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Abstract

In this study, an implicit reference group-wise (IRG) registration with a small deformation, linear
elastic model was used to jointly estimate correspondences between a set of MRI images. The
performance of pair-wise and group-wise registration algorithms was evaluated for spatial
normalization of structural and functional MRI data. Traditional spatial normalization is
accomplished by group-to-reference (G2R) registration in which a group of images are registered
pair-wise to a reference image. G2R registration is limited due to bias associated with selecting a
reference image. In contrast, implicit reference group-wise (IRG) registration estimates
correspondences between a group of images by jointly registering the images to an implicit reference
corresponding to the group average. The implicit reference is estimated during IRG registration
eliminating the bias associated with selecting a specific reference image. Registration performance
was evaluated using segmented T1-weighted magnetic resonance images from the Nonrigid Image
Registration Evaluation Project (NIREP), DTI and fMRI images. Implicit reference pair-wise (IRP)
registration—a special case of IRG registration for two images—is shown to produce better relative
overlap than IRG for pair-wise registration using the same small deformation, linear elastic
registration model. However, IRP-G2R registration is shown to have significant transitivity error
i.e., significant inconsistencies between correspondences defined by different pair-wise
transformations. In contrast, IRG registration produces consistent correspondence between images
in a group at the cost of slightly reduced pair-wise RO accuracy compared to IRP-G2R. IRG spatial
normalization of the fractional anisotropy (FA) maps of DTI is shown to have smaller FA variance
compared with G2R methods using the same elastic registration model. Analyses of fMRI data sets
with sensorimotor and visual tasks show that IRG registration, on average, increases the statistical
detectability of brain activation compared to G2R registration.

Introduction

Inter-subject spatial normalization is an important process in medical image analysis and in
particular brain image analysis. The traditional approach to spatially normalize a group of
medical images is to use pair-wise image registration in which all images are individually
registered to a target image. The problem with this approach is that it introduces a bias according
to the target image used. In contrast, group-wise image registration jointly estimates the
correspondences between a group of images. Many group-wise registration techniques
naturally estimate transformations from individual subjects to a common coordinate space
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eliminating the bias associated with registering to a target image. Applications that use group-
wise image registration have increased in recent years including creation of atlases (Frangi et
al., 2002; Christensen et al., 2006b), building shape models (Cootes et al., 1995, 1999; Rueckert
et al., 2003), motion tracking along time series (Crum et al., 2004), aging population studies
(Mega et al., 2005; Pieperhoff et al., 2008) and disease population analysis (Zhang et al.,
2007).

Reference-based group-wise registration is a normalization approach in which each image in
the group is registered to a selected reference image. A limitation of this approach is that the
selected reference may not adequately capture common structure in the population, and
therefore the spatial normalization to this reference may induce bias into later analysis. To
minimize the bias caused by the reference selection, some methods have been proposed
(Guimond et al., 2000; Christensen et al., 2006b) to iteratively update the selected reference
image based on averaging the deformed images or transformation fields.

A strategy to avoid reference selection is to simultaneously estimate transformations for each
subject in the group that map them into a common space without choosing any reference image.
Different criteria such as joint probability distribution (Studholme, 2003; Studholme and
Cardenas, 2004; Bhatia et al., 2004), voxel-wise entropy (Zollei et al., 2005), Jensen-Shannon
divergence (Wang et al., 2006), squared voxel intensity difference (Avants and Gee, 2004;
Joshi etal., 2004), and the minimum description length (Twining et al., 2005) have been utilized
as similarity costs to define the objective function and estimate transformations. Group-wise
registration of non-scalar images, such as tensor components in diffusion tensor imaging (DTI)
can also be formulated in a similar way (Zhang et al., 2007). Many of these methods compute
and update the unbiased reference image by averaging the deformed images during the
estimation procedure.

This paper uses an implicit reference group-wise (IRG) registration framework which avoids
bias caused by reference selection and evaluates its performance with various image modalities.
The method jointly estimates transformations from each image in the group to a “hidden”
reference by optimizing the intensity difference of each pair of deformed images. The basis of
the method is that transformations take each image to a common coordinate, therefore, the
images after deformation should have similar shapes to each other, and the intensity difference
at the corresponding location should be minimized. This framework is based on the work in
Christensen and Johnson (2001) in terms of using the same small elastic deformation model,
while expansion and modification of the similarity cost function are made to enable the method
to map a set of more than two images to a common space instead of estimating transformations
from one image directly to another.

The group-wise registration algorithm used in this work is similar to the large deformation
group-wise registration algorithm used in Joshi et al. (2004). In contrast, the algorithm used in
this work assumes a small deformation linear elastic model and uses the Fourier series to
parametrize the deformation field. We show in the discussion section that minimizing the
similarity cost function used in this paper is equivalent to minimizing the similarity function
used in Joshi et al. (2004).

A set of annotated T1-weighted MRI data (Christensen et al., 2006a) were used to evaluate the
performance of the IRG registration method. Results show that the implicit reference method
produced smaller registration errors compared to reference based methods that directly register
each image to a reference. Moreover, experiments were designed to compare the directly
estimated transformations from one image to another and the composed transformations from
each image to the implicit reference, and results indicate that the improvement of the implicit
reference method is partly due to the composition of two small deformations.
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This paper demonstrates the potential of IRG registration for group analyses of DTI and
functional MRI (fMRI). DTI enables the non-invasive study of white matter integrity and
anatomical connectivity (Basser and Pierpaoli, 1996). Fractional anisotropy (FA), a scalar
index of fiber directionality derived from DTI data sets, was used for image normalization and
analyses. The performance of various group-wise registration methods was compared, and the
results show that the implicit reference technique, with the small deformation elastic model,
provides better transformations compared to reference-based methods in terms of smaller
within-group variance after registration.

Functional MRI techniques provide non-invasive study of neural activity detected by blood
oxygen level dependent (BOLD) or other signals (Ogawa et al., 1990). The accuracy of spatial
normalization is crucial for group analyses of functional activation. Most current fMRI
normalization techniques follow a standard approach that utilizes a lower order registration
model under a reference-based framework. A motivation of this work was to examine whether
improved spatial normalization would enhance the statistical detectability of brain activation
(Miller et al., 2005). The implicit reference method and reference-based methods were applied
to a set of fMRI data sets with sensorimotor and visual tasks. Results demonstrate that the
smaller within-group variance using the implicit reference method resulted in improved
statistics for brain activation detection.

Pair-wise (PW) image registration

We focus on estimating diffeomorphic transformations between two or more images under a
small deformation model (Christensen et al., 1997). Let I; represent an image volume with
voxel dimensions of D; x Dy x D3. The Eulerian transformation from the coordinate system
of I to that of I; can be parameterized as a set of vectors in Euclidean space, and described as
a function hjj : Q — Q, where Q = {(Xy, X2, X3)|0 <Xg < D3; 0 <X < Dp; 0 < x3 < D3}. Under
the transformation hjj, 1j(x) is deformed to lj(h;j(x)).

Conventional pair-wise image registration methods define the registration problem as finding
the transformation hjj from image I; to 1 by minimizing an objective function such as

C(;(hij), 1))=D(I;(h;j), 1))+R(h;;)

where D is a similarity cost function and R is a regularization term to penalize transformations
with large and unsmooth distortion. In this paper, PW will be used to refer to pair-wise
registration with a sum of squared differences similarity cost function denoted as

DU, D=[ 1 1(x) - J()l*dx and linear elastic regularization function as in Eq. 1. The PW
registration algorithm used in this paper is equivalent to the unidirectional, small deformation,
linear elastic registration method described in Christensen and Johnson (2001). Alternatively,
the pair-wise image registration problem can be formulated in a symmetric fashion to minimize
the asymmetry caused by structural differences between the images being registered
(Christensen and Johnson, 2001; Leow et al., 2007) and can use many different similarity cost
functions (Studholme, 2003; Studholme and Cardenas, 2004; Bhatia et al., 2004; Zollei et al.,
2005; Wang et al., 2006; Joshi et al., 2004).

Implicit reference pair-wise (IRP) image registration

Implicit reference pair-wise (IRP) registration is a special case of IRG registration (see below)
when only two images are registered. Instead of directly estimating transformations between
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images lj and I, IRP registration estimates transformations hjr from I; to a common reference
space halfway between the images. Similar approaches with large deformation registration
model were proposed in previous studies (Avants and Gee, 2004; Avants et al., 2008; Beg and
Khan, 2007). The similarity cost becomes D(lj(hjr), lj(hjr)), and the total cost function is
defined by

Clhyes b )=DUiI), 1i(h )+ R (B )+R(R ).

For this paper, the sum of squared differences was used for D and R was chosen to be a linear
elastic regularization function as in Eq. 1.

Group-to-Reference (G2R) image registration

Traditional spatial normalization is accomplished by group-to-reference (G2R) registration in
which a group of images are registered pair-wise to a target or reference image. Throughout
the rest of the paper, the terms PW-G2R and IRP-G2R will refer to G2R registration computed
using the PW and IRP registration algorithm, respectively. G2R registration allows images
from different individuals to be compared in a standard reference frame, i.e., the image space
of the target or reference image. The drawback of G2R image registration is that the results
are biased by factors such as the shape of the structures in the target image and noise in the
image.

Implicit reference group-wise (IRG) image registration

The implicit reference group-wise (IRG) image registration problem can be stated as: estimate
the N > 2 transformations hjg from each image I in a population to an unknown common space
by minimizing the summation of the intensity difference between each pair of deformed
images. The unknown common space is defined as the implicit reference space. The objective
function for this registration problem can be stated as follows:

C=0>" " [ N iy (x)) = L IPdx+p Y [ | Llat (DI,

i ji<j i (1)

where hjr(x) = Ujr(x) + x is the transformation from image i to the implicit reference R, ujr(X)
is the displacement field from i to R, L(ujr(x)) is a linear differential operator regularization
constraint, and o and p are weighting parameters. In this work, we chose L to be the linear

elasticity operator with the form Lu(x)= — aV>u(x) — BV(V - u(x))+yu(x), where

& 9
dx;” 0x»” dxs |and ox? 9x3 0x3 (Christensen and Johnson, 2001). Each
displacement field ujr(x) is a 3x1 vector-valued function parameterized by the 3D Fourier
d-1 -
series ";R(x)=zk:0ﬂi.k€’2 “4 Where
J=V-1, k:[kl’kZ,kS]Tv d-1=[d\ - 1,dr, - 1,d3 - ”T, X/d:[xl/dl,XQ/dz,Xj;/dj;]T and

is=|fix1» mixa-ix 3] - The basis coefficients 4 = aj x + jbj  are initialized to be 0s, and
determined by gradient descent using
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where E€is the step size, and the superscript n corresponds to the value of the parameters at the
nth iteration. The estimation details can be found in Christensen and Johnson (2001). The
weighting parameter ¢ of the similarity cost was set to be 1, and the weighting parameter p of
the regularization constraint was set to be 0.00025 through out the optimization procedure. A
spatial and frequency multi-resolution procedure was used to estimate the full resolution
registration to avoid local minima. Different levels of resolutions were applied for different
image modalities with various voxel dimensions. At each resolution level, the initial and final
number of harmonics and the number of iterations were set differently as described in Table
1. When the number of harmonics, r, is set, the triple summation of u;g over k where k = [0 <
k<d-1]isreplacedby k=[0<k<r—-1,d-r—1<k<d - 1]. The calculation of forward
and reverse fast Fourier transforms (FFT) of hjr dominates the computational time at each
iteration. Despite the double summation in the similarity cost term, the computational cost is
still approximately linear to the number of images, since the number of transformations is equal
to the number of images. For example, this algorithm takes about 3 hours to register 15 images
with voxel dimensions of 80 x 95 x 75, while it takes about 6 hours to register 30 images with
the same dimensions on a 2.4 GHz AMD Opteron Linux system.

Fig. 1 illustrates the IRG registration method for mapping images to a common space and
mapping any pair of images. The transformation hjg and the inverse of hjr are concatenated to
compute the transformation between a pair of images Ij and I;. The inverse transformation was
computed using the method described in Christensen and Johnson (2001).

Fig. 2 illustrates the IRG registration method applied to a population of four 2D shapes that
consisted of a circle, two ellipses, and a square. It is shown that the transformations bring each
shape to the average shape of all the shapes and the deformed shapes are similar to each other.

Evaluation using NIREP

In order to evaluate the performance of registration algorithms, it is necessary to have a wide
collection of consistently annotated image data sets and evaluation statistics. The NAQ database
from the registration evaluation package of the Non-Rigid Image Registration Evaluation
Project (NIREP) (Christensen et al., 2006a) was used to evaluate the IRG registration method.
The NAO database consists of MRI data from 16 subjects that include gray matter
segmentations (Damasio, 2005; Allen et al., 2002, 2003). The images were initially segmented
with Brainvox (Frank et al., 1997). The segmentations, including gray and white matter, were
then restricted to the gray matter by applying the gray matter segmentation generated using the
approach described in Grabowski et al. (2000) to avoid arbitrary boundaries in white matter.
The final regions of interest (ROIs) include gray matter regions in the frontal lobe: frontal pole,
superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, orbital frontal gyrus,
precentral gyrus; parietal lobe: postcentral gyrus, superior parietal lobule, inferior parietal
lobule; temporal lobe: temporal pole, superior temporal gyrus, infero-temporal region,
parahippocampal gyrus; occipital lobe; cingulate gyrus; and insula. The 16 data sets were
rigidly rotated and translated using the anterior commissure, posterior commissure, and inter-
hemispheric fissure as landmarks.

The relative overlap (RO), which is also called the Jaccard or Tanimoto coefficient, was used
to evaluate registration performance. The RO is computed for each ROl and measures how
well the two ROIs agree with each other. The RO is defined as the number of voxels in the
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intersection of two ROIs divided by the number of voxels in the union. Stated mathematically,
the RO of the kth ROI when image ; is registered to I; is defined as:

. ZALROI(x) NROI (hii(x))
UM ROIK(x) U RO (5 (x))

(3)

where ROI,."(x) returns 1 if x is in the kth ROl in I;, and returns O if is not, N and U denote
AND and OR operations respectively, and M is the number of voxels in the image. Note that

hji is estimated directly for pair-wise (PW) registration and obtained by hji=th(hi;l) for IRP
and IRG registrations.

The average relative overlap (AROQ) of the kth ROI using l; as reference is defined as:

N
. 1 .
k_ k
ARO; =N 1 E RO,
j=Lj#i (4)

where N is the number of images in the group being averaged. The ARO using implicit reference
method is defined as:

. N 3RO (y (x) N ROIA (T (1)
AROK =
8 Nx(N— 1) Z sz ¥ [ROZ (hy (x)) U ROLA (hy ()

J=lj#ii=1

(5)

Note that AROX is defined in the implicit reference space while AROX is defined in the
coordinate system of image I;. Care must be taken when comparing ARO values that are
computed in different coordinate systems due to coordinate system specific biases such as
different sizes and shapes of the ROIs between different coordinate systems.

The transitivity error (Christensen and Johnson, 2003; Christensen et al., 2006a) of a set of
transformations that register a group of images is a measure of consistency between the
correspondences defined by the transformations. Ideally, transformations that define
correspondence between three images should project a point from image A to B to C to A back
to the original position. The transitivity error for a set of transformations is defined as the
squared error difference between the composition of the transformations between three images
and the identity map. The cumulative transitivity error (CTE) with respect to template image
k is computed as

1 N N
B~z 2 2 Waththa(o) -l

=1 j=1
itk j#i
J#*k (6)
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where N is the number of images in the population. The average CTE of each ROI for different
methods were computed for pair-wise, IRP and IRG registration. Transformations hjjs were

directly estimated using pair-wise registration, and were composed by h;r and h_,;l using IRP
and IRG registration.

Application to diffusion tensor images

Thirty healthy subjects were recruited as part of a protocol approved by the Institutional Review
Board (IRB) of the National Institute on Drug Abuse Intramural Research Program and
provided written informed consent. All data were scanned on a Siemens 3T Allegra scanner.
An EPI-based spin-echo pulse sequence was used to acquire diffusion-weighted MRI images.
For each subject, 35 axial images were prescribed to cover the whole brain with a 128x128 in-
plane matrix at a resolution of 1.719x1.719x4mm3. Besides the non-diffusion-weighted
reference image, 12 directions were used to apply the diffusion-sensitive gradients with a b-
factor of 1000s/mm2. For EPI, TR/TE = 5000/87ms, BW= 1700Hz/Pixel, and NEX=4. Three-
dimensional T1-weighted anatomical images were also acquired.

Each structural image was automatically normalized to Talairach space using the AFNI
software package (Cox, 1996). The 12 diffusion weighted images (DW!Is) were aligned to their
corresponding structural images for correction of motion and image artifacts using mutual
information based affine registration (Jenkinson and Smith, 2001), provided by the FSL
package (Smith et al., 2004). Normalization matrices were applied to DWIs, and FA images
were then calculated from the diffusion tensor. After the preprocessing, all FA images have a
2 x 2 x 2mm?3 voxel resolution and a 80 x 95 x 70 matrix.

A comparison of IRG and pair-wise G2R registration was performed to evaluate registration
of FA images. Two different non-rigid registration models were applied for G2R registration:
the B-spline based free form deformation (FFD) model (Rueckert et al., 1999) used in FSL and
the small deformation elastic (SDE) model utilized in this work. The FFD method with a cross
correlation similarity measure and the default parameters for FA registration in FSL was used:
full resolution registration with a control point spacing of 20 mm resulting a 9 x 10 x 8 mesh
of control points. The parameters used in the SDE model are listed in Table 1 for the voxel
dimensions of 80 x 95 x 75. The reference was chosen in two different ways. One was to use
the standard FA image provided by FSL, which is the average of 58 well-aligned high quality
FA images with a 1 x 1 x 1mm3 resolution. The other was to select the “most representative”
image. After obtaining all transformations (30 x 29 = 870) using FFD, the image with the
smallest amount of average warping, which was necessary to align all other images to it, was
selected as the “most representative” image. Including the IRG method, a total of 5 different
non-rigid group-wise registration approaches were used: G2R registration using the standard
image as reference with the FFD model and the SDE model; G2R registration using the “most
representative” image as reference with the FFD model and the SDE model; and IRG
registration with the SDE model. The FFD registration was used as a benchmark to evaluate
the performance of the IRG method instead of a like-for-like comparison of the FFD and SDE
models.

The standard deviation of deformed FA maps were used to measure the registration
performance. Although the FA statistics are unknown in normal subjects, it is reasonable to
assume that FA values consist of separate distributions for white matter and gray matter. For
misaligned structures, this mixture of distributions with unequal means would produce larger
sample variance than a single distribution for well aligned structures. Therefore, the cross
subject variance is a reasonable indicator of how well the image structures are aligned.

Neuroimage. Author manuscript; available in PMC 2010 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Geng etal.

Page 8

Applications to fMRI studies

Results

Twenty-nine different healthy controls provided written informed consent and were scanned
on the same scanner using the same IRB approved protocol as the DTI study. The functional
data were acquired using a single-shot gradient-echo EPI sequence witha TR of 4 sand a TE
of 27 ms. Thirty-nine contiguous 4-mm thick oblique slices (30° axial to coronal) were
prescribed to cover the whole brain with a 64 x 64 in-plane matrix at a resolution of 3.44 x
3.44 x 4mm3. Subjects performed a block-design finger tapping task cued by a flashing
checkerboard, which started with 20s “off” (watching a cross on the screen without moving
fingers) and followed by 7 cycles of 20s “on” (watching a flashing checkerboard on the screen
and moving fingers) and 20s “off” states. High resolution T1-weighted anatomical images were
also acquired witha TR of 2.5 s, a TE of 4.38 ms, a FA of 7°, and a voxel size of 1 x 1 x
1mm3,

EPI data preprocessing included slice-timing correction, motion correction and linear
detrending. All functional data were spatially normalized to the standard Talairach space using
affine registration with a resampled resolution of 3x3x3mm3. Spatial smoothing with a 6-mm
Gaussian kernel was performed to increase spatial signal to noise ratio (SNR) after affine
alignment and before the non-rigid group registration. All data preprocessing were conducted
in AFNI.

Both IRG and pair-wise G2R registration were applied to the affine aligned EPI data. A 3D
volume (i.e., at the fourth time point) from the EPI time series was selected from each subject
as the registration input. The transformation fields obtained from the volume was then applied
to all volumes along the time series. The results from affine registration were used as the
baseline. For G2R registration, each subject in the group was selected as the reference, and the
rest of the subjects were registered to it, resulting in 29 groups of reference-based normalized
images. Including the implicit reference registration, there were a total of 31 groups of
registration approaches (1 affine, 29 G2R and 1 implicit reference registration). After
registration, across-subject image intensity standard deviation maps were computed for all
registration groups. No further smoothing was applied after non-rigid registration. The general
linear model was then exploited for analyzing the functional activation, and the linear
regression coefficient # maps were obtained from each deformed 4D fMRI data.

For each group of the registered data sets, a one-sample t-test was applied to the f maps to test
if the activation coefficients were significantly different from zero. A threshold of t > 5.3 with
a cluster size greater than 54 mm3 (Peorrected < 0.01) was used to generate group functional
activation maps. Four activated regions were selected as ROIs including visual cortex, left
sensorimotor, right sensorimotor cortices and supplementary motor area (SMA). Common
ROIls were obtained by taking the intersection of the corresponding 31 ROIs. The average of
intensity standard deviation, £ weights and the corresponding t-statistics on the four common
ROIs were computed and compared.

NIREP evaluation

Fig.3 shows intensity averages of registered images using the IRG algorithm (bottom row),
rigid G2R registration (top top) and the PW group-to-reference (PW-G2R) registration in which
MRI images 2-16 were registered to image 1 (middle row). The average intensity images
produced by the PW-G2R and IRG registrations are much sharper than that produced by rigid
G2R registration, showing that both approaches produce similar registration results. Note that
the registered images in Fig.3(b) are shown in the coordinate system of the reference image
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whereas the registered images in Fig.3(c) are shown in the coordinate system of the implicit
reference or group average (see Discussion).

Fig. 4 shows the voxel-wise overlap produced by mapping the ROIs from 15 of the NAQO data
sets to the 16th target reference image. The reference image and the ROIs associated with this
reference coordinate system are displayed in Fig. 4(a) and (b) respectively. The other 15 MRI
images have similar ROIs that were mapped to the reference coordinate system. The images
in Fig. 4(c) show the number of ROIs that agree with the target ROI for rigid, PW, and IRP
registration. This figure shows that PW registration is an improvement over rigid registration
and IRP registration is an improvement over PW registration. Moreover, visualization of the
overlap shows where the registration methods are more and less accurate with respect to the
shape and complexity of the reference MRI image.

Fig. 5 compares IRG to G2R image registration performance using the ARO statistic for 32
ROIs. The G2R image registration was computed using the PW and IRP registration algorithms
and will be referred to as PW-G2R and IRP-G2R, respectively. Due to the bias associated with
picking a reference image, registration was repeated 16 times for PW-G2R and IRP-G2R
registration using a different image (1-16) as the reference. Producing the PW-G2R and IRP-
G2R results required computing and storing 2x16x15 = 480 transformations, i.e., all the pair-
wise registrations between the 16 images for both the PW and IRP methods. This is in contrast
to the 16 transformations computed using the IRG approach. The PW-G2R, IRP-G2R, and
IRG approaches used the same small deformation elastic model and same set of parameters
(see Table 1 for the voxel dimensions of 256 x 300 x 256).

For each of the 32 ROIs, the ARO was measured in the implicit reference space for the IRG
method and in the reference image coordinate system for G2R registration. In general, it is
difficult to compare the ARO values across different spaces due to varying sizes and shapes
of the ROIs. However, for this experiment, the ROIs are roughly the same shape and size in
each of the coordinate systems making for a less than perfect but still meaningful comparison
of the methods.

The results in Fig. 5 show that the IRG registration always outperforms the PW-G2R
registration with respect to the ARO independent of the reference used. However, the IRG
registration does not always outperform the IRP-G2R registration with respect to ARO. The
reason for this is that the IRP registration is a special case of the IRG registration in which only
two images are registered. In some cases, adding additional images to the registration helps
improve the registration by giving additional information to get out of local minima. In other
cases, adding additional images may produce additional local minima or other errors that reduce
registration performance. Given that the ROIs have small and complex shapes (Geng, 2007),
the relative overlap values are reasonable.

Fig. 6 shows a comparison between the pair-wise registrations produced by PW, IRP, and IRG
registration with respect to RO and transitivity error (TE). The purpose of this analysis was to
examine the trade-offs between estimating pair-wise registrations directly using PW and IRP
registration and estimating pair-wise registration indirectly using IRG registration. The

transformations h;j from image I to I were computed directly for PW registration and computed

by composing transformations using the formula %=/ (h;kl) for IRP and IRG registration
approaches. Note that the implicit reference for each IRP registration is different and can be
thought of roughly as the coordinate system halfway between the coordinate systems of images
li and Ij. In contrast, the implicit reference for the IRG method can be thought of as the
coordinate system corresponding to the average shape of the group. The RO calculated using
Eq.3 and its standard deviation were compared for each ROI. The top bar chart of Fig. 6 shows
that there is no significant difference of the average ROs between PW and IRG registration for
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registering two images together. For 9 out of 32 ROIs, the PW registration produced slightly
larger RO values, while for the rest ROIs, the IRG registration generated larger values. In
contrast, IRP outperforms the IRG method by 5% — 15% suggesting that IRP registration is
better to use for pair-wise registration than either PW or IRG registration.

The bottom bar chart in Fig.6 compares the average transitivity error (ATE) for each ROI for
the PW-G2R, IRP-G2R, and IRG methods. The ATE was computed using Eq. 6. Results show
that the ATE range is from 2 to 10 voxels for the PW-G2R and IRP-G2R registrations whereas
the ATE for IRG registration are all smaller than 0.04 voxel. IRG registration produces much
less transitivity error compared to the PW-G2R and IRP-G2R registration indicating that IRG
generates a consistent set of transformations between a group of images.

To summarize, results shown in Fig. 6 suggest that IRP registration produces better relative
overlap than IRG for pair-wise registration at the cost of significant transitivity error for IRP-
G2R registration, i.e., significant inconsistencies between correspondences defined by
different pair-wise transformations. In contrast, IRG registration produces consistent
correspondence between images in a group at the cost of slightly reduced pair-wise RO
accuracy compared to IRP-G2R. Thus, it is better to use IRP registration if the task is to register
two images, but it is better to use IRG registration if the task is to register a group of images.
Furthermore, the IRP registration should be favored over PW registration when registering two
images.

DTI data sets

The mean and standard deviation of the deformed FA maps using different registration methods
are displayed in Fig. 7. The average standard deviation (ASD) of FA values in the whole brain
and a white matter ROI are presented in Table 2. The white matter ROl was generated by
thresholding the average deformed FA images obtained from each of the five methods at 0.3
and taking the overlap region of the five white matter masks. As shown in Table 2, the B-spline
FFD model reduced the ASD approximately 30 percent compared to the affine model, and the
SDE model reduced ASD approximately 10 percent compared to the FFD model. Within the
SDE model, the IRG method further reduced the ASD 6 percent in white matter as well as in
the entire brain compared with the G2R registration using either the standard image or the
“most representative” image as the reference. Note, since the SDE model with the parameters
used in this work generates transformations with more degrees of freedom compared to the
FFD model with the default parameters in FSL (3 x 13 x 13 x 13 vs. 3 x 9 x 10 x 8), the reduced
ASD does not necessarily indicate that the SDE model is superior to the FFD model. The results
give a sense of how good the IRG registration is compared to a standard method in a software
package with a large number of users.

fMRI data sets

The functional activation maps are shown in Fig. 8. Compared with affine alignment, the non-
rigid elastic registration using both G2R and IRG registration methods provide larger 8 values
in the left and right sensorimotor cortices and visual cortex. Fig.8(d) contains the log-Jacobian
map of a typical transformation from one image to the implicit reference. The log Jacobian

map shows that the IRG method generated large deformations in some locations indicating that
affine registration for normalizing fMRI data may not sufficiently account for local variation.

Fig.9(a) shows the ASD of the image intensity in the whole brain and in each ROl under
different registration methods. The G2R registration reduced the ASD 30 percent, on average,
in the whole brain compared to the affine alignment. The IRG registration further reduced the
ASD approximately 2 percent compared to the average performance of the G2R registration
in the whole brain. The IRG registration provides a consistent improvement in terms of smaller
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ASD in the four ROISs as well. Because fMRI data have lower resolution and less structural
information compared to structural data such as T1-weighted and DTI images, the
improvement of IRG registration using fMRI data is smaller than that using structural data.

Fig.9(b) and (c) show the average of  weights and t-statistics in the four ROIs under different
registration methods. Compared with the affine alignment, the elastic registration methods
increased the average f and the t-statistics in each ROI. The IRG registration further increased
the f values in the regions of right and left sensorimotor cortices and visual cortex, and the t-
statistics in all ROIs compared with the G2R registration.

Discussion

Analysis of reference-based and implicit reference registration errors

Comparison

The registration results of T1-weighted anatomical images, DT and fMRI images in this study
consistently showed that the implicit reference registration method produced smaller
registration errors. This can be explained by the following theoretical analysis. Starting with
the registration of two images, the similarity objective function for the implicit reference
method is defined as D(l1(h1Rr), I2(h2R)), and the similarity cost for the reference-based method
can be written as D(l1(h12), 1), which is equal to D(l1(h12), I2(hig)), where hiq is the identity
map from I, to I,. The optimization of the former cost function searches the optimal
transformations hq1g and hyg to minimize the similarity cost between I1(h1g) and I5(hog). The
optimization of the latter cost function searches the optimal transformation hy, that minimizes
the similarity cost between 1;(h12) and I»(hjg). Therefore, the minimizer of the latter can be
considered as a local minimizer of the former, which means that the similarity error between
I1(h12) and I5 is no smaller than the error between 11(h1g) and I5(hog). Similar analysis can be
extended to the registration of more than two images.

of PW, IRP, and IRG registration

The results in Fig.6 suggest that IRP registration produces better pair-wise registration than
using the PW approach with respect to relative overlap. To see why this may be the case,
consider that the IRP transformation from I to Ij is produced by composing the two

transformations hjg with /z; =hj_R" where the implicit reference Ig is roughly halfway between
li and ;. One reason for the better performance could be that there is less error for smaller
deformations. In this case, hjr and hg;j have less error combined than the transformation hy;
since both hjr and hgj have roughly half the shape differences to accommodate compared h;.
Another reason for the better performance could be that estimating hjg and hjr solves the
registration problem from both directions as opposed to one direction. Solving the registration
from both directions could help reduce the number of local minima and may reduce the impact
of getting stuck in a local minima since only half the distance between the shapes in the two
images is accommodated.

When considering more than two images, the implicit reference is similar to the average of all
images, and its shape is likely to be different from the average shape of I; and I;. As the
population average diverges in shape from the average shape of Ij and I, the registration
performance of the IRG transformations from I; to I; may be similar or even worse than direct
pair-wise registration. The registration performance is similar if I or Ij has similar shape as the
mean and worse when the population average is very different from the average shape of I; and
lj. To see this, assume that I is similar in shape to the population mean, then the transformation
from I; to the reference is close to the identity mapping and the transformation from the
reference to Ij will be close to the direct pair-wise registration between Ij and I;. Now, assume
that the population average is different than the average shape of Ij and Ij and that the
registration error is proportional to the shape differences. In this case, the error in registering
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lj to the reference is added to the error registering the reference to Ij, which could have more
error than directly registering l; to 1. However, in terms of computation cost, the pair-wise
method estimates and stores N(N - 1) transformations, while the IRG methods only computes
N transformations.

An experiment using the 16 images from the NAO NIREP database was used to test the

hypothesis that the IRG performance of the composed transformations 7 (h;Rl) is affected by
the distance between the reference and the average of the two images. The distance of ROIX of

two images was defined to be I — RO (ROIA{, ROIﬁ)where 0 means perfect overlap and 1 means
no overlap. We also made a crude simplification that for ROIX, the distance between Ig and the

average of Iy and I, tobe 1 - (RO (ROIA ROIA) +RO (ROIA ROIA)) Assume the registration
input has three images. To reguce computations, one image was fixed from the 16 images, and

15 )
two more images were randomly chosen from the rest of the images. A total of( =
registrations were computed. In each registration, we computed the distance between Ig and
the average shape of I; and Ij, and the distance between Ij and deformed I; which measures the

performance of 7 (hj;l ) After least square linear regression, the § coefficient between the two

distances is 0.175 with p < 0.001, indicating that the accuracy of /i (hj;l) is correlated to the
distance between the reference image and the average of Ij and I;.

Inverse consistency and transitivity

A set of transformations that define correspondences between a group of images should satisfy
desirable properties such as inverse consistency and transitivity (Christensen and Johnson,
2003; Geng, 2007). Based on the implicit reference registration method, the transformations
between any two images Ij and Ij can be calculated as

b= -1, e =1
hij=hy o hy-, and hj=hg o h.,

Theoretically, hij=hj]1 by construction for the implicit reference registration method implying
no inverse consistency error. However, in practice there are small errors due to computing the
inverse and composing the transformations such that the implicit reference methods have some
small inverse consistency error.

Theoretically, the IRG registration has no transitivity error. To see this, let l;, Ij, and I represent
three images in the group such that
hij=hy o b, h=hy o h !, and hi=hy o h!.

Combining equations gives

hix o hgj=hy o hk_Rl ° (hkR o hj;l):hiR o hj;l =h;
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which shows theoretically no transitivity error. In practice, the IRG registration has transitivity
error due to errors in inverting the transformations and composing the transformations. Results
in Fig. 6(b) show that the transitivity error of IRG is less than 0.04 and much less than other
registration methods.

Inverse consistency and transitivity are necessary but not sufficient properties for a set of
transformations to define meaningful correspondences between images in a group. For
example, a set of identity transformations have zero inverse consistency and transitivity errors
but they provide meaningless correspondences. Likewise, a set of transformations can be
constructed to have near zero inverse consistency and transitivity error using the method
described in Skrinjar and Tagare (2004). The drawback of their approach is that correspondence
errors present in the original transformations are still present in the newly constructed set of
transformations.

Improvement of group analysis

The motivation of this work was to find a registration framework that estimates “good”
correspondences between a group of images and improves the sensitivity of group analysis.
The result that the IRG registration reduces across-subject variation of FA images suggests
that the sensitivity in detecting white matter alterations between populations, as reflected by
FA changes at a group level, should be improved by more accurate registration methods. When
the IRG registration was applied to fMRI data sets, the increase of the regression coefficient
J and t-statistics reflected the enhancement of the functional signal contrast (signal intensity
during task vs. resting) and the detection power respectively. Since the registration method
only deforms the shape of the input images but does not change the signal intensity, the resulting
larger signal contrast can be attributed to a better alignment of the fMRI images across subjects
in the group. Based on the assumption that brain structures correspond well to specific
functions, it is reasonable to expect that stronger activation signals at a group level should be
observed when the corresponding structures are aligned more accurately across all subjects in
the group. The stronger t-statistics on the activated regions may be due to the larger average
f values or the smaller group variance of 5 values. The smaller 5 variance within the group
may be caused by the better alignment of the group subjects. The IRG registration provides
the potential to improve group analyses of DTI and fMRI data in terms of better sensitivity and
detectability.

The IRG registration in the current work assumes that the intensity values at each voxel follow
a fixed Gaussian distribution with equal mean and variance across the population. This
assumption may not always hold since the distribution of tissues at a particular voxel is not
always Gaussian and the intensities at a voxel may not follow the same distribution across the
population. Further improvement may be achieved if the intensity distribution used by the
similarity term is characterized from the population, i.e., using the sum of voxel-wise entropies
(Zollei et al., 2005) as the similarity term. Moreover, this modification will allow registering
images from different modalities as well.

Similarity Cost Function Comparison

The similarity cost function in Eq. 1 is similar to the similarity cost

Cms:z:,.fQ Il Z:(hi(x)) — I(0)lPdx with I(X)Z%Zi]i(hi(x)) used in the unbiased atlas
construction method developed by Joshi et al. (2004). At first glance the cost functions appear
to be different since Eqg. 1 computes the difference between pairs of images while the cost
function Catas computes the difference between each image and the mean image 1(x).
However, Catjas Can be manipulated in the following manner:
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C i =2 J Mih (1)) = 3 2 (e ()] Pdx
! J
=3 [ N NIy ()) = ST (hy ()P
¢ J
=2 [oll B Gl () = Li(h (O)IPdx

i Ji#E]

=%>f Q”,E,-("'(hik(“‘” = Ij(hy ()| dx.

1

(7

Notice that the similarity cost function in Eq. 7 differs from the cost function in Eqg. 1 only in
the order of the square and summation operators and the constant 2/N2. This implies that the
gradients of the cost functions are the same (up to transformation model), thus the gradient
descent optimizer will result in the same minimization. Another difference between the
registration algorithm used in this work and that in Joshi et al. (2004) is due to the
transformation parametrization and how the transformations were regularized. In this work the
transformations were parameterized using a Fourier series and regularized using a small
deformation linear elastic model where as the work presented in Joshi et al. (2004) used a large
deformation model.

The choice of using a small or large deformation model depends on the application. In general,
a large deformation registration approach provides more degrees of freedom for registration
than a small deformation model at the cost of increased computation and parameters. Increasing
the model complexity and computational requirements may not always be needed to answer a
particular scientific question.

Conclusions

An implicit reference group-wise (IRG) registration method was used in which transformations
from each image in the group to a hidden reference were estimated using a small deformation
linear elastic registration model. The performance of pair-wise and group-wise registration
algorithms was evaluated for spatial normalization of T1-weighted MRI from NIREP, DTI and
fMRI data. Results with the NAQ evaluation database from NIREP show that implicit reference
pair-wise (IRP) registration produces better relative overlap (RO) than implicit reference
group-wise (IRG) for pair-wise registration. However, IRP-G2R registration was shown to
have a significantly larger transitivity error than IRG registration, i.e., IRP-G2R registration
had significant inconsistencies between correspondences defined by different pair-wise
transformations compared to IRG registration. In contrast, IRG registration produced
consistent correspondence between images in a group at the cost of slightly reduced pair-wise
RO accuracy compared to IRP-G2R. Thus, it is better to use IRP registration if the task is to
register two images, but it is better to use IRG registration if the task is to register a group of
images. Furthermore, the IRP registration should be favored over PW registration when
registering two images. IRG spatial normalization of the fractional anisotropy (FA) maps of
DTI were shown to have smaller FA variance compared with G2R methods using the same
elastic registration model. Analyses of fMRI data sets with sensorimotor and visual tasks
showed that IRG registration, on average, increases the statistical detectability of brain
activation compared to G2R registration.
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Figure 1.
Implicit reference group-wise (IRG) registration method framework. Transformations hjg from
each image to an implicit space are estimated; the transformation hjj between every pair of

images is obtained by concatenating transformations, hij(X)=hiR(h;{l(X)).
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Figure 2.

IRG registration of four 2D phantom shapes. The top row shows the original four shapes that
were registered with the IRG method. The middle row shows the deformed images produced
by applying the estimated transformation h;g to image i above it. The images in the middle row
correspond to the implicit reference image. The bottom row shows the transformation hjg
applied to a rectangular grid.
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Figure 3.

G2R and IRG registration results. Row (a) shows 8 of the 16 MRI images from the NAO
database after rigid G2R registration and the average intensity of the 16 images after rigid
registration. Row (b) shows the corresponding 8 deformed images after PW-G2R registration
using the first image as the reference and the average intensity computed from the 16 images
in the coordinate space of image 1. Row (c) shows the corresponding 8 deformed images after
IRG registration and the average of the 16 IRG registered images in the coordinate system of
the implicit-reference space.
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Figure 4.

Region of Interest (ROI) overlap comparison between rigid, PW, and IRP registration. Panel
(a) shows the T1-weighted MRI reference image; panel (b) shows the gray matter ROIs
associated with the reference image; and panel (c) shows the overlap of the ROIs produced by
mapping the other 15 MRI data sets to the reference image using rigid, PW, and IRP
registration. The overlap of the the ROIs are show for a range of 0.5 to 1.0 where 0.5
corresponds to 50% agreement and 1.0 corresponds to 100% agreement.
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Figure 5.

Comparison of (a) IRG to PW-G2R registration and (b) IRG to IRP-G2R registration methods
by average relative overlap (ARO) for the 32 region of interests (ROIs) in the NIREP NAQ
evaluation database. For each ROI, the square represents the ARO after rigid alignment, the
star denotes the ARO using IRG registration, and the 16 “X”-shaped points denote to AROs
using G2R registrations, where each color corresponds to a reference-based registration using

one of the 16 images as the reference.
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Comparison of pair-wise transformations produced by the PW, IRP, and IRG registration
methods with respect to (a) relative overlap (RO) and (b) average transitivity error (ATE).
Average and standard deviation of RO and ATE are plotted for each ROI corresponding to 16
x 15 pair-wise transformations in the population.
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(b) (c) (d) (e) (f)

Figure 7.

Comparison of average and standard deviation of deformed FA images after different
registration methods. Top row includes average deformed FA images after (a) affine
registration, (b) G2R registration using standard image as reference with B-spline free form
deformation (FFD) model, (c) G2R registration using “most representative” image as reference
with FFD model, (d) G2R registration using standard image as reference with small
deformation elastic (SDE) model, (e) G2R registration using “most representative” image as
reference with SDE model, and (f) IRG registration with SDE model. Bottom row contains
standard deviation of FA images after registrations in the same order as in the top row.
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(@) (b) () (d)

Figure 8.

Functional activation maps with different registration methods: (a) affine alignment; (b) G2R
registration with one of the group images as reference; (c) IRG registration; (d) log-Jacobian
of a transformation from one image to the implicit reference. All activation maps are overlaid
on the average of the deformed EPI data sets using IRG registration. (a), (b) and (c) are color
coded by S values.
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Figure 9.

The average of (a) intensity standard deviation, (b) the g weights, and (c) t-statistics on different
regions. In each panel, the first bar displays the measurement using affine alignment, the second
bar shows the average measurements using 29 G2R registrations (with box plot on the top
showing the median, the 5th, 25th, 75th, and 95th percentiles and outliers) and the third bar
displays the measurement using IRG registration.
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Table 1
Multi-resolution IRG registration parameters used to register T1-weighted MRI, DTI and fMRI images with different
voxel dimensions.

voxel dims resolution initial num of harmonics final num of harmonics iterations
1/8 1 5 500
1/4 5 9 500
256 x 300 x 256 1 9 1 »50
1 13 17 50
1/4 1 5 500
80 x 95 x 75 12 5 9 500
1 9 13 250
54 x 64 x 50 1 5 9 500
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