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Abstract

Background—Single-nucleotide polymorphisms (SNPs) in 2 distinct regions of the gene for the
sortilin-related receptor (SORL1) (bounded by consecutively numbered SNPs 8—10 and 22—25) were
shown to be associated with Alzheimer disease (AD) in multiple ethnically diverse samples.

Objective—To test the hypothesis that SORL1 is associated with brain magnetic resonance imaging
(MRI) measurements of atrophy and/or vascular disease.

Design, Setting, and Patients—We evaluated the association of 30 SNPs spanning SORL1 with
MRI measures of general cerebral atrophy, hippocampal atrophy, white matter hyperintensities, and
overall cerebrovascular disease in 44 African American and 182 white sibships from the MIRAGE
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Study. We performed single-and 3-SNP haplotype association analyses using family-based tests.
Haplotypes found to be significantly associated with at least 1 MRI trait were tested for association
with 6 pathological traits in a separate sample of 69 white patients with autopsy-confirmed AD.

Results—In white patients, white matter hyperintensities were associated with multiple markers in
the region encompassing SNPs 6 to 10, whereas cerebral and hippocampal atrophy were associated
with markers from the region including SNPs 21 to 26. Examination of specific 3-SNP haplotypes
from these 2 regions in the autopsy-confirmed cases of AD revealed association of white matter
disease with SNPs 8 to 10 and association of hippocampal atrophy with SNPs 22 to 26. The haplotype
CGC at SNPs 8 to 10 was associated with fewer white matter changes in the clinical (P<.001) and
autopsy (P=.02) samples.

Conclusions—Variants of SORL1 previously associated with AD are also associated with MRI
and neuropathological measures of neurodegenerative and cerebrovascular disease. These findings
not only support the hypothesis that multiple areas in SORL1 are of functional importance but also
raise the possibility that multiple SORL1 variants influence amyloid precursor protein or endothelial
lipoprotein processing or both in different regions of the brain.

CONVERGING LINES OF EVIdence have implicated 1 member of the vacuolar
proteinsorting 10 family—the sortilin-related receptor, low-density lipoprotein receptor class
A repeat-containing protein (SORL1) (GenBank 6653)—in the pathogenesis of
Alzheimerdisease (AD).1-3 Pathological studies*® have documented reduced SORL1
expression in the brains of some patients with AD. Association between the risk of AD and
multiple SORL1 single-nucleotide polymorphisms (SNPs) has been demonstrated in several
studies®6-10 that included populations of diverse ethnic background, used various study
designs(ie, clinic case-control, family-based, or population-based), and relied on clinical or
patholflgical criteria for AD, whereas the evidence of the association was equivocal in another
study.

One hypothesis for the role of SORL1 in the pathogenesis of AD is that SORL1 modulates
subcellular trafficking of the amyloid precursor protein (APP). Reduced expression of
SORL1 may lead to routing of APP into compartments where it is cleaved by the presenilin 1
complex to generate the amyloid p peptide.3 The role of SORL1 in APP processing is strongly
supported by the fact that SORL1 interacts with endogenous APP holoproteins®12 but does
not bind to APP C-terminal fragments or to other type | membrane proteins.2 The SORL1
protein also belongs to a superfamily of low-density lipoprotein receptors (SorLA/LR11) that
bind apolipoprotein E (APOE) and are implicated in cholesterol metabolism®2 and
atherogenesis.14 Human macrophages exposed to SORL1 have elevated lipid levels, and mice
genetically deficient for SORL1 show signs of thickening arteries and macrophage infiltration
relative to SORL1 knockout controls. These observations suggest a role for SORL1 in the
development of atherosclerosis'# and raise the intriguing possibility that, like APOE and other
cholesterol metabolism genes (eg, paraoxonasel®), SORL1 may also increase dementia risk
through effects on cerebrovascular abnormalities. Indeed, cerebrovascular disease increases
the odds of demential® and potentially interacts with AD pathologic mechanisms to alter
memory.1” Neurodegenerative and cerebrovascular processes can be linked to the known
protein structure of SORL1 (Figure).

The possibility of multiple mechanisms of action associated with distinct SORL1
polymorphisms is supported by previous association studies. The SNPs associated with AD
are located in 2 regions in SORL1 separated by a mean (SD) of 100 (15) kilobases that contain
areas of tight linkage disequilibrium in white and African American subjects.3:18 Associations
with SNPs in the region near the 5’ end have been reported in white European subjects, Hispanic
subjects from the Dominican Republic, and Israeli-Arab subjects,3:® whereas SNPs in the
region closer to the 3’ end show association in African American, Han Chinese, and some white
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European and Hispanic subjects.3:6:8:10 Furthermore, associations with a specific 3-SNP
haplotype in each of these locations have been replicated in multiple data sets representing
several ethnic groups.3:® These results suggest the existence of AD predisposing variants in
different functional domains of SORL1 and thus raise the possibility for variable effects of
intragenic polymorphisms on the biochemical properties of SORL1, on its cell-type—specific
patterns of expression, or on both.

To further elucidate how SORL1 gene variants influence processes leading to AD, we evaluated
the association of SORL1 SNPs with brain magnetic resonance imaging (MRI) findings in a
multiethnic group of families containing at least 1 sibpair discordant for AD. In addition, we
compared SORL1 haplotypes with analogous measures of severity of AD and vascular
abnormalities in a separate group of deceased individuals with pathologically confirmed AD.

SUBJECT RECRUITMENT AND CLASSIFICATION

MRI TRAITS

Subjects included for the genetic comparisons with brain MRI traits are participants of the
Multi-Institutional Research in Alzheimer's Genetic Epidemiology (MIRAGE) Study, an
ongoing, family-based genetic epidemiological study of AD described in detail elsewhere.19
Briefly, patients with AD and their siblings were recruited from 14 clinical centers in the United
States, Canada, Germany, and Greece. Sibships were ascertained through a single affected
proband with probable AD according to the criteria of the National Institute of Neurological
and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders
Association.20 The cognitive status of individuals identified as nondemented was confirmed
by a score of 86 or higher on the modified Telephone Interview of Cognitive Status.2! Age at
onset of AD was defined as the age at which the earliest symptoms were reported by proxy.
Only subjects who self-reported their ethnicity as white of European descent or African
American and gave written informed consent are included in this study. Study protocols were
approved by institutional review boards at each recruitment site. Families with at least 1
affected and 1 unaffected sibling with clinical, MRI, and genotype data available for analysis
were included in this study. An independent sample of 69 patients with autopsy-confirmed AD
(mean [SD] age at death, 75.0 [7.5] years) was identified through the Alzheimer Disease Center
of Boston University and was obtained from the Edith Norse Rogers Veterans Affairs Medical
Center, Bedford, Massachusetts. This group is a subsample of patients included in a previous
neuropathological study of AD22 with complete neuropathological data and DNA specimens
available for analysis.

In the living subjects (those with AD and the unaffected siblings), MRI scans of the brain were
obtained with 1.5-T magnetic field strength scanners using a standard protocol of 3-
dimensional T1-weighted high-resolution sequence, a double spin-echo sequence, and a fluid-
attenuated inversion recovery sequence. Semiquantitative measures of neurodegeneration and
cerebrovascular disease were derived from digitized brain MRIs using methods previously
described.23 These measures were designed to be simple to use and have been shown to
correlate linearly with image quantification.2 The MRIs were evaluated by asingle rater (C.D.)
blinded to age, sex, and affection status to reduce the interrater variability common to
semiquantitative methods. Previous work has found that MRI ratings of white matter
hyperintensities (WMHs) and MRI infarcts are correlated with cerebrovascular abnormalities
but not with AD pathologic features.2> We used WMHSs and a severity rating of cerebrovascular
disease (CVR) (a combined measure of WMH and infarction) as indicators of brain
cerebrovascular disease. Bilateral medial temporal atrophy (MTA) is also significantly
correlated with AD pathologic features among individuals clinically diagnosed as having
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AD?6 and was used as an indicator of the AD process. A measure of generalized cerebral
atrophy (CA) was included in this analysis. Cerebral atrophy and WMH were rated on a scale
of 0 to 100. When an infarct was observed, a CVR of 0 to 100 was assigned. When no infarct
was observed, the CVR was set equal to the WMH score. We rated MTA on an ordinal scale
of 0 to 4 according to previously described methods.2” We demonstrated previously that CA,
MTA, WMH, and CVR have moderate to high heritability.28

NEUROPATHOLOGICAL TRAITS

Brains from the subjects with autopsy-confirmed AD were assessed by a single
neuropathologist (A.C.M.). A more detailed description of the brain samples, including
staining techniques and scoring, is described elsewhere.2? Tissue was scored by region for
detailed abnormalities, including evidence of atherosclerosis, infarct, and atrophy using an
ordinal (0 [none] to 3 [extensive]) or a binary (present or absent) scale. Traits reflecting
vascular, amyloid, white matter, or hippocampal damage or atrophy were derived from existing
tissue measurements. A summary variable for atherosclerosis was defined as the sum of ordinal
measures of atherosclerosis recorded for the internal carotid, anterior, middle, posterior
cerebral, basilar, and vertebral arteries. A summary measure of nonacute infarcts was defined
as the sum of binary measurements recorded for the cerebrum, cerebellum, and basal ganglia.
White matter disease was defined (1) as the sum of ordinal measures of white matter atrophy
in the frontal, parietal, temporal, and occipital regions ("WM1) and (2) as the sum of ordinal
and binary measures of general cerebral disease, astrocytosis, demyelination, arteriolar
sclerosis, and microinfarcts observed in the white matter ("WM2). Measures of amyloid
angiopathy and hippocampal atrophy (HA) were also included in this analysis.

GENOTYPING

Genotyping of genomic DNA extracted from peripheral blood lymphocytes or frozen brain
tissue was performed using SNP assays on a real-time platform (7900; Applied Biosystems,
Inc, Foster City, California) using the manufacturer's protocols. Twenty-nine SNPs tested in
the original report3 and 1 additional SNP (designated 22b) were selected for genotyping for
this study (Table 1). Duplicate wells were scattered on DNA template plates. The duplicate
discordance rate did not exceed 5% and was persistently localized to 2 samples, which were
subsequently excluded from all analyses. The overall genotype call rate was found to be more
than 95% for all SNPs typed. The SNPs were assessed for Hardy-Weinberg equilibrium in
unrelated, unaffected siblings within each ethnic group and excluded from further analysis in
that ethnic group if the test result was significant at the .05 level. The APOE genotyping was
performed as described previously.1®

STATISTICAL ANALYSIS

MRI Traits—Each MRI trait was evaluated for statistical normality within subgroups of AD
patients and unaffected siblings using Kolmogorov-Smirnov and Anderson-Darling statistics
and normal probability plots implemented in commercially available software (SAS, version
9.1.3).2° Variables with skewed distributions were natural log-transformed and reassessed for
normality. Association analyses of MRI traits and SNPs, adjusting for potential confounders,
were conducted using transmission disequilibrium tests,30:31 assuming an additive genetic
model under the null hypothesis of no linkage and no association between SNP markers and
traits. This procedure inherently accounts for population admixture by analyzing the family as
a unit rather than as independent individuals. Covariate adjustment was incorporated into
association testing through generalized estimating equations. The residuals of traits after
adjustment for age at MRI and disease status were used as continuous outcomes. All association
analyses were performed separately for the African American and white families. Disease
duration, APOE genotype, and sex were also considered covariates but did not change results
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and therefore were not included in analyses. Haplotype association analyses were performed
using sliding windows of 3 contiguous SNPs for each trait. A haplotype was considered to be
associated with the MRI trait if the global P value was significant at the .05 level. Individual
haplotypes with less than 5% frequency were excluded from global testing procedures.
Haplotype-specific P values were also calculated for tests, with global P values significant at
less than .05.

Replication Using Neuropathological Traits—Six summary measures from autopsy-
derived neuropathological traits were analyzed as ordinal traits using a proportional odds
model. To constrain the number of statistical comparisons, each trait was evaluated for
association with sliding windows of 3 contiguous SNPs from each SORL1 region that was
significantly associated with MRI traits and with AD in previous studies. We used
haplo.score3? to assess overall haplotype distribution differences for each trait under an
additive genetic model. Association of individual haplotypes with each neuropathological trait
was evaluated for each haplotype with at least 5% frequency.

A total of 44 African American and 182 white families, each of which included at least 1
affected and 1 unaffected sibling with clinical, MRI, and genotype data available for analysis,
were included in this study. Characteristics of these subjects are displayed in Table 2. The
African American and white families had approximately the same proportion of unaffected
siblings. Within each ethnic group, the mean age at disease onset in individuals with AD was
approximately the same as the mean age at the MRI examination in the unaffected siblings.
Mean ages at onset and MRI examination were similar across ethnic groups. A higher
proportion of white participants were male relative to the African American participants.

ASSOCIATIONS WITH MRI TRAITS

All SNPs were in Hardy-Weinberg equilibrium in the unrelated white siblings unaffected by
AD. In the unrelated African American siblings without AD, SNPs 4, 6, 10, 12, 21, and 23
were not in Hardy-Weinberg equilibrium and were thus excluded from association analyses in
this ethnic group. Initial evaluation of potential confounders, namely sex and APOE genotype,
showed little effect on association estimates. The reported models were adjusted for age at
MRI and disease status according to previously described methods.23

Table 3 indicates that significant associations at the a = .05 significance level were observed
in the white families for WMH with SNPs 6, 8, 9, 10, and 15 and for CVR with SNPs 1, 8, 9,
10, and 18. There was a marginally significant association of MTA with SNP 11. Cerebral
atrophy was associated with 2 more distally located SNPs (16 and 21). None of the traits were
associated with SORL1 SNPs in the African American families (results not shown); however,
there were relatively few families informative (ie, with sibling genotypes that allow for
inference of differential transmission of marker alleles from a parent) for these analyses (9—33
families).

In white families, 3-SNP haplotypes in regions constituting SNPs 1 to 3, 6 to 10, 21 to 25, and
27 to 29 were associated with at least 1 MRI trait (Table 4). The most frequent haplotypes for
SNPs 6to 8 (TGC) and 7 to 9 (GCG) were associated with increased CVR and WMH. Another
haplotype for SNPs 7 to 9 (ATA) was associated with decreased CA. Haplotype CGC in SNPs
8 to 10 was associated with decreased WMH and CVR. Cerebral atrophy and MTA were
associated with haplo-types in the region spanning SNPs 21 to 29.
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ASSOCIATIONS WITH NEUROPATHOLOGICAL TRAITS

Based on the association results for MRI traits in the MIRAGE sample and for AD in previous
studies, SORL1 SNPs 1 to 3, 8 to 10, and 22 to 26 (ie, six 3-SNP combinations) were selected
for haplotype analysis with the 6 neuropathology traits in the autopsy sample. The overall
haplotype distribution for SNPs 8 to 10 was associated with nWM1 (Table 5). The CGC
haplotype was associated with decreased nWM1 and the TAT haplotype was associated with
increased nWM1. The nHA measure was associated with each of the sliding window 3-SNP
haplotypes in the region of SNPs 22 to 26 (global P=.01, P=.009, P=.008, and P=.02). We
present the results for individual haplo-types for those sets of SNPs with global P<.01 (SNPs
22b-24 and 23—-25). Inspection of these results revealed that the SNPs 23—24 TC core haplotype
is consistently associated with increased nHA and the AT core haplotype is associated with
decreased nHA (Table 5). There was no association of any of the overall haplotype distributions
with summary measures of nonacute infarcts, amyloid angiopathy, or atherosclerosis or for
nWM2,

REVISITING THE ASSOCIATION OF SORL1 WITH AD IN THE MIRAGE STUDY

Among the 9 data sets included in the original genetic association study of SORL1 and AD,
the MIRAGE white family data set is 1 of 2 that did not show significant association with any
SNPs or haplotypes.3 To assess whether this is a result of heterogeneity (eg, only some families
associated with SORL1,orsome families associated with a variant in one region of SORL1 and
other families associated with a variant in another region) ascribable to the degree of
cerebrovascular disease, we evaluated the association of SORL1 3-SNP haplotypes with AD
among subgroups of the MIRAGE white families with high and low WMH findings. Families
for which the WMH score of a sibling of the individual with AD was greater than the median
WMH score of 7 among all individuals with AD were classified as having high WMH, and the
remaining families were classified as having low WMH. Table 6 indicates that, among families
with low WMH, the combination of SNPs 16 to 18 was associated with AD (global P =.03).
The AGA haplotype was associated with increased risk of AD (P=.007), and the ATT haplotype
is protective (P=.03). Further analysis of SNPs in this haplotype revealed that the association
signal is attributable primarily to SNP 17 (P =.008). None of the SORL1 haplotypes were
significant in the families with high WMH.

COMMENT

We observed that SORL1 variants previously associated with risk of the AD clinical phenotype
were also associated with MRI measures of brain atrophy and cerebrovascular disease in white
families containing at least 1 AD-affected and 1 unaffected sibling. In particular, measures of
white matter disease with and without inclusion of cerebral infarcts were associated with
multiple SORL1 markers in the region encompassing SNPs 6 to 10. By comparison, measures
of CA and HA were associated primarily with markers in a distinctly separate region of
SORL1 that includes SNPs 21 to 26. The MRI association findings were investigated further
by comparing the distributions of 3-SNP haplotypes from these 2 SORL1 regions with several
analogous neuropathological traits in a series of autopsy-confirmed AD brains. Specifically, a
measure of white matter disease was associated with SNPs 8 to 10 and HA was associated with
SNPs 22 to 26. The SNP 23-to-25 haplo-type ATC, which was significantly associated with
less HA in the sample of AD brains, was previously shown to be associated with decreased
risk of AD in several white data sets.> Moreover, the SNP 23-to-25 haplotype TTC was
significantly associated with increased risk of AD in the study by Rogaeva et al® and with
greater HA in the MIRAGE families. Finally, we found that adjusting for the extent of presumed
cerebrovascular disease (as measured by the amount of WMH) resulted in the detection of
significant association between SORL1 and AD that was previously not identified in this data
set using the conventional clinical phenotype.® We believe these results extend current
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knowledge regarding the role of SORL1 as a genetic risk factor for clinical AD through the use
of unique endophenotypes associated with separate domains of the SORL1 gene that are
presumed to have a different biological function (Figure).

Although unique, these findings are consistent with evolving evidence that the clinical
phenotype of AD may result from multiple diseases,® particularly the interaction of AD with
cerebrovascular disease leading to changes in memory function.1” One studyl’ suggests that
AD-related neurodegenerative processes and cerebrovascular infarcts contribute
independently to the odds of dementia. Magnetic resonance imaging studies support the
pathological data. Among older individuals, WMH burden is significantly increased in
association with advancing age, risk factors for stroke, and the presence of infarction.33:34
White matter hyperintensities are also increased in volume and distribution among patients
with AD compared with cognitively normal control subjects23:3° and are associated with
pathological evidence of cerebrovascular disease.2> Consistent with the pathological data, a
population-based study showed that HA and WMH, independently and synergistically,
substantially increase the odds of dementia.3 In addition, infarction on MRI is associated with
2-fold increased odds of dementia.3” These converging lines of evidence suggest that AD-
related dementia may be the consequence of multiple pathological processes.

Our genetic data support a multifactorial hypothesis for AD. When the MIRAGE families in
this study were stratified according to the extent of WMH burden in individuals with AD, a
significant association between SORL1 and AD was identified, whereas previous association
studies of this cohort found no association.3 Among the families in which a sibling of the
individual with AD was classified as having low WMH, AD was associated with a haplotype
from3a8 region (bounded by SNPs 16—18) that also showed association with AD in other data
sets.

We acknowledge several limitations in our study. First, our clinical sample, which was
ascertained through sibling pairs discordant for AD, is probably enriched for brain atrophy
compared with a general population of elderly adults. Subjects with severe cerebrovascular
disease are probably poorly represented in our sample because this presentation is an
exclusionary criterion for the diagnosis of probable AD,20 and siblings would be less likely to
volunteer if they were ill with conditions such as heart disease or diabetes that might be more
associated with cerebrovascular abnormalities. To address the possibility that the genetic basis
of the MRI traits may differ in those who do and do not have AD, we adjusted our association
models for the confounding effects of AD status and age. Second, few of the results in our
family sample would be considered significant after adjustment using a Bonferroni correction
for testing 30 individual SNPs (threshold P=.05/30=.0017) and 28 haplotypes (threshold global
P=.05/28=.0018). Because the transmission disequilibrium test is one of the most conservative
but robust methods for genetic association analysis,3® other approaches can be considered for
assessing the impact of multiple comparisons on false-positive results. The expected number
of results with P<.05 for each trait in our study would be 1.5 for single-SNP analyses (ie, 30x.
05) and 1.4 for haplotype analyses (ie, 28x.05), assuming a 1-tailed test. Two or more
significant single SNP (Table 4) and global haplotype (Table 5) comparisons were observed
for 3 of the traits (WMH, CVR, and CA), suggesting that our findings are not caused by chance
alone. The results in the autopsy sample are less sensitive to multiple testing because we tested
only 6 SNP combinations. Third, the pattern of haplotype associations for SNPs 23 to 25 with
HA in the autopsy sample is not consistent with the pattern in the MRI sample and, thus, these
results may not represent a true replication. This inconsistency may be explained by differences
in haplotypic frequencies between the 2 samples and by differences in the composition of the
study samples, one of which includes controls and mildly to moderately affected individuals
with AD and the other of which contains only individuals with end-stage AD. Nonetheless,
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the patterns of association of the specific haplotypes with HA in each data set are consistent
with haplotypic association patterns for AD observed in several other white populations.3

We also acknowledge that results in the white families may not be generalizable to other ethnic
groups. None of the single-SNP association tests in the African American sample yielded
significant results, perhaps owing to the small number of these families compared with the
much larger samples of white families. Haplotype analysis was attempted in the African
American families, but sample sizes were too small to be conclusive (data not shown). The
clinical and autopsy samples do not overlap, which precludes the possibility of directly
correlating MRI and neuropatho-logical measures within the same subjects. Because none of
the SNPs tested in this study are known to affect SORL1 protein structure or expression, further
experiments demonstrating function of these and perhaps additional SORL1 variants will be
necessary. A much larger number of SNPs will likely be needed to cover adequately the
haplotype structure of this large gene.3:18 Another concern is that semi-quantitative MRI
measures are simplified constructs of cerebrovascular and neurodegenerative changes and may
not truly represent these domains in the manner we have suggested. However, we have shown
previously in this sample that these measures are highly heritable after controlling for APOE
genotype.28 Finally, the MRI and neuropatho-logical traits in this study are snapshots of
progressive disease. Alzheimer disease may depend on both static factors (eg, inherited
predispositions) and dynamic processes (eg, cumulative injury over time). Controlling for
APOE geno-type and age in our analyses lessens but only partially addresses this concern.

Our findings also do not provide a simple explanation of how polymorphisms in the SORL1
gene might lead to expressed dementia. In the SNP 8-to-10 haplotype, GCG has been associated
with increased risk of AD in previously published data sets,3:® but in the present study this
same haplotype was associated with decreased WMH in the MIRAGE white families and was
not associated with CA or HA as expected. These apparently incongruent association patterns
are consistent with the idea that the SNPs assayed in this study are not coding specifically for
the functional variants, but that there is a variant in this region of SORL1 that is directly related
to AD pathogenesis (and perhaps to a process leading to increased white matter disease). This
explanation is also supported by the findings of AD association in some data sets with other
SNP 8 to 10 haplotypes® and with SNPs adjacent to, but not including, 8 to 10.% An alternative
explanation for the association of haplotype CGC with the increased risk of AD and decreased
risk of WMD is that different biological variants in SORL1 may influence AD pathogenesis
through multiple and possibly synergistic pathways. Regions of the low-density lipoprotein
domain bind APOE,3° which may be involved in the pathogenesis of AD by mechanisms not
yet fully understood, #9041 and y-secretase cleavage of APP may regulate cholesterol
metabolism in the central nervous system via the lipoprotein receptor LRP1.42 These
associations in multiple regions of the gene could reflect the mosaic structure of the SORL1
protein (Figure).*3 Thus, the mechanism of action of SORL1 on AD-related neurodegenerative
processes may reflect the increased formation of amyloid p peptidel=3 and impaired cholesterol
metabolism, which may also influence the formation of amyloid p peptide, cerebrovascular
disease, or both. More detailed genetic and functional studies will be necessary to sort out these
complex multidimensional interactions among SORL1, AD, and cerebrovascular disease.
These future studies may capitalize on data emerging from genome-wide association studies
of the MIRAGE and other cohorts** to evaluate interaction of SORL1 with other genes on brain
changes associated with AD.

In summary, our study shows that SORL1 variants previously associated with AD are also
associated with MRI and neuropathological measures of neurodegenerative and
cerebrovascular disease. These findings support not only the hypothesis of multiple areas in
SORL1 of functional importance, but also the possibility that SORL1 variants result in
differential influence on APP, endothelial lipo-protein processing, or both.
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Figure.

Inferred biochemical basis for the role of the sortilin-related receptor SORL1 in Alzheimer
disease and cerebrovascular disease. The SORL1 protein contains several functional domains.
The N-terminus region of the protein contains the vacuolar protein sorting 10 (VPS10) domain,
which may be the region of the gene directly involved in amyloid precursor protein (APP)
processing, although the APP binding domain is not yet known. SORL1 also contains a low-
density lipoprotein receptor (LDLR)-like domain that is important in cholesterol metabolism.
APOE indicates apolipoprotein E; Fn-I11, fibronectin type 111 region; LRP1, low-density
lipoprotein—related protein 1; and TM, transmembrane region.
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Table 2
Characteristics of MIRAGE Families With at Least 1 Member With AD and 1 Unaffected Sibling

Page 15

African American Subjects

White Subjects

Total No. of individuals 101
No. of families with >1 unaffected-affected pair 42
No. of individuals with AD 44
No. of unaffected siblings 57
No. of families with >1 individual with AD 2

No. of families with >1 unaffected sibling 9
Mean (SD) age at disease onset in individuals with AD, y 70.6 (9.0)
No. male/total No. (%) of individuals with AD 15/44 (34)
Mean (SD) age at MRI in unaffected siblings, y 71.3(9.5)
No. male/total No. (%) of unaffected siblings 18/57 (32)

414
182
189
225

7
34
67.2 (9.1)

86/189 (46)

70.1(9.0)

88/225 (39)

Abbreviations: AD, Alzheimer disease; MIRAGE, Multi-Institutional Research in Alzheimer's Genetic Epidemiology; MRI, magnetic resonance imaging.
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SORL1 SNPs Showing Association With at Least 1 MRI Trait in the MIRAGE White Families

Table 3

Page 16

P Value (No. of Informative Families)a

SNP WMH CVR CA MTA
1 053 (73) 046 (73) 43 (73) 21 (T0773)
6 03 (66) 16 (66) 65 (66) 18 (T266)
8 .001 (81) .006 (81) .35 (81) 34 (cb/gl)
9 <.001 (76) 002 (76) 44 (76) 29 (GPr76)
10 .006 (78) .02 (78) .94 (78) 16 (cb/7g)
11 08 (76) 42 (76) 57 (T2/76) 050 (T9/76)
15 04 (GP/80) 47 (80) 42 (GP/180) 12(80)
16 33 (AP731) 21 (AP131) 004 (31) 36 (AP731)
18 15 (29) 03 (29) 45 (29) 98 (29)
21 38 (GP138) 35 (GP138) 02 (38) 24 (38)

Abbreviations: CA, cerebral atrophy; CVR, severity rating of cerebrovascular disease; MIRAGE, Multi-Institutional Research in Alzheimer's Genetic
Epidemiology; MRI, magnetic resonance imaging; MTA, medial temporal atrophy; SNP, single-nucleotide polymorphism; SORL1, sortilin-related

receptor gene; WMH, white matter hyperintensity.

aSignificant results are given in boldface type.

Indicates major allele associated with increasing MRI trait abnormality.
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Table 4
SORL1 Haplotypes Showing Association With at Least 1 MRI Trait in the MIRAGE White Families

SNP, Haplotype Frequency, % Trait P/R (Haplotype-Specific P Global P Value
(No. of Families) Value)
1-3 WMH .049
TGA 33 (101) P (.03)
CGA 16 (103) R (.09)
TCA 35 (127) R (.40)
6-8 WMH/CVR <.001/.04
TGC 31 (143) R (.003)/R (.02)
TAC 16 (92) P (.73)/P (.35)
AAT 15 (133) R (.38)/R (.40)
AGC 6 (67) R (.68)/R (.94)
AAC 6 (76) P (.52)/R (.15)
TGT 8 (71) P (.06)/R (.13)
AGT 9(73) R (:20)/R (.39)
TAT 10 (88) P (.16)/P (.3)
7-9 WMH/CVR/CA .02/.047/.02
GCG 30 (122) R (<.001)/R (.001)/P (.56)
ACG 15 (102) P (.80)/P (.5)/P (.57)
GTA 10 (82) R (.09)/P (.21)/P (.44)
ATA 18 (134) R (.16)/R (.22)/P (.026)
ACA 7(88) P (.99)/P (.95)/P (.20)
GCA 6 (72) R (44)/R (.19)/P (.32)
ATG 6 (85) P (.72)/P (.98)/R (.14)
GTG 6 (69) R (.50)/R (.51)/R (.78)
8-10 WMH/CVR .009/.003
CGC 38(166) P (<.001)/P (.002)
TAT 22 (165) R (.02)/P (.046)
TGC 7(76) R (.51)/R (.60)
CAC 7(79) P (:82)/R (.23)
TAC 7(80) R (.16)/R (.27)
CGT 7(75) R (.69)/R (.66)
TGT 6 (75) P (.66)/R (.74)
CAT 7(77) P (.60)/R (.82)
21-22b CA .02
GTC 58 (92) P (.97)
CTC 8 (39) R (.003)
GCC 31(76) R (.12)
23-25 CA .006
TCT 48 (114) P (.49)
ACT 6 (123) R(41)
TCC 11 (137) R (.09)
ACC 8 (129) R(11)
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SNP, Haplotype Frequency, % Trait P/R (Haplotype-Specific P Global P Value
(No. of Families) Value)
TTC 6 (122) R (.04)
ATC 13 (104) R (.11)
27-29 MTA .05
GGC 30 (98) P (.005)
TGC 18 (93) R (.42)
GAC 5 (80) R (.23)
TAC 6 (76) R(21)
GAG 12 (86) R (.92)
TAG 22 (90) R(52)

Abbreviations: CA, cerebral atrophy; CVR, severity rating of cerebrovascular disease; MIRAGE, Multi-Institutional Research in Alzheimer's Genetic
Epidemiology: MRI, magnetic resonance imaging; MTA, medial temporal atrophy; P, protective; R, risk; SNP, single-nucleotide polymorphism;

SORLY1, sortilin-related receptor gene; WMH, white matter hyperintensity.
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Table 5
SORL1 Haplotypes Showing Association With at Least 1 Neuropathological Trait in the Autopsy Sample

SNP, Haplotype Frequency, % Trait P/R (Haplotype- Global P Value
Specific P Value)

8-10 nWMm1 03
CGC 60 P (.02)
TAT 36 R (.009)

22b-24 nHA 009
cTC 70 R (.01)
CAT 21 P (<.001)
CAC 5 R (.63)

23-25 nHA 008
TCT 66 R (.01)
ATC 21 P (<.001)
TCcC 8 R (.62)

Abbreviations: nHA, sum of all measures of hippocampal atrophy; nWM1, the sum of ordinal measures of white matter atrophy in the frontal, parietal,
temporal, and occipital regions; P, protective; R, risk; SNP, single-nucleotide polymorphism; SORL1, sortilin-related receptor gene.
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