For overlapped objects re-
sulted from the two prescreening methods, only the largest
object would be chosen as candidate.

Method 1: Local search for the transition regions contain-
ing both normal and PE occluded vessel. This prescreening
method is based on the properties of partial or complete fill-
ing defects within the lumen of the contrast-enhanced pul-
monary arteries. The partial filling defect is often manifested
as an area with lower CT values located at the marginal or
intravascular central region that is surrounded by a variable
amount of contrast material that exhibits higher CT values.
Complete filling defect often results in an entire arterial sec-
tion having low CT values. We developed an EM segmenta-
tion based prescreening method to search for the regions
containing partial filling defect and the transition regions be-
tween normal arterial section and section of complete filling
defect in a local region as follows. After vessel segmentation
and reconstruction, a local cubic VOI was formed to enclose
several slices of a single branch of the vessel tree. The VOI
was centered at a given point along the vessel centerline
extracted based on the morphological hit-and-miss trans-
form. The size of the cubic VOI was determined by the la-
beled scale information on the vessel region, as described
above. The local search method was based on the assumption
that there were two classes of voxels in the local region: One
class belonged to the contrast-filled vessel and the other PE
and/or lymphoid tissues. A 3D adaptive EM segmentation
was applied to the segmented vessel within the VOI to sepa-
rate the two classes of voxels. With the assumption as a
priori knowledge, two Gaussians with equal variances were
evenly placed across the gray-level histogram of the local
voxels as the initial estimates. After several iterations, the
EM algorithm found the optimally fitted Gaussians to the
histogram. If there was no PE or lymphoid tissue in the local
volume, the two Gaussian distributions on the histogram
might overlap and merge. The EM segmentation would
therefore only output one class of voxels: The contrast-filled
vessel regions. Otherwise, the EM would output two classes:
Region of suspicious PE and/or lymphoid tissue and the ves-
sel. The CT values of lymphoid tissue is similar to those of
PE so that they cannot be separated in EM segmentation. The
PE candidates will be further analyzed in the feature classi-
fication step to reduce the FPs such as lymphoid tissue. The
VOI would be moved by centering the VOI at each point

along the centerline, with its size adapted to each local vessel
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region, until the entire vessel was screened by the EM seg-
mentation.

Method 2: Multiscale adaptive thresholding for global
search in the vessel tree. Because of the assumption that
there were two classes in the local volume when using EM
analysis, the local search method could only detect the sus-
picious PE regions in the local volume that contained both
normal and abnormal vessel segments. However, a signifi-
cant PE can occlude an artery by a large percentage, for
example, �80%, and extend further beyond the local vol-
ume. A local volume at the transition region may contain
only very few contrast-filled voxels. The EM segmentation
of the local search method may output one class of voxels
which will be labeled as normal vessel. The PE of large
occlusion thus may be missed by the local search method.
We developed a global search method to overcome the above
limitation. Because the contrast flows from the central to-
ward the peripheral and smaller arteries, the CT values have
different ranges at different arterial levels. For example, the
CT values in small arteries may be lower than those in larger
arteries; thus, the CT value of PE occluded larger artery may
be close to those of normal small arteries. To detect the PE at
different levels of arteries, we developed an adaptive multi-
scale detection method45 to search for PE in vessels of dif-
ferent sizes. Because the vessel tree was reconstructed using
our multiscale segmentation and integration methods,38 each
voxel of a segmented vessel was labeled by the scale infor-
mation. The vessels were stratified to different range of
scales, as illustrated in Fig. 2. Note that the vessels were not
stratified at every single scale, the vessel voxels labeled by a
specified range of scales were grouped into one stratified
vessel structure. PE prescreening was performed separately
in each stratified vessel structure using an EM segmentation
to identify suspicious PE objects. Assume that there were
two classes of voxels in the stratified vessel structure: Voxels
in contrast-filled vessel region and voxels of PE and/or lym-
phoid tissue region. If there is no soft tissue or PE, then EM

FIG. 2. Vessel tree stratification. The computer constructed vessel �top-left�
was stratified to multiple levels in terms of the scales �approximately related
to the vessel sizes� derived from our vessel segmentation and integration
method. The diameters of vessels were stratified from large to small �as
shown above from left to right, top to bottom�.
analysis will find one Gaussian distribution. Otherwise, EM
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algorithm will output two separate Gaussian distributions:
Contrast-filled vessel region and PE and/or lymphoid tissue
region.

II.B.3. False positive reduction to determine the
true PE

Our previous studies of CAD for breast and lung cancer
indicated that linear or nonlinear combination of a number of
features can be very effective in reducing FPs.47–50 In this
study, we investigated the feasibility of training a LDA clas-
sifier with stepwise feature selection to remove the pre-
screened objects that were substantially different from the
true PE and generalizing the trained classifier to a relatively
large independent test data set. The details of the implemen-
tation of LDA classifier with stepwise feature selection
method for CAD applications can be found in our previous
studies.51,52

Briefly, LDA is a well established technique53,54 to find
the linear combination of features which best separate two or
more classes of data. For a two-class problem, the linear
discriminant function is formulated as a weighted sum of a
set of selected features as input predictor variables,

D = a0 + �
i−1

n

aiXi, �2�

where n is the number of selected feature variables, Xi are
the values of the feature variables and ai are coefficients �or
weights� estimated from the input data during training such
that the separation between the distributions of the discrimi-
nant scores D of the two classes is a maximum. To select the
best set of features as input variables.51,52,55 We used a step-
wise procedure to identify the useful features from the avail-
able input feature pool using a forward inclusion and back-
ward removal process. The significance of the change in a
feature selection criterion, which was chosen to be the Wilks’
lambda �ratio of the within-class sum of squares to the total
sum of squares of the two-class distributions�, when a new
feature is entered or when an included feature is removed is
determined based on F statistics.

For each suspicious PE object detected in the prescreen-
ing step above, nine features were extracted. The accurate
identification of a true PE is based on the depiction of partial
or complete filling defect within the lumen of the contrast-
enhanced pulmonary arteries. We designed the following
nine features to describe the filling defects for a detected
suspicious PE object.

�f1� Average CT value of the detected object �AvgO�:

AvgO =
�i

nx�i�
n

, �3�

where x�i�, i=1, . . . ,n, represents the CT value of voxel i and
n is the number of voxels in the object.
�f2� Dominant CT value of the detected object �DIO�:
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DIO = arg max
x

H�x� , �4�

where H�x� is the histogram of CT values of the detected
object and x is the CT value. DIO is the largest CT value of
the histogram H�x�.

�f3�, �f4� Maximum �MaxScale� and mean �MeanScale�
scales of the voxels of the detected object:

MaxScale = max
i

n

�S�i�� , �5�

MeanScale =
�i

nS�i�
n

, �6�

where S�i� is the scale value of the ith voxel of the object.
The voxels were labeled when the arterial tree was recon-
structed using our multiscale segmentation and integration
methods.38

�f5� Number of slices that enclose the detected object
�NumSlice�.

�f6� Volume of the detected object �VolO�.
�f7�, �f8�, �f9� Three features that describe the difference

in CT values between the detected object and the surround-
ing vessel �ID1� and the nonvessel background �ID2 and ID3�
are extracted as follows. Let S�i� be the labeled scale value
of voxel i in the segmented vessel tree and h�x� represents
the CT value histogram of voxels for which their labeled
scale value S�i� are MaxScale−2�S�i��MaxScale, the fea-
ture ID1 is defined as

ID1 =
arg maxx h�x�

DIO
, �7�

where DIO is the feature f2 dominant intensity of the de-
tected object.

For a detected object O, a morphological dilation with a
structuring element that has a diameter of about the equiva-
lent radius of the object is used to enlarge the object to about
two times that of the original object O so that the surround-
ing nonvessel background of object O is enclosed. Let AvgIn
denote the average CT value of the voxels of object O and
AvgOut the average CT value of the voxels in the nonvessel
background surrounding object O �outside the object O but
inside the enlarged object EO�, the features ID2 and ID3 are
defined as

ID2 = AvgIn/AvgOut, �8�

ID3 = �AvgIn�2/AvgOut. �9�

II.B.4. Performance evaluation

We used an overlap criterion to determine whether a de-
tected object was true positive �TP� or FP. A computer-
detected object was scored as TP when it overlapped with a
reference standard PE by greater than a threshold T. The
overlap ratio was defined as Jaccard coefficient �or Jaccard

56
index�,
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Overlap =
VolO � VolR

VolO � VolR
, �10�

where VolO is the volume of the detected object and VolR is
the volume of the reference standard. The threshold was cho-
sen to be 10% in this study. The sensitivity was evaluated
relative to the individual PE after virtual splitting described
above �Sec. II A�. The performance of the LDA classifier
was evaluated by ROC analysis. The detection performance
was assessed by free response ROC �FROC� analysis.

III. RESULTS

Figure 3 shows an example of a computer constructed
vessel tree. The accuracy of vessel extraction was evaluated
in our previous study38 which demonstrated that vessel seg-
mentation using our method can extract the pulmonary ves-
sels accurately and the performance is not degraded by PE
occlusion to the vessels. Two independent data sets including
59 UM and 69 PIOPED CTPA PE cases were used for the
performance evaluation of our method in PE detection. A
LDA classifier with stepwise feature selection was trained
with the 59 UM cases, and the performance of the trained
classifier was evaluated on the 69 PIOPED cases and vice
versa.

Table II shows the Az values for the training and test sets,
standard deviations, and the number of features selected
when the LDA classifier was trained with the UM or the
PIOPED cases. Figure 4 shows the test FROC curves for the
independent data sets when the classifier was trained with

FIG. 3. An example of a computer constructed pulmonary vessel tree within
the segmented lung regions.

TABLE II. Az value of training and test sets and the c
input to LDA classifiers when trained with UM and

Data set Training Az

S
trai

Train in PIOPED cases,
test on UM cases

0.855 0

Train in UM cases, test
on PIOPED cases

0.881 0
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UM cases and PIOPED cases, respectively. These curves
represent the performance of our PE detection system for all
PE with a range of 5%–100% occlusion and for all CTPA
examinations in each data set including those with extensive
parenchymal or pleural disease. The FROC analysis indi-
cated that the overall performance of our PE detection sys-
tem could achieve a test sensitivity of 80% at 18.9 FPs/case
for the PIOPED cases when the LDA classifier was trained
with the UM cases. The test sensitivity with the UM cases
was 80% at 22.6 FPs/cases when the LDA classifier was
trained with the PIOPED cases.

The detection performance depended on the arterial level
where the PE was located and on the percentage of occlu-
sion. Figure 5 shows the test FROC curves stratified for PE
located at two arterial levels �subsegmental arteries and
proximal arteries� with different percentage of occlusion
��20, 20%–80%, and �80%�. As expected, the FROC
curves indicated that the sensitivity was lower for PE in the
subsegmental arteries than those in the more proximal arter-
ies and was lower for PE with less percent occlusion. Figures
6�a�–6�e� show examples of computer-detected true positive
PE with different occlusion to the arteries, false positives,
and false negative �missed� PE.

IV. DISCUSSION

Although the development of CAD systems for PE detec-
tion in CTPA is still at an early stage,32 recent studies33–35,57

indicated that CAD is useful in improving the performance
for PE diagnosis and can help radiologists as a second opin-
ion. Automated detection of PE in CTPA scans is challeng-

ponding SD, the number of features selected as the
ED cases, respectively.
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SD of
test Az
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0.877 0.008 5
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FIG. 4. The test FROC curves for PIOPED and UM cases, when the LDA
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ing. The difficulty of computerized PE detection is not only
because of the large volume of data but also because of the
complexity of the images and the partial volume effect, mo-
tion, or other imaging conditions. The performance of a
CAD system also depends strongly on the characteristics of
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FIG. 5. The test FROC curves stratified for PE located at two arterial levels
occlusion ��20%, 20%–80% and �80%�. The left and right columns are te
the PE such as their size, percentage of arterial occlusion by
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PE, and the diameter of the artery involved. To develop a
CAD system, one of the most challenging tasks is to collect
a sufficiently large data set for training and testing the com-
puter algorithms. The collected cases should be representa-
tive of patient population and the reference truth of the lesion

FPs/Scan
0 10 20 30 40 50 60

Se
ns
iti
vi
ty
%

0.0

0.2

0.4

0.6

0.8

1.0

All PEs
Proximal
Subsegmental

Occlusion20%:UM ≤

FPs/Scan
0 10 20 30 40 50 60

Se
ns
iti
vi
ty
%

0.0

0.2

0.4

0.6

0.8

1.0

All PEs
Proximal
Subsegmental

Occlusion80%-20%:UM

FPs/Scan
0 10 20 30 40 50 60

Se
ns
iti
vi
ty
%

0.0

0.2

0.4

0.6

0.8

1.0

All PEs
Proximal
Subsegmental

Occlusion80%:UM ≥

segmental arteries and proximal arteries� and with different percentages of
sults for the PIOPED and UM cases, respectively.
�sub
st re
should be well defined. For the clinical CTPA PE cases, there



3392 Zhou et al.: Computer-aided detection of pulmonary embolism in CTPA images 3392
is no equivalent to biopsy-proven “ground truth” as to
whether PE are present or absent in a given artery. In our
study, experienced thoracic radiologists provided the refer-
ence standard for PE by manually marking PE locations and
providing the relevant information such as the size of the PE,
percentage of the PE arterial occlusion, and the anatomic
level of the artery occluded. Because a PE can extend to
multiple branches down to multiple levels of artery, to evalu-
ate the performance of our CAD system at different levels of
the arteries, our radiologists virtually split a single volume of
PE into volumes according to the branching of the artery by
marking the PE segment in each branch as a separate PE.
The sensitivity of a CAD algorithm for individual PE in a
case can be treated, in a way, as the collective evaluation of
the sensitivity of PE of different degrees of occlusion and
conspicuity that may occur in many PE cases. Therefore, in
the developmental process of a CAD system, it is useful to
evaluate the sensitivity for detection of individual PE. This
will also increase the number of individual PE for training
the CAD system far beyond the number of CTPA cases avail-
able because many cases have multiple PE. The splitting of
PE volume allows us to evaluate the performance of the
CAD system at different arterial levels. However, it will also
reduce the apparent sensitivity of the CAD system because a
nonsplit PE extending from large to small arteries can be
counted as a TP if any part of the PE is detected, whereas the
same PE split into different arterial branches may generate
several FNs if the split PE in the small arteries are missed.
Nevertheless, before a large data set of PE cases that con-
tains a sufficiently large number of single PE located at dif-

(a) (b) (c)

(d) (e)

FIG. 6. Examples of the computer detected PE with different occlusions, FP
and FN PE. A true-positive PE was enclosed by a black contour and marked
by a white arrow, a false-positive was enclosed by a white contour and
marked by a gray arrow, and a false-negative was marked by a white arrow
without contour. Image �a� a TP subsegmental PE with 30% occlusion, �b�
an FN subsegmental PE with 15% occlusion, �c� two TP PE with 90%
occlusion which were splitted from the segmental �lower� to the subsegmen-
tal level �upper�. �d� Three TP PE were detected, three lobar PE �top-left,
bottom-left and bottom-right� with 95%, 60% and 40% occlusion, respec-
tively. The FP in �d� was caused by partial volume effect between a lobar
and a subsegmental artery. The two FPs in �e� were caused by extensive lung
pleural disease.
ferent levels of the pulmonary tree can be collected, the PE
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splitting method may be a good alternative to estimate detec-
tion performance at different arterial levels and to alleviate
the problem of a limited data set.

As we discussed in Sec. I, the PIOPED II cases were
collected prospectively from multiple centers with a well-
defined composite reference standard for PE diagnosis. It
may be the best available data set to date for the evaluation
of a CAD system. However, the written description of the
“gold standard” established by the PIOPED readers is not
specific in terms of individual PE locations, and many of the
PE characteristics that are useful for CAD system perfor-
mance evaluation, such as the size of the PE, percentage of
arterial occlusion, the likelihood of being a true PE and con-
spicuity, were not collected in the PIOPED trial. To utilize
the PIOPED cases in our study, our radiologists followed the
PIOPED case reports and marked the PE locations on the
CTPA scan using the same protocol of marking PE in UM
cases. Since the UM data set does not have as rigorous ref-
erence standard as the PIOPED II data set, it is useful to
compare the PE detection system performance in the UM set
to that in the PIOPED II set as a reference. The result indi-
cates that the performance in the UM data set does not ap-
pear to be overly optimistic relative to that in the PIOPED II
data set.

Our two independent data sets were acquired with differ-
ent �4-, 8-, 16-, and 64-slice� CT scanners. Of the 59 UM
cases, 16, 3, 34, and 6 cases were acquired with 4-, 8-, 16-,
and 64-slice CT scanners, respectively. Of the 69 PIOPED
cases, 61, 7, and 1 cases were acquired with 4-, 8-, and
16-slice CT scanners, respectively. To evaluate the effects of
different CT scanners on PE detection using our CAD sys-
tem, an ROC analysis was used to assess the LDA classifier
performance for differentiating TPs and FPs when the clas-
sifier was trained with the 69 PIOPED cases and tested on
the 59 UM cases. The test Az values were 0.898�0.014,
0.899�0.027, 0.863�0.012, and 0.898�0.029 for the 59
UM cases acquired with 4-, 8-, 16-, and 64-slice CT scan-
ners, respectively. The differences in Az did not achieve sta-
tistical significance �p�0.05�. Note that although the num-
bers of cases with different CT scanners are small, the
numbers of TPs and FPs were quite large for individual set
�138 TPs and 926 FPs in the 16 4-slice cases, 40 TPs and 192
FPs in the 3 8-slice cases, 315 TPs and 1993 FPs in the 34
16-slice cases, 36 TPs and 331 FPs in the 6 64-slice cases,
respectively�. The study indicated that our CAD system is
reasonably robust for CTPA scans acquired with different CT
scanners.

The methods for the determination of ground truth or the
criteria for establishing reference standard for the training
and testing samples, as well as the methods for scoring the
true lesions and FPs, affect the apparent performance of the
CAD system. The criterion that the detected object intersects
with a reference standard, without a threshold, was used for
scoring a true PE �TP� in most reported studies,33–35 while
other studies36,58 did not mention the scoring method. In our
study, we also used an overlap criterion to determine whether

a detected object was TP or FP. But a detected object could
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only be scored as TP when it overlapped with a reference
standard by greater than a threshold T instead of intersecting
with any voxel of the reference standard. Using the union of
the detected object volume and the reference standard PE
volume and imposing an overlap threshold can avoid scoring
a detected object as a TP when its size is too large or too
small compared to the size of the reference standard. Figure
7 illustrates examples of situations of overlap between a de-
tected object and a reference standard. Using our TP scoring
criterion, if the overlap threshold was set to a certain value,
for example, 10% as in this study, although there was a large
overlap compared to the region of either the reference stan-
dard ��a� and �b�� or the detected object ��c� and �d��, the
detected object in �a�–�d� was still scored as FP. Only the
object in �e� could be scored as a TP. However, if the crite-
rion was set to be any intersection between the detected ob-
ject and the reference standard �equivalent to a threshold of
�0%�, which was commonly used in reported studies,33–35

all objects �a�–�e� would be counted as TP. In an extreme
case, for example, if the entire vessel was segmented as a
detected object, any PE in the vessel would be counted as TP,
resulting in overly optimistic estimate of sensitivity for algo-
rithms that tended to mark long sections of vessels as de-
tected objects. Figure 8 shows the dependence of the test

(a) (b)

(c) (d) (e)

(f) (g) (h)

Detected Object
Detected ObjectPE#1

PE#2

PE#3

FIG. 7. Illustration of different situations of overlapping between a computer
detected object �gray� and reference standards �dark �a�–�e�, or gray with
hatched �f�–�h�� located in a segmented vessel �two parallel lines in dark�.
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FIG. 8. Dependence of test FROC curves for UM cases on the overlap
thresholds to score detected objects as TP or FP when the LDA classifier was

trained with the PIOPED cases.
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FROC curves for the UM cases on the overlap thresholds
when the LDA classifier was trained with the PIOPED cases.
The FROC curves indicated that the best performance was
achieved using an overlap threshold of T�0%. The perfor-
mance increased when the overlap threshold decreased.

Because the task of PE detection is to alert radiologists to
the locations suspected of having PE, the CAD mark indicat-
ing a detected PE location should be close to the true PE.
However, the CAD mark location depends on the accurate
volume segmentation of the detected PE. If the CAD mark
was placed at the center of the detected object, for an elon-
gated object as shown in Figs. 7�a� and 7�b�, the CAD mark
would be too far from the true PE. Furthermore, in our study,
for a contiguous volume of PE that occluded more than one
level of the arteries and branches of arteries at the same
level, the radiologists virtually split the single PE volume by
marking the PE segment in each branch as a separate PE.
Figure 7�f� shows an example of a contiguous PE split into
three pieces. A detected object had overlap with all three PE
in Figs. 7�g� and 7�h�. However, the detected object in �g�
would not be scored as a TP if its overlap with all three PE
was less than the threshold. Although the object in �h� has
large overlap with PE No. 1 and could be scored as TP, PE
No. 2 and PE No. 3 would be missed due to overlap below
the threshold, resulting in a decrease in the overall sensitiv-
ity. In the current study, we chose an overlap threshold of
10% to determine whether a detected object was a TP or FP.
This may be somewhat arbitrary but no standardization of
scoring method has been established to date. The determina-
tion of reference standard, scoring methods and criterion,
and the methods for presentation of the CAD marks to radi-
ologists is a very important issue for CAD development,
comparison, and implementation in clinical practice and war-
rants further investigations in future studies.

In our parallel multiprescreening scheme for suspicious
PE detection, two independent prescreening methods were
used. Our previous studies37,59,60 used a local search method
�the first prescreening method in the current study� to detect
the transition regions containing both normal and PE oc-
cluded artery segments. Due to partial volume effect, the
changes in CT values between the normal and the occluded
segments of the artery may not be significant enough so that
the transition region was difficult to detect. For an elongated
PE that extended to more than one branch level of arteries,
only one end of the PE would show a transition in the CT
values from a normal to an occluded region �or vice versa�
because our radiologists virtually split the PE in different
branches as separate PE for our reference standard. The other
end of the PE would be directly connected to another PE at
the branching point and there would be no transition region.
The split PE were more difficult to detect, especially when
they had a large occlusion ��80% � to an artery due to the
single and short transition region. For a PE with less occlu-
sion ��80% � to an artery, the PE surrounded by contrast
material may present better CT value transition. This obser-
vation is supported by results from our previous studies that

the sensitivity of detecting elongated PE with larger occlu-
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sion ��80% occlusion� was substantially lower than that of
the PE �20%–80% occlusion� with less occlusion. The sec-
ond prescreening method in our current study was specifi-
cally designed to employ global CT value information for the
detection of PE that occluded an artery with a large percent-
age and long extension. The basic idea of this prescreening
method is to apply EM segmentation to vessel structures
stratified in terms of vessel sizes, which generally are also
related to vessel levels. At a similar level, since the CT val-
ues of normal arteries and unoccluded segments of the arter-
ies are comparable, they can be distinguished from PE by
EM analysis of the gray-level histogram. The FROC results
shown in Fig. 5 demonstrated that the computer can identify
the PE accurately with our new multiscreening method even
when PE occluded an artery larger than 80%.

In our early preliminary studies,45 a rule-based classifier
was trained to identify true PE using CT values, gradient,
and size features extracted from the 2D slices and the 3D
volume. The results tested on 44 CTPA UM cases indicated
that, at an average of 33 and 24 FPs/case, with sensitivities
of PE detection method of 81% and 78%, respectively, for
PE in proximal arteries, and 79% and 73%, respectively, for
PE in the subsegmental arteries. A disadvantage of a rule-
based classifier is that it is difficult to combine and weigh
even a moderate number of features. In this study, a trained
LDA classifier with feature selection is used for FP reduc-
tion. To demonstrate the feasibility of whether a LDA clas-
sifier can be trained to reduce FPs for computerized PE de-
tection application, we extracted nine features for each
suspicious object detected in the prescreening step. Unlike
the lesions such as nodule and breast mass exhibiting a round
or compact shape, PE can elongate to multiple arterial level
without consistent shapes. We therefore did not include
shape features for the classification. Using stepwise feature
selection, six and five features were selected from the nine
features when a LDA classifier was trained with the UM and
PIOPED cases, respectively. Four of the selected features for
the two data sets were the same. This indicated that the fea-
tures are reasonably stable and the test results demonstrated
the robustness of the classifier such that it can be generalized
to independent data set containing relatively large case
samples. Compared to our previous study using 44 PE cases
that were part of our 69 UM cases, the test performance of
our current system using the LDA classifier was improved to
a sensitivity of 80% at 18.9 and 22.5 FPs/scan for the PIO-
PED and UM sets, respectively, for all PE with a range of
5%–100% occlusion. This indicated that the new features
and the LDA classifier have the potential to improve the
overall accuracy of the CAD system. Our study also revealed
that, as shown in Fig. 5, it is more challenging to detect
subtle PE with small occlusion ��20% � to an artery, espe-
cially for those located in small arteries. Many FPs detected
by our method are due to partial volume effects or additional
lung diseases as shown in the example of Figs. 6�d� and 6�e�.
Furthermore, our current vessel segmentation technique does
not distinguish arteries and veins. Many FPs are detected in

the pulmonary veins that have lower CT values, similar to
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those of PE occluded arteries. These FPs can be reduced
substantially if the pulmonary veins can be differentiated
from the arteries. Compared to reported studies in
literature,33–36,58 our current CAD system has higher number
of FPs than some33–35,58 but lower than the other36 studies at
similar sensitivity levels. Since the detection accuracy de-
pends strongly on factors such as the characteristics of the
PE and the case samples, the reference standard, the scoring
method and criteria, and whether the reported performance is
obtained from independent testing, it may not be meaningful
to compare directly the results from different studies. Further
development of our computer vision techniques is underway
to improve its sensitivity and reduce FP detection.

V. CONCLUSION

Our PE detection system that uses multiscale vessel seg-
mentation technique, parallel multiprescreening method, and
LDA classifier for FP reduction achieves high sensitivity for
PE detection on independent CTPA scans. This study dem-
onstrates the potential that our automated PE detection ap-
proach can be generalized to unknown cases. Further study is
underway to improve the detection sensitivity for subtle PE
��20% occlusion� and to reduce the FPs. A fully developed
CAD system is expected to provide a useful aid for PE de-
tection in CTPA. Further evaluation in a data set of normal
CTPA examinations is needed to evaluate the specificity of
the CAD system at the patient level.
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