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Abstract

Diffusion tensor imaging (DTI)-based fiber tractography holds great promise in delineating neuronal
fiber tracts and, hence, providing connectivity maps of the neural networks in the human brain. An
array of image-processing techniques has to be developed to turn DTI tractography into a practically
useful tool. To this end, we have developed a suite of image-processing tools for fiber tractography
with improved reliability. This article summarizes the main technical developments we have made
to date, which include anisotropic smoothing, anisotropic interpolation, Bayesian fiber tracking and
automatic fiber bundling. A primary focus of these techniques is the robustness to noise and partial
volume averaging, the two major hurdles to reliable fiber tractography. Performance of these
techniques has been comprehensively examined with simulated and in vivo DTI data, demonstrating
improvements in the robustness and reliability of DTI tractography.
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1. Introduction

Diffusion tensor imaging (DTI) as a novel magnetic resonance imaging modality is rapidly
becoming a primary technique for noninvasive studies of the structure of living tissue such as
human brain [1]. In DTI, measurements acquired at each image voxel allow the estimation of
a symmetric, second-order, positive definite matrix whose components describe the local
random motion of water molecules. As the random motion of water molecules is mediated by
the diffusion properties of the media in which they reside, measurements from DTI can be used
to infer structural features of the tissue being imaged [2]. Since its introduction a decade ago,
DTI has been used in a wide array of clinical and basic medical investigations that include
cerebral ischemia [3], white matter disease [4], brain tumors [5], neuropsychic disorders [6,
7] and developmental studies [8].
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Originally proposed to characterize local tissue properties such as diffusion anisotropy, DTI
has recently become an important utility to map neuronal fiber tracts in vivo, a technique known
as diffusion tensor tractography (DTT). DTT draws upon the principle that the dominant
direction of water diffusion coincides with the local tangent direction of fibrous tissue, the
integration of which promises the delineation of entire fiber tracts [9]. This unique potential
of DTI to map neuronal fiber tracts in vivo or, more generally, to depict the structural
connectivity of the neural networks in the human brain has triggered considerable interest in
the medical imaging, image analysis, computer science and medical research communities. A
range of image-processing techniques such as noise reduction [10,11], interpolation [12],
registration [13,14], fiber tracking [15-17], tract visualization [18,19], fiber clustering [20] and
quantification [21] have to be developed to fully explore the potential. In our group, we have
addressed several of the above technical issues and provided a rich set of image-processing
tools for reliable fiber tractography with DTI. The intent of this article is therefore to summarize
the major technical developments we have made during the past 5 years, with the hope of
benefiting investigators who are interested in using DTT in their research.

The remainder of this article is organized as follows. Section 2 describes the anisotropic
smoothing, an essential preprocessing procedure for DTI data. Section 3 focuses on an
anisotropic interpolation technique, which has established its potential over conventional
interpolation methods in fiber tracking. A novel Bayesian tracking algorithm for fiber
tractography is discussed in Section 4. Finally, we present an automatic bundling algorithm
for classifying neural fiber pathways in Section 5. Section 6 summarizes the main contributions
of these methods, followed by some concluding remarks.

2. Anisotropic smoothing

Noninvasive characterization of living tissue is performed by analyzing the eigen parameters
of the diffusion tensors in DTI data. Inhomogeneity of eigenvalues due to the anisotropic
motion of water molecules is the key feature used to classify tissue architecture as well as
structural integrity. The eigen parameters are susceptible to noise, which induces systematically
biased assessment of structural features, such as overestimation of diffusion anisotropy and
accumulation of directional errors while tracing neuronal fiber pathways [22]. Suppression of
noise in diffusion tensor images is essential to improve the accuracy of the tissue’s structural
and architectural characterization.

An important consideration in noise reduction is the preservation of structural boundaries.
Structural boundaries define the spatial range of individual structures and offer a natural means
of confining fiber-tracking process to the specific structure of interest. It is necessary to use
nonlinear filtering techniques to preserve structural boundaries that are particularly rich in DTI
data. To date, a number of nonlinear smoothing or regularization methods have been proposed
to denoise DTI data, including nonlinear diffusion filtering [23], tensor eigen direction
regularization based on a Markovian model [10], stochastic relaxation labeling [24], variational
principles [25,26] and constraint preserving flow [27]. However, these sophisticated methods
were not rigorously validated with in vivo human DTI data to establish their practical utility,
and therefore, the DTI community still resorts to more basic methods such as Gaussian
smoothing [28]. The anisotropic smoothing technique discussed here is developed with a
similar concept of anisotropic diffusion filtering, originally proposed by Weickert [29] to
enhance flow-like structures in scalar images. We will describe briefly in the following our
novel formulation of an elegant smoothing kernel that can restore the tensor directional
information while preserving the structural boundaries in DTI data. Experiments with
simulated and in vivo DTI data demonstrate that this operationally simple method can
effectively reduce the impact of noise on the tensor principal eigen direction [30], which offers
the potential of using it as a routine utility.
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2.1. Smoothing kernel construction

As with conventional implementations, our anisotropic image smoothing employs a partial
differential equation:

ol
—=div(T - V),
ot v( ) (1)

where | is the image intensity, V1 is the intensity gradient and tis the iteration “time” parameter.
T is a structure tensor that determines the behavior of smoothing. For anisotropic smoothing,
T can be constructed from the intensity gradient tensor G, which is obtained by convolving
the outer product of VI with a Gaussian kernel K, (p is the standard deviation of the Gaussian
kernel):

G=K,"(VI & VI). @

The eigen system of the gradient tensor G characterizes the local image structure, with the
major eigenvector (corresponding to the largest eigenvalue) perpendicular to the local contrast
boundary and the minor eigenvector (corresponding to the smallest eigenvalue) parallel to it.
In our design, T is defined as a normalized inverse of G [30]. As a result, at structural
boundaries, the eigenvalue of the structure tensor is small across the structural boundary but
large along it. This allows anisotropic smoothing, that is, greater smoothing along the tangential
direction of contrast boundaries than perpendicular to it. However, in homogeneous regions,
the three eigenvalues of T have similar magnitude, resulting in an isotropic smoothing as
desired.

Our anisotropic smoothing is performed on diffusion-weighted images (DWIs) from which
diffusion tensors are derived. As there are multiple weighting directions, we use a common
gradient tensor for all weighting directions in order to capture the boundary information that
is not present in all directions. This can be simply done by summing VI®VI over all directions,
followed by a component-wise convolution with a Gaussian kernel K.

2.2 Smoothing experiments

2.2.1. Simulated DTI data—The anisotropic smoothing algorithm was tested with simulated
DTI data synthesized with in vivo diffusion parameters of the human brain. Fig. 1A shows two
slices of synthetic “fibers” with different colors denoting different orientations. The fibers were
axially symmetric with a mean diffusivity (D) of 0.7 x 10~ cm?/s and a fractional anisotropy
(FA) of 0.9. There was a region of isotropic diffusion, denoted as black in Fig. 1, that had D
=0.7 x 107> cm?/s and FA = 0. The DWIs from which diffusion tensors are calculated were
noise free, but zero mean Gaussian noise was added with a standard deviation equal to 0.10
times the image intensity, generating noisy simulated data. The noisy data were subsequently
subjected to 50 iterations of anisotropic smoothing.

2.2.2. In vivo human data—A set of DWIs was acquired from a healthy human subject
with the use of a 3-T GE Sigha magnetic resonance scanner (General Electric, Milwaukee, WI)
to study the performance of the algorithm on in vivo DTI data. A volume of 250 x 250 x 120
mm?3 was scanned using six noncollinear weighting directions and a single-shot, echo-planar,
pulsed gradient spin-echo imaging sequence with a b value of 1000 s/mm?2. The data matrix
acquired had a size of 128 x 128 x 34 and was latter interpolated to be 256 x 256 x 34. Eight
repeated scans were obtained and averaged to yield a volume data set with high signal-to-noise
ratio (SNR ~70). This data set was corrupted with zero mean Gaussian noise at a standard
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deviation equal to 0.10 times the DWI intensity and smoothed for 50 iterations of anisotropic
smoothing.

2.2.3. In vivo monkey data—~Performance of the algorithm was also tested on a set of ex
vivo monkey (owl) brain images acquired on a 9.4-T magnet using a T,-weighted multishot
spin-echo pulse sequence (TE = 31.15ms, TR = 17.1 ms). The image array dimension was 128
x 128 x 132 voxels, and the spatial resolution was 0.3 x 0.3 x 0.3 mm3. The original data had
alow SNR of 5.5, and hence, the algorithm was tested directly on the data without adding noise
to it.

2.3. Experimental results

2.3.1. Simulated data—The effect of anisotropic smoothing on simulated DTI data is
demonstrated in Fig. 1B-D. Fig. 1B is an enlarged view of the boxed region in Fig. 1A. Fig.
1 shows the effect of adding zero mean Gaussian noise (S.D. = 0.10) to the simulated data
(Panel C) and the result after 60 iterations of anisotropic smoothing (Panel D). The variations
in the principal diffusion direction (PDD) due to noise are significantly reduced after
smoothing, and no blurring of the PDD near boundaries is observed. The PDDs in the isotropic
region (marked by an arrow in Fig. 1A) are not consistently reoriented after smoothing, which
is quite obvious since this region has no fibers and, presumably, has no directional preference.

2.3.2. In vivo human data—The effect of anisotropic smoothing on two representative
regions in the human brain is demonstrated in Fig. 2. The upper row (Panels B, C and D)
contains white matter in the frontal area where fiber tracts with distinct orientations exist. The
lower row (Panels E, F and G) contains a portion of the corpus callosum with largely parallel
neuronal fibers. Fig. 2B and E shows the in-plane component of the PDD (weighted with FA)
of the “gold standard” data; Fig. 2C and F shows the effect of adding zero mean Gaussian noise
(S.D.=0.10) to Fig. 2B and E; Fig. 2D and G shows the results after applying 60 iterations of
anisotropic smoothing to Fig. 2C and F. It can be seen that the anisotropic smoothing
significantly reduces the impact of noise on the PDD in both regions.

2.3.3. In vivo monkey data—Fig. 3 shows a To-weighted anatomic image of the monkey
brain (Panel A), the image after 25 iterations of anisotropic filtering (Panel B) and the image
after 3 iterations of Gaussian (isotropic) filtering (Panel C). The result in Panel B seems to be
more favorable as the boundaries are well preserved but the homogenous regions are smoothed.
Compared with anisotropic smoothing, Gaussian smoothing is insensitive to image gradient;
hence, structural boundaries are blurred.

3. Anisotropic interpolation

Fiber tracking with DTI is typically a reconstruction procedure to trace continuous curves from
adirection field. The discrete nature of DT data necessitates interpolation. In conjunction with
smoothing, interpolation of the direction field allows fiber pathways to be tracked more reliably
and in a continuous manner. Similar to smoothing, preservation of structural boundaries is also
desirable in DTI data interpolation.

Interpolation is a classical image-processing problem for which a plethora of methods exists
[31]. However, only a few conventional interpolation techniques have been chosen for DTI
data, such as linear [32], low-order polynomial [33,34], cubic B-spline [11] and nearest-
neighbor interpolations [35]. These interpolation methods differ from each other in their
frequency response, extent of support, computational complexity and degree of continuity. A
common feature of these methods is the use of an isotropic, space-invariant interpolation kernel
that has the drawback of disregarding local image features (structural boundaries). In fact,
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except for the nearest-neighbor interpolation, which necessarily incurs discontinuity artifacts,
all the other methods used suffer from boundary blurring.

Motivated by the need for a smooth, continuous and boundary-preserving interpolation method
so that fiber pathways can be reconstructed reliably and confined within the boundary of
targeted structures, we have developed a space-variant, anisotropic interpolation technique that
ensures the continuity of the direction field and that, meanwhile, preserves structural
boundaries [36]. Similar to the anisotropic smoothing in the preceding section, the anisotropic
interpolation kernel we designed is adaptable to the local image intensity gradient profile,
which is a function of the strength and orientation of contrast boundaries.

3.1. Space-variant and anisotropic data interpolation

The core part of our interpolation technique is a sigmoid function whose shape can be regulated
by control parameters. Eq. (3) is the sigmoid kernel function that governs the interpolation
process for the 1-D case with a range of x = [0, 1):

f()=(1+exp(a x (x—n)". ®)

The profile of the function f(x) depends on the values of a and n, with a regulating the sharpness
of the function and ) controlling the position of maximum transition. Fig. 4A shows the profiles
of f(x) for n = 0.5 with different values of a; their corresponding frequency responses are shown
in Fig. 4B. It can be observed that large values of a produce a sharp transition in f(x), showing
large gain for high-frequency components. In particular, when a approaches infinity, f(x)
becomes a step function, which corresponds to nearest-neighbor interpolation. Conversely,
when a = 0, f becomes a constant (equal to 0.5), which corresponds to linear interpolation
(smoothing) with averaged neighborhood information. Between the two extremes, the kernel
function may have various degrees of sharpness depending on the magnitude of a.

For space-variant, anisotropic interpolation of 2-D or 3-D scalar images, we may adapt the
sharpness of the sigmoid function to the local image intensity gradient. A simple form is to
relate parameter a linearly to the magnitude of the intensity gradient along each spatial
direction:

VI;
Vinax

ai=0max X ,i€{l,2}orie{l,2,3},

(4)

where amax Sets the maximum allowable sharpness of the sigmoid function and Vi IS the
maximum intensity gradient of the image. For interpolation of DTI data, we simply apply the
anisotropic interpolation as described above to each of the six independent tensor components
with a single interpolation kernel, using the mean intensity gradient of the six tensor
components. This yields better data consistency, such as tensor orientational coherence and
positive definiteness, than using a separate interpolation kernel for each tensor component.

3.2. Evaluation of interpolation with fiber tracking

To assess the performance of the anisotropic interpolation and to compare this with
conventional methods, we performed fiber tracking with simulated and in vivo human DTI
data. Fiber tracking was implemented using a streamline approach [15]. Although more
sophisticated fiber-tracking methods are available (see next section), we deliberately chose this
simple, intuitive approach because it simplifies the interpretation of the impacts of various
interpolation techniques. For both simulated and in vivo data, the step size used was 0.2 voxel
and the termination criteria were FA < 0.15 and turning angle 6 > 45°. Four different values
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of amax (5, 10, 15 and 20) were used for the anisotropic interpolation. Tracking results were
compared with four conventional interpolation methods that include linear, nearest-neighbor,
cubic polynomial and spline interpolations.

3.2.1. Simulated data—The simulated data consisted of parallel 3-D spirals that had a
rectangular cross section of 3 x 9 voxels and spanned two full cycles (from 0 to 4x). Tensors
for the synthetic fibers had a mean diffusivity of 0.7 x 107> cm?/s and an axial symmetry with
an FA of 0.9, and they were aligned with the tangential direction of the tract. The synthetic
fibers were embedded in an isotropic media (FA = 0), generating a volume of 128 x 128 x 30
voxels with a spatial resolution of 2 x 2 x 2 mm3.

3.2.2. In vivo data—The in vivo DTI data were acquired similarly as in Section 2.2.
Streamline fiber tracking with different interpolation methods was launched from seed points
defined in the corpus callosum and terminated when any of the termination criteria was
satisfied.

3.3. Experimental results

3.3.1. Simulated data—Fig. 5 shows the fibers tracked from the synthetic 3-D spirals using
conventional interpolation methods (Panels A-D) and the anisotropic interpolation approach
with different values of apax (Panels E-H). Compared with the conventional interpolations,
anisotropic interpolation produces more favorable results because, in general, it yields larger
numbers of fibers and their pathways are more consistent.

3.3.2. In vivo data—TFig. 6 shows the axial view of the anatomic structure of a fiber bundle
in the corpus callosum using conventional interpolation methods (Panels A-D) and the
anisotropic interpolation approach (Panels E-H). Linear interpolation (Panel A) yields fibers
similar to anisotropic interpolation with an,x = 5 but generates fewer fibers than anisotropic
interpolation with apyax = 10-20 (as pointed by a green arrow in Panel A). Nearest-neighbor
interpolation (Panel B) yields fewer fibers than the other methods due to its inherent noise
sensitivity (e.g., see the green arrow in Panel B). Fibers tracked with cubic polynomial (Panel
C) and spline (Panel D) interpolations have possible wrong connections (as pointed by green
arrows). These questionable connections, however, are not present in the fibers tracked with
the anisotropic interpolation. In our approach, although major patterns of the fiber tracts are
grossly similar, different values of ay,x produce appreciable differences to the fiber structure,
with the results for apmax = 10 (Panel F) and 15 (Panel G) being more plausible.

4. Fiber tractography with Bayesian tensor regularization

In the previous section, fiber tractography was implemented using the most intuitive and basic
procedure — the “streamline” approach. The purpose is to avoid other confounding factors
that may complicate the comparisons of different interpolation techniques. With the streamline
method, fibers are tracked by successively following the major eigenvector of the diffusion
tensor. The tensor major eigenvector, however, may be an incorrect estimate of the true
direction of the underlying fascicle due to the effect of image noise or partial volume averaging
(PVA), which renders an unreliable basis for fiber path propagation. Although there are a
number of sophisticated fiber-tracking algorithms that can mitigate the effect of noise and/or
PVA [24,34,37-41], to date, fiber tractography still relies on more basic methods such as the
Euler method [15] and the FACT method [35] due to their better trade-off between reliability
and computational complexity over the sophisticated methods.

Motivated by the need for fiber-tracking algorithms that are not only robust to noise and PVA
but also practically useful, we have developed a novel tracking algorithm based on Bayesian
tensor regularization. With this framework, the uncertainty of the diffusion tensor due to noise
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and PV A and the variance among the tensors are incorporated into models of the conditional
and a priori probabilities on the basis of multivariate normal distributions; the true local tangent
direction of the underlying fascicle is estimated from an optimal solution to the Bayes decision
problem with maximum a posteriori probability. Simulated and in vivo fiber-tracking
experiments have demonstrated that this novel fiber-tracking algorithm allows fiber tracts to
be more faithfully reconstructed than the basic streamline method.

4.1. Bayes decision rule for fiber tracking

Bayes decision is the process of determining the value of u that maximizes the a posteriori
probability P(u;|d); that is,

p=arg max (P(ujd))=arg max (p(di;)P(u,),
Hi=1-n Hj (6)]

where P(y;) is the a priori probability of state p; and p(d|y) is the conditional probability density
of an observed variable d [equal to (D11D5,D33D12D13D23)Y] if the state is uj- When applied
to fiber tracking, the Bayes decision allows us to infer from an observed tensor the true fiber
direction with maximum a posteriori probability. The a priori and conditional probability
functions need to be defined to determine the true direction.

Let us assume d to be multivariate normal: d~N(u, ), where p represents the unknown true
tensor and X is the covariance matrix. The conditional probability density of d given y; is

pldlj)= exp[ ~d-u) > - /1,)]

2r IZII/2 (6)

The a priori probability P(y;) is also assumed to be multivariate normal: pj~N(m, S), where
m is the mean tensor and S is the covariance matrix.

P(uj)= [ - m)'S~ (llj_m)]

@n)? |S|'/2 ]

With Eq. (6) and Eg. (7), the solution to Eq. (5) can be found analytically according to
ﬂ:(z_ﬁs*‘)_](z_lws*‘m)
' (8)

Thus, the major eigenvector of u represents the local tangent direction of fascicles with
maximum a posteriori probability. Fiber tracking with this eigenvector as the propagation
vector should track the fiber path with a minimum rate of error and decreased uncertainty (see
Ref. [42] for essential parameter estimations).

4.2. Fiber-tracking experiments

4.2.1. Simulated data—A synthetic data set was designed to contain six identical layers of
straight and low planar curvature fibers. A PVA region with a width of two voxels was created
around the middle portion of the straight fibers (see Fig. 7). Simulated tensors for the PVA
region were spherically symmetric (A; = 1, = A3); otherwise, tensors were cylindrically
symmetric (A > Ay = A3) with an eigenvalue contrast (A;—A3) of 0.8 x 107 cm?/s. Zero mean
Gaussian noise (SNR =30 in Panels A and C and SNR = 20 in Panels B and D) was added to
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the data set. Fiber tracking on these noisy data sets was initiated from four seed points as shown
in the figure. Four “true tracts” were obtained by tracking from the seed points with the Euler
method on the noise and PVA free data set, and the performance of the Euler and Bayesian
methods was compared after adding noise.

4.2.2. In vivo data—The same set of in vivo data used in the previous section was utilized
to demonstrate the advantage of the Bayesian tracking algorithm in conjunction with
anisotropic interpolation. A noisy DWI data set was generated by adding zero mean Gaussian
noise to the original DWI data (to simulate an SNR = 20). Fibers were then tracked from the
high SNR and the noisy data set with the Bayesian algorithm and anisotropic interpolation.
The study focused on one major fiber bundle: the superior longitudinal fasciculus. This tract
was chosen because of its well-known anatomy, thus making it possible to judge the quality
of reconstructed fibers and identify erroneous connections. Fiber tracking of the same bundle
was also conducted using the Euler method with linear interpolation for performance
comparison.

4.3. Experimental results

4.3.1. Simulated data—Fig. 7 shows front (Panels A and B) and side (Panels C and D)
views of “fiber tracts” traced from the synthetic data with the Euler (red lines) and Bayesian
(blue lines) methods. The top (Panels A and C) and bottom (Panels B and D) rows have an
SNR of 30 and 20, respectively. In these figures, all the fibers successfully penetrate the PVA
regions with the Bayesian method but not with the Euler method; by referring to the true tracts
(black lines), it can be seen that fibers tracked with the Bayesian method are more faithful than
those of the Euler method.

4.3.2. In vivo data—Fig. 8 shows the axial (top row) and sagittal (bottom row) views of fiber
tracts seeded in the superior longitudinal fasciculus tracked with the Euler method (Panels A
and C) and the Bayesian method with anisotropic interpolation (Panels B and D). The former
method uses the linear interpolation technique so that appreciable changes associated with the
Bayesian tracking and anisotropic interpolation can be well judged. The interpolation control
parameter amay in this case is fixed at 10 since this value produced good results in our previous
experiment [36]. The Euler method produces a few erroneous connections (as pointed by green
arrows in Panels A and C) that are absent with the Bayesian method. This may be explained
by the sensitivity of the Euler method to noise and PVA,; it can be appreciated with close
inspection that, due to its noise immunity, the tracts from the Bayesian approach with
anisotropic interpolation appears smoother. Fig. 9 shows both views of the fiber tracts from
the same seed points but with zero mean Gaussian noise (SNR = 20) added to the data. Fibers
from the Bayesian method also appear to be more favorable in this case. Compared with Fig.
8, noise seems to induce minor changes to fiber tracts from the Bayesian method but adds a
few erroneous connections (as pointed by green arrows) to the fiber tracts from the Euler
method.

5. Classification of fiber pathways

Most of the work in the literature focuses on the development of algorithms to reconstruct
neuronal fiber pathways. However, there has been little research on postprocessing of
reconstructed fibers, such as classifying fibers as members of distinct anatomical structures.
Fiber pathways connecting the same functional regions of the brain tend to form a natural
anatomical group (bundle), and those belonging to the same bundle usually are clustered in 3-
D space, are approximately parallel to each other and constitute a distinct structure from other
fiber bundles. In this section, we focus on the development of computer algorithms to bundle
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reconstructed fiber pathways into natural groups, which may provide a better means of
quantifying their physical and geometric properties.

5.1. Fiber bundling with K most-similar-fibers algorithm

Fiber bundling is a typical clustering problem. In cluster analysis, partitioning of a data set into
natural clusters may be achieved hierarchically or nonhierarchically. Hierarchical methods
include divisive and agglomerative approaches [43]. Divisive approaches involve splitting the
whole data set successively until a stop criterion is reached, while agglomerative approaches
operate in the opposite direction. For clustering of fiber pathways, we employ a “K most-
similar-fibers algorithm” to partition a set of fibers automatically into different natural bundles.
This algorithm is conceptually similar to the “K nearest-neighbors algorithm” [44], which
belongs to agglomerative methods.

The process of fiber bundling begins with a definition of a similarity measure between a pair
of fibers. First, we introduce the concept of a corresponding segment, which is loosely defined
as the portion of a fiber (F;) that has point-wise correspondence to a portion of another fiber
(Fj), as illustrated in Fig. 10. Segment P;Qj of fiber F; is the corresponding segment to the
segment P;Q; of fiber Fj and vice versa. A corresponding segment ratio is then defined as the
ratio of the length of the corresponding segment to the overall length of the pair of fibers:

L
L,'+Lj — Lcs (9)

cs=

where L is the length of the corresponding segment and L and L; are the length of F; and
F;, respectively. The corresponding segment ratio varies between 0 (no overlap) and 1 (each
fiber completely overlaps the other). Two fibers are considered similar only when they have
comparable length and similar shape and when they are separated by a small distance. The
shape similarity and closeness are indicated by the mean Euclidean distance D. Therefore, the
similarity between a pair of fibers can be defined by

S,'J'IRCS X exp(—D/C), (10)

where C is a scaling coefficient. With the definitions of corresponding segment ratio and
similarity, the bundling algorithm proceeds with the following steps:

1. Forafiber F, find eight fibers whose seed points are the neighbors of the seed point
of F.

2. Calculate similarity S between F and each of the eight neighboring fibers.

3. Threshold similarity such that any similarity value smallerthan T (0 <T <1) issetto
0.

4. Find up to K neighboring fibers whose nonzero similarity to F are greatest.
5. Group F with each of the fibers found in Step 4.

The above steps are repeated until all fibers are processed. The parameters T and K determine
the characteristics of resulting fiber bundles. The threshold T with an appropriate value
precludes bridging of neighboring bundles, while the number of most-similar-fibers K decides
the compactness of each fiber bundle [21].
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5.2. Experimental results

Once again, we used the same in vivo data as in the previous section to bundle the fibers. The
fiber pathways were extracted from a representative location (using the Euler method) that
connects superior to posterior corona radiata in the cortex. The sagittal and coronal images
(Fig. 11A and B) are displayed simultaneously to provide a better understanding of connection
between the two locations. The green arrow in Panel A shows a possible erroneous connection
that belongs to a different bundle. Applying the bundling algorithm, the fibers were separated
into two distinct bundles. Fig. 12A shows the set of fiber pathways in greater detail. The fibers
could be clustered into bundles with a typical value of T = 0.16 in this case. However, in case
of more complex fiber structures, a certain value of T may result in more than two bundles
where bundles containing fewer and/or erroneous fibers may be excluded based on the
knowledge of known anatomy. Optimization of the threshold parameter T is an empirical issue
and needs better understanding of known fiber anatomy to decide its magnitude on a trial basis.

6. Discussions and conclusion

The purpose of this work was to summarize the major technical developments we have made
in postprocessing of diffusion tensor images with the hope of benefiting investigators who are
particularly interested in DTT. Initially, we implemented a novel anisotropic smoothing
technique to denoise diffusion tensor images. The technique allows smoothing along the
tangential direction of structural boundaries but inhibits blurring along the perpendicular
direction. The artifact of boundary blurring can be effectively prevented, and therefore, existing
structural boundaries are preserved. An equal amount of isotropic smoothing is allowed in
homogeneous regions so that the capability of boundary preservation does not come at the cost
of degraded performance in these regions.

Image smoothing in conjunction with interpolation plays a critical role in DTI-based fiber
tractography. Smoothing reduces the detrimental effect of noise on fiber tracking, and
interpolation allows continuous fiber tracts to be reconstructed. For DTI data interpolation, we
have designed a sigmoid interpolation function that is anisotropically modulated by the local
profile of image intensity gradients. This adaptive scheme preserves structural boundaries that
are important in confining fiber tracts within the specific structure of interest. The anisotropic
interpolation also builds in the capability of image smoothing to form a unified framework for
DTI smoothing and interpolation that benefits fiber tracking. Experiments with synthetic and
in vivo human DT data have shown that improved fiber-tracking performance can be achieved
using this unified framework over conventional interpolation techniques.

For fiber tracking, we have developed a novel Bayesian tracking algorithm that is robust to
noise and PVA. The performance of this algorithm with respect to noise and PVA was
examined with synthetic and in vivo DTI data (see Ref. [42]). We have also implemented
anisotropic interpolation with the Bayesian algorithm. Experiments on synthetic and in vivo
human DTI data demonstrate that this new algorithm, combined with anisotropic interpolation,
is superior to the Euler method in immunity to noise and PVA.

Finally, we presented a fiber-bundling algorithm that allows automatic clustering of
reconstructed fiber pathways into different anatomical structures. To the best of our knowledge,
this was the first effort toward this end, since such grouping was previously performed
manually by using multiple regions-of-interest approaches. Fiber clustering facilitates further
characterization of physical and geometric properties of fiber bundles, which may provide
sensitive parameters that will assist in the diagnosis of brain diseases. In addition, it may
provide valuable information for image registration and image-guided surgery.
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In summary, we have developed a suite of image-processing tools for DTI-based fiber
tractography. The goal is not to develop sophisticated techniques for “showcase” purposes but,
rather, to provide reliable utilities for routine use in laboratories or clinics. We have
comprehensively investigated the performance of the novel techniques developed and
compared them with conventional methods, with part of the results included herein. Extensive
experiments on simulated and in vivo DTI data have demonstrated the robustness and reliability
of these techniques and, thus, have justified their routine use.
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Fig. 1.

Effect of anisotropic smoothing on simulated data. (A) Middle portion of the noiseless
simulated data. The line segments represent the PDD, and different colors denote different
orientations of “fiber” bundles. (B) Enlarged view of the black boxed region in Panel A. (C)
PDDs after adding zero mean Gaussian noise to simulated data (S.D. = 0.10). (D) PDDs after
60 iterations of anisotropic smoothing.
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Fig. 2.
Demonstration of the effect of anisotropic smoothing on two selected regions in the human
DTl data. (A) A To-weighted image of a slice of the human brain. (B and E) In-plane component
of PDDs in the boxed regions in Panel A. (C and F) PDDs after adding zero mean Gaussian
noise (S.D. = 0.10) to the image data for the region in Panels B and E. (D and G) PDDs after
60 iterations of anisotropic smoothing.
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Fig. 3.
Anatomic map of a To-weighted monkey brain image (A). Effect of anisotropic smoothing
after 25 iterations (B) and Gaussian smoothing after 3 iterations (C).
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Fig. 4.

(A) Profiles of 1-D sigmoid function with different values of shape control parameter a and
(B) their corresponding frequency responses. Line styles denote different values of a (and are
the same in both panels).
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Fig. 5.

“Fiber” tracts reconstructed from the synthetic spirals. Panels A-D are from linear, nearest-
neighbor, cubic polynomial and spline interpolations, respectively. Panels E-H are from the
anisotropic interpolation with an,¢ = 5, 10, 15 and 20, respectively.

Magn Reson Imaging. Author manuscript; available in PMC 2009 August 2.

50

100

100



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mishra et al. Page 19

Fig. 6.

Axial view of reconstructed fibers seeded in the corpus callosum. Panels A-D are from linear,
nearest-neighbor, cubic polynomial and spline interpolations, respectively, and Panels E-H
are from the anisotropic interpolation with apyax = 5, 10, 15 and 20, respectively. Arrows in
Panels A and B point to missed fibers, and arrows in Panels C, D and H point to possibly wrong
connections.
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Front (A and B) and side (C and D) views of fibers tracked from synthetic data at SNR of 30

(A and C) and 20 (B and D) with a PVA region around the middle portion of the straight fibers.
Red and blue curves are fibers from the Euler and Bayesian methods, respectively, and black

curves are the “true fibers”. Four seed points are denoted with black dots in Panels A and B.
The black line segments denote the direction of the major eigenvector at each voxel. Note the

expanded scale of the abscissa in Panels C and D.
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Fig. 8.

Axial (A and B) and sagittal (C and D) views of reconstructed fiber tracts seeded in the superior
longitudinal fasciculus from the original high-quality data. The left column (A and C) shows
the fibers using the Euler method (linear interpolation), and the right column (B and D) shows
fibers using the Bayesian method (anisotropic interpolation). Green arrows point to erroneous
pathways using the Euler method.
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Fig. 9.

Axial (A and B) and sagittal (C and D) views of reconstructed fiber tracts seeded in the superior
longitudinal fasciculus from noisy data (SNR = 20). The left column (A and C) shows the fibers
using the Euler method (linear interpolation), and the right column (B and D) shows fibers
using the Bayesian method (anisotropic interpolation). Green arrows point to additional
erroneous pathway using the Euler method.
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Fig. 10.
Definition of the corresponding segment. P;Q; of F; is the corresponding segment to P;Q; of
F;j. See text for explanations.
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A

Fig. 11.

A bundle of fibers connecting superior to posterior corona radiata (A) using the Euler method.
The green arrow shows an erroneous connection to the left side of the bundle, which could be
effectively bundled into two groups. The major fiber bundle connecting the two regions is
shown in Panel B.
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Fig. 12.
The original unclassified bundle (A) is separated into two distinct groups (B and C) using the
bundling algorithm.
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