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Abstract
Our goal is to understand how nearly synchronous modes arise in heterogenous networks of neurons.
In heterogenous networks, instead of exact synchrony, nearly synchronous modes arise, which
include both 1:1 and 2:2 phase-locked modes. Existence and stability criteria for 2:2 phase-locked
modes in reciprocally coupled two neuron circuits were derived based on the open loop phase
resetting curve (PRC) without the assumption of weak coupling. The PRC for each component neuron
was generated using the change in synaptic conductance produced by a presynaptic action potential
as the perturbation. Separate derivations were required for modes in which the firing order is
preserved and for those in which it alternates. Networks composed of two model neurons coupled
by reciprocal inhibition were examined to test the predictions. The parameter regimes in which both
types of nearly synchronous modes are exhibited were accurately predicted both qualitatively and
quantitatively provided that the synaptic time constant is short with respect to the period and that the
effect of second order resetting is considered. In contrast, PRC methods based on weak coupling
could not predict 2:2 modes and did not predict the 1:1 modes with the level of accuracy achieved
by the strong coupling methods. The strong coupling prediction methods provide insight into what
manipulations promote near-synchrony in a two neuron network and may also have predictive value
for larger networks, which can also manifest changes in firing order. We also identify a novel route
by which synchrony is lost in mildly heterogenous networks.

Keywords
Synchrony; phase response curve; network oscillation

Introduction
The application of phase resetting theory to the prediction of network activity is an example
of where theory meets experiment, because the phase resetting curve can easily be obtained
experimentally in order to characterize physiological neurons. Phase resetting methods are
applied directly to the experimental data thus they are model-independent and widely
applicable. However, they are limited to situations in which their underlying assumptions are
not violated. In this study, these limits are more clearly established, in part to pave the way for
improvements in the theory. A complete understanding of how the phase resetting curves
influence synchronization and phase-locking, coupled with an understanding of how the
intrinsic and synaptic currents determine the phase resetting curve, would allow control of
synchronization properties by targeting specific conductances.
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Although the PRC methods are general, in this study a simple network of inhibitory neurons
is used as an example in order to illustrate the methods. Inhibitory interneurons play an essential
role in the generation and control of synchronous oscillations in the brain (Whittington et al.,
1995). In heterogenous networks, instead of exact synchrony, nearly synchronous modes arise
(Fig. 1A) (Skinner et al., 2005b). In the simplest inhibitory network consisting of two
reciprocally coupled neurons, these nearly synchronous modes include 1:1 phase-locking at
small phases and also n:n phase-locking, in which the interval between the firing of the two
neurons is not the same every cycle, but repeats every n cycles. In this study we observe both
1:1 and 2:2 lockings. Within these 2:2 lockings, firing order can be preserved (Fig. 1C) or not
(Fig. 1D). Previous criteria for the stability of phase-locking based on the open loop phase
response curves (PRC) of the individual neurons have been developed for 1:1 phase-locking
such as near synchronous or near antiphase (Fig. 1B) as (Dror et al., 1999; Oprisan and
Canavier, 2001; Oprisan et al., 2004) in networks of two neurons. These methods have been
tested on both model neurons (Canavier et al., 1997,1999; Luo et al., 2004) and hybrid networks
(Netoff et al., 2005b; Oprisan et al., 2004). Our aim here is to develop and test criteria for the
existence and stability of 2:2 steady phase-locked modes in reciprocally coupled two neuron
circuits based on the open loop phase response curve (PRC) of the component neurons to the
synaptic input. The prediction of 2:2 modes is a rigorous quantitative test of the PRC methods
that do not assume weak coupling.

The main assumption is that each neuron returns close to its unperturbed cycle and that the
phase resetting due to the previous input is complete before its next input is received, thus
allowing the application of PRC curves generated in the open loop configuration to the
prediction of closed loop network activity. The second assumption is that the input received
in the circuit is similar to the input used to generate the open loop PRC, here assumed to be an
action potential in the presynaptic neuron. The synaptic coupling in inhibitory networks has a
time constant on the order of a few ms, hence a synaptic input delivered shortly before an action
potential is fired can still be active after the action potential and therefore its influence can span
two cycles (see Fig. 2B). Consequently, the PRC methods must take into account resetting that
occurs in the cycle that contains the perturbation (first order) and the next cycle (second order).
According to the main assumption, the second order resetting is assumed to be complete by
the time the next input is received. Experimental studies have shown the existence of second
order resetting (Reyes and Fetz, 1993) in cortical neurons, in stellate cells (Netoff et al,
2005a), in heart cell aggregates (Guevara et al., 1986), and in invertebrate neurons (Preyer and
Butera, 2005), and recent studies (Netoff et al., 2005; Oprisan et al., 2004) using hybrid
networks of one biological and one model neuron suggest that accounting for second order
resetting is necessary. In addition to the PRC methods presented here, PRC methods based on
assumptions of weak coupling and mild heterogeneity have been widely applied, so we will
compare the results of the two approaches here, with the caveat that the presence of second
order resetting implies that the weak coupling method may not apply.

Methods
Wang and Buzsáki Model

In order to test the prediction methods described below, a network comprised of two single
compartment Wang and Buzsáki (1996) model cortical interneurons was used. More complex
and physiologically realistic models are available, but this model was chosen as the platform
for testing PRC methods because of its simplicity. The method presented herein is independent
of model details because only the numerically generated PRC is utilized in the predictions. The
model neurons were reciprocally coupled by identical inhibitory synapses. The differential
equations for each neuron are
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where the capacitance C = 1 µF/cm2, V is the cell membrane voltage in mV , t is time in ms
and ϕ = 5. IL = gL(V- EL) is the leak current. The sodium current is given by INa =gNam∞3h
(V- ENa). The steady-state activation is m∞= αm/(αm + βm) where αm (V) =−0.1(V +35)/{exp
[−0.1(V +35)] −1}, βm (V) = 4exp[−(V +60)/18]. The rate constants for the inactivation variable
h are αh (V) = 0.07exp[−(V + 58)/20], βh (V) = l/{exp[−0.l(V +28)] +1}. The potassium current
is IK = gK n4 (V- EK), where the rate constants for n are αn(V) = −0.01(V+34)/(exp[−0.1(V+
34)] −1}, βn(V) =0.125exp[−(V +44)/80]. Maximal sodium (gNa) potassium (gK) and leak
(gL) conductances were set to 35, 9, and 0.1 mS/cm2, respectively. The reversal potentials
ENa, EK, and EL were set to 55, −90, and −65 mV, respectively.

The synaptic current is given by Isyn = gsyn s (V- Esyn), where gsyn is the maximum synaptic
conductance and Esyn = −75 mV is the reversal potential. The rate of change of the gating
variable s is ds/dt = αT(Vpre)(1 - s) - s/τsyn, and T(Vpre) = 1/[1 + exp(−Vpre/2)], where Vpre is
the voltage of the presynaptic cell, α = 6.25 ms−1 is the rate constant of the synaptic activation
(Bartos et al., 2001), and τsyn is the synaptic decay time constant.

Heterogeneity was introduced by varying the applied current Istim (in µA/cm2) such that
Istim,1, = Iapp + ε and Istim,2 = Iapp - ε, giving neuron 1 a faster frequency than neuron 2. In the
10 neuron network simulations Istim,n = Iapp - ε + (2 n ε)/9, where n ranges from 0 to 9. The
values of τsyn, Iapp, ε, gsyn were varied in order to explore the parameter space. The set of initial
conditions with h1 =h2=0.9379, n1 =n2=0.1224, s1 = s2=0.1386, and V1 = V2= −59.5567 often
produced near synchronous modes in two neuron and 10 neuron networks, whereas V1 =
−58.7249, V2 = −55.0456 often produced near antiphase modes in two neuron network. For
10 neuron network the V1 = −59.5567 for neurons with odd number and V2 = −51.5567 for
neurons with even number produced near antiphase modes. The differential equations were
solved using a variable step size, fifth order implicit Runge Kutta method using a packaged
Fortran subroutine (Hairer and Wanner, 1996) and drivers that we wrote in C.

Computation of the Phase Resetting Curve
Figure 2A illustrates how the PRC is computed. The pre-synaptic cell is initialized at its
threshold at different points in the cycle of the post-synaptic cell. The action potential threshold
was set to −14 mV in this study, such that a phase of zero was associated with the membrane
potential crossing −14 mV as it is increasing. The single action potential in the pre-synaptic
cell triggers a change in synaptic conductance (bottom trace, Fig. 2A) that serves as the
perturbation utilized to generate the PRC. In the open loop condition the phase at which a
stimulus is received is ϕ = ts/Pi, where Pi is the intrinsic period and ts is the time between the
last action potential in the neuron for which the PRC is being generated and the action potential
initiation in the presynaptic neuron. The normalized change in the length of the cycle containing
the perturbation was called first order resetting (f1(ϕ)), that in the next cycle second order
resetting, and that in the following cycle third order. This can be summarized as fi(ϕ) = (Ti -
T0)/T0 , where T0 for the unperturbed cycle is equal to the intrinsic free running period Pi. In
order for the assumption of a quick return to the limit cycle to be satisfied, f3(ϕ) should be near
zero, as it is in Fig. 2B, and the sum of f1(ϕ) and f2(ϕ) should be continuous at 0 and 1 (as it is
in Fig. 2B). The shape of f1(ϕ) is largely invariant to changes in frequency. This is because the
Wang and Buzsáki model is an integrator in a Class I excitability regime (Ermentrout, 1996),
and the phase resetting caused by a perturbation in current is determined by the shape of the

Maran and Canavier Page 3

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



limit cycle, which is invariant to changes in frequency for Type I oscillators (Oprisan and
Canavier, 2002).

Emulator
In order to determine if the PRCs generated above contained all the information necessary to
predict the patterns generated by networks comprised of the neurons in the reciprocally coupled
conditions, an emulator algorithm (Canavier et al., 1999) was employed. The inputs to the
emulator are the phase resetting curve for each presynaptic-postsynaptic pair, the intrinsic
period of each oscillator, and the initial phase of each oscillator. The emulator determines which
neuron(s) will fire next by determining which neuron(s) has the shortest time remaining until
it reaches a phase of one. Each neuron j that does not fire at this time has its phase incremented
by the normalized time to the next spike, then the first order resetting due to the current spike
(s) in its presynaptic neuron(s) k that do fire at this time is subtracted from its phase. The second
order resetting due to the current spike (s) is added to any second order resetting that has
occurred since neuron j last fired. Then the neuron(s) k that fire have their phase reset to zero
and any accumulated second order resetting is subtracted from the phase. The emulator
effectively reduces the neural circuit to a set of coupled nonlinear maps.

Periodicity and Stability Criteria
The emulator is difficult to formulate analytically. In order make a priori predictions from the
PRCS about whether a particular pattern is a stable solution of the discrete system described
by the emulator, and by analogy of the differential equations that describe the couple circuit,
a firing pattern must be assumed. In this section we assume firing patterns for two types of 2:2
modes and derive existence and stability criteria. The idea is simply to use phase resetting
theory to formulate algebraic expressions for the intervals between successive neural firings
in terms of the previous intervals, then to linearize about a presumed fixed point in which the
phasic relationships are constant, and to use linear systems theory to determine the stability of
the locking. In the linearized system, stability is determined by the slopes of the PRC at the
locking points.

The assumed firing pattern for a 2:2 locking in which the firing order is preserved is given in
Fig. 3A. The stimulus intervals (tsij) represent the time elapsed between the firing of neuron i
and the reception of the input j from the other neuron. The recovery intervals (trij) represent
the time elapsed between the receipt of the input j by neuron i and the next spike fired by neuron
i. The assumed firing pattern implies that the following intervals must be equal by definition.

Their steady state counterparts at n = ∞ must be equal in order for a locked mode to exist. Note
that the designation of one pair of stimulus intervals as ts11[n] and ts22[n] and the other pair as
ts12[n] and ts21[n] is arbitrary. Qualitatively, they are identical and these pairs are
interchangeable, which produces symmetry in the solution structure. Since the firing order does
not change, all 1P solutions in which ts11[∞] = ts12[∞] and ts21[∞] = ts22[∞] will satisfy this
pattern and will be solutions to a mapping based on Fig 3A. Furthermore, if a solution is found
in which ts11[∞] = x1, ts12[∞] = x2, ts21[∞] = x3, and ts22[∞] = x4, then ts11[∞] = x2, ts12[∞] =
x1, ts21[∞] = x4, and ts22[∞] = x3 is also a solution due to symmetry.

The stimulus intervals in a steady state phase-locked 2P mode can be computed by multiplying
the appropriate intrinsic period Pi by the phase of the neuron when input j is received (ϕij) plus
the amount of second order resetting f2i(ϕ) due to the previous input that occurs after the most
recent spike in neuron j. The recovery interval is determined by the amount of time remaining
until the next spike if no input were received, which is Pi{1 - ϕ}, plus the first order resetting
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attributable to an input received at that phase f1i(ϕ). Combining the expressions for intervals
known to be equal in a steady state mode yields the following mapping

(1)

(2)

(3)

(4)

The above mapping gives the evolution of a 2:2 locking in which the firing order does not
change for all time. The periodicity constraints can be obtained by allowing the ϕij[n] to go to
their steady state values ϕij*. The stability of a fixed point of the mapping, corresponding to a
periodic pattern in the corresponding two-neuron circuit can be determined by assuming a
perturbation from the steady state such that ϕij[n] = ϕij* + Δϕij[n] (Dror et al. 1999; Oprisan
and Canavier 2001). By linearizing the PRC we get fki(ϕij[n]) = fki(ϕij*) + mkij Δϕij [n], where
mkij is the slope f′ki(ϕij*) for the kth order resetting of neuron i when it receives input j. The
linearized system, after canceling all of the steady state components and rearranging, is

A stable 2P mode is predicted if the roots of the following characteristic equation of the
linearized system have an absolute value less than 1: 0 = λ2 + λ [− (1 - m111) (1 - m112)(1 -
m121)(1 - m122) + m211(1 - m112)(1 - m122) + m221(1 - m111)(1 - m122) + m212(1 - m111)(1 -
m121) + m222(1 - m112)(1 - m121) -m211m212 - m221m222] + m211m212m221m222.

A similar analysis can be conducted for the 2:2 locking in which the firing order changes every
cycle. The assumed firing pattern for a 2:2 locking in which the firing order changes every
cycle is given in Fig. 3B. The definitions of ts and tr must be slightly modified. For example,
ts11 and ts21 are defined the same way as the stimulus intervals above, but there is no second
order resetting in these intervals because the previous intervals, tr12 and tr22 respectively, did
not contain any synaptic inputs. The intervals ts12 and ts22 are defined as the interval between
the first and second inputs within a single cycle, obtained by subtracting the phase at the first
input from that of the second, then adding the first order reset due to the first input, and
multiplying by the intrinsic period. The intervals tr11 and tr21 are defined as above, but the
intervals tr12 and tr22 are obtained by adding the second order resetting due to both inputs in
the previous cycle to the intrinsic period, since no input is received in those intervals. The
assumed firing pattern implies that the following intervals must be equal by definition: ts11 =
tr21, ts12 = tr22, ts21 = tr11, ts22 = tr12. Note that ts11 is not qualitatively equal to ts12 because
the ts11 interval begins with a spike in neuron 1 and ts12 does not. No intervals are qualitatively
equal to each other in this firing pattern, hence there is no symmetry in the solution structure
and a 1:1 locking cannot be a solution to this firing pattern.
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Combining the expressions for intervals known to be equal in a steady state mode yields the
following mapping.

(5)

(6)

(7)

(8)

The coupled map above completely describes the evolution in time of a 2:2 locking in which
the firing order changes every cycle. In order to find the periodicity criteria, simply set all
ϕij[n] to their steady state value ϕij* as before. The next section describes how to find the set
of ϕij* that satisfy equation 5–equation 8 above. The stability of such a mode can be determined
using a perturbation analysis and linearizing as before. In this case we obtain the following
linearized system:

A stable leapfrog 2P mode is predicted if the roots of the following characteristic equation of
the linearized system have an absolute value less than 1: 0 = λ2 - λ [m221(m112 - 1) +
m211(m122 - 1) + {m212 + (1-m121)(m112 - l)} {m222 + (1 - m111)(m122 - 1)}] + m211m221(1 -
m112)(1 - m122). Note that the stability results for the two 2:2 modes are different, but if second
order resetting is ignored, they both reduce to λ = (1 - m111) (1 - m112)(1 - m121)(1 - m122).

Finding the Sets of Phases that Satisfy the Periodicity Criteria
This is a nontrivial problem, and two different methods were attempted. There are four different
criteria (the steady state version of Eq. 1–Eq. 4 or Eq. 5–Eq. 8) that need to be satisfied exactly
in the four-dimensional space (ϕ11, ϕ12, ϕ21, ϕ22) of the phases at which inputs are received.
One approach utilized error minimization (described in Appendix I), and the other was a
graphical method (details in Appendix II). The graphical method searches for intersections
between two curves in a plane that was structured so that all points in one curve satisfied three
of the four criteria, and all points on the other curve satisfied a different set of three criteria.

Figure 4A shows the graphical method for the 2:2 lockings in which firing order is preserved.
On the blue curve, the criteria ts11 = tr22 , ts12 = tr21, and ts21=tr11 are satisfied, whereas on
the red curve, the criteria ts11 = tr22, ts12=tr21, and ts22=tr12 are satisfied. The axes of the plot
are structured so that at the intersection of the curves all four criteria are met, so the red curve
shows we plot ts11 and tr21. The graphical method for these modes also predicts all 1P modes
as points on the 45° diagonal. The point at ts11=ts12= 2.594 ms corresponds to a 1P mode with
ts21=ts22= 8.691 ms that was predicted to be unstable and was not observed. Eq 1–Eq 4 are
symmetrical in that the indices corresponding to the jth input in ϕij can be renumbered so that
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the first and second inputs are switched and still be correct. Thus the red curve could be
generated simply by switching the x and y points in the blue curve.

Figure 4B is a magnification of the area in the lower left hand corner of Fig. 4A. Another
intersection on the 45° diagonal at ts11=ts12= 0.223 ms corresponds to a near synchronous
mode with ts21=ts22= 10.132 ms that was also predicted to be unstable and was not observed.
Due to the above-mentioned symmetry, the 2P modes appear twice at (ts11,ts12) and
(ts12,ts11). The predicted and observed values for the short intervals ts11 and tsl2 were 0.601
and 0.048 ms and 0.497 and 0.069 respectively, and for the long intervals ts21 and ts22 were
10.049 and 10.052 ms and 10.067 and 10.101 ms respectively. Hence the graphical method
produces reasonably accurate predictions.

The graphical method was also utilized for the 2:2 locking in which the firing order changes
every cycle (see Fig. 5). We sometimes refer to this mode as a leapfrog mode. In a leapfrog
mode, one neuron that fires after its partner on one cycle, fires before it on the next, in an
analogy to a childhood game in which one child is behind a second child, then leaps over the
second child in a froglike manner to achieve a position ahead of the second child. On the red
curve in Fig. 5, the criteria ts11=tr21, ts21 = tr11, and ts22=tr12 are satisfied, whereas on the blue
curve, the criteria ts11=tr21 ts12 = tr22, and ts21=tr11 are satisfied. There is no guarantee that
these criteria will be satisfied at any value of ts12, and the shortness of the blue curve compared
to the red shows that its particular criteria can only be satisfied in a narrow range of values.
The axes of the plot are structured so that at the intersection of the curves all four criteria are
met. This intersection point is ts12=tr22= 9.867 ms and ts22=tr12= 9.998 ms, and the actually
observed values for this example were 9.899 and 9.996 ms respectively. One can calculate that
at the intersection ts11=tr21=0.760 ms and ts21 = tr11 = 0.213 ms. The actually observed values
were 0.706 and 0.206 ms respectively. Note that the assumptions in Fig 3B do not apply to 1:1
modes, since ts11 and ts12 are not defined in the same way, hence each leapfrog mode is found
only once, and this graphical method does not find 1:1 lockings.

Weak Coupling Method
The weak coupling methodology outlined in Rinzel and Ermentrout (1998) was followed with
one exception. Instead of using the adjoint as the infinitessimal PRC (iPRC), the iPRC with
respect to a conductance pulse was used in order to get the results in the appropriate units, since
the synaptic coupling in this model is formulated in terms of the synaptic conductance.
However, see Netoff et al. (2005a) for an alternate approach in which the iPRC with respect
to a current pulse is convolved with the synaptic current rather than the conductance. Fig. 6A
shows the synaptic conductance waveform (black) and the iPRC (red curve) evoked by a square
pulse in synaptic conductance. The phase resetting is divided by the width of the pulse and
converges to the red curve in Fig. 6A as the width of the pulse goes to zero. Somewhat
surprisingly, there is a second order component to the iPRC (blue curve). The limit cycle is far
from the saddle node bifurcation that underlies the Type I excitability (Ermentrout 1996) of
this model, and even a small perturbation causes the trajectory to deviate from the limit cycle
enough to produce a noticeable alteration in the duration of the cycle following the one
containing the perturbation. Since the definition of weak coupling is that the strength of the
attraction to the limit cycle is strong compared to the strength of the coupling, the presence of
second order resetting does not bode well for the success of the application of weak coupling
theory to this oscillator. The assumptions of weak coupling and mild heterogeneity require that
there be only small differences between the network frequency and the intrinsic frequency of
each component oscillator.

An example prediction using the methods of weak coupling is given in Fig. 6B. For small
values of H(ϕ), the coupling function H(ϕ) approximates the change in frequency caused by
the coupling at an average phase difference of ϕ. The H(ϕ) functions were generated as follows:
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where the Ti are the intrinsic periods, Δ is the width of each Pi pulse (0.01) in units of phase,
N is 100, the θi range from 0 to 0.99, Pi is the sampled conductance waveform, and Ri is the
sampled infinitesimal PRC. The iPRC shown uses the opposite sign convention than the one
typically used in the weak coupling method. H(ϕ) theoretically approximates the first order
PRC (red trace in Fig 2B) that we generated numerically using the same conductance
perturbation shown in Fig 6A (black trace). The estimated change in the period is 1 - H(ϕ), so
the estimated new frequency is 1/(1 - H(ϕ)) and at small values of H(ϕ), this frequency is closely
approximated by 1 + H(ϕ). Therefore H(ϕ) approximates the change of frequency for one
oscillator, and G(ϕ) represents the differential effect on the frequency of the two oscillators
(H1(ϕ) -H2(-ϕ)) and intersects with the line given by the normalized intrinsic frequency
difference ω2 - ω1 at a phase-locked mode. The solid curve was generated for a synaptic
conductance of 0.25 mS/cm2 and intersects the dashed line at four points. Only two points have
a negative slope, making them stable using weak coupling theory. The first stable point is near
a phase of zero and corresponds to near synchrony whereas the second is near a phase of 0.5
and corresponds to near anti-synchrony. Decreasing the conductance to 0.20 mS/ cm2 (dot-
dashed curve) simply scales the coupling function, such that the intersection near anti-phase
no longer exists.

Results
PRC methods successfully predict 2:2 as well as 1:1 lockings in the 2 neuron circuit

We examined the parameter space of the two neuron circuits composed of Wang and Buzsáki
model neurons in order to determine if the methods developed herein for predicting observed
patterns based solely on the PRC were applicable to this system. In order to predict a pattern,
it must meet the periodicity criteria for existence described in the methods, and stability
criterion described must also be met because only stable patterns will be observed in practice.
Fig. 7A shows the 1:1 and 2:2 patterns predicted by the PRC methods as the synaptic
conductance gsyn and the heterogeneity parameter ε are varied. Recall that the method for
predicting the 2P modes in which the firing order remains constant with the two neurons firing
in the same order on each cycle also predicts all 1:1 lockings. Fig. 7A shows that near antiphase
1:1 (black plus signs) is often predicted at low heterogeneity. At low values of gsyn near
synchronous 1:1 (blue circles) is also predicted at low heterogeneity. However, as gsyn is
increased, the phase resetting increases at each phase, and more heterogeneity is required to
support near synchronous firing. At some values of gsyn, a leapfrog 2:2 mode (green circles),
or one in which the firing order switches, emerges at low heterogeneity and is bistable with
near antiphase. As heterogeneity is increased, a 2:2 mode with a constant firing order (red
circles) sometimes appears before the 1:1 near synchronous mode is reached. The qualitative
agreement between theory (Fig. 7A) and observation (Fig. 7B) is quite good, with some errors
at the borders between regions. The gray circles in Fig. 7B indicate complex lockings, which
sometimes are bistable with antiphase, and are discussed in more detail below. The observation
of these modes does not indicate a failure of the method, because we do not explicitly predict
or rule out any modes except the 1:1 and 2:2 modes that the graphical PRC methods described
herein detect. The complex lockings are not indicated on subsequent qualitative summaries of
modes predicted and observed.

In order to determine whether the strong coupling method is an advance over the weak coupling
method for this particular example, the weak coupling methodology (Ermentrout, 2002; Rinzel
and Ermentrout, 1998) was applied to the same networks. Fig. 7C shows the predictions based
on the assumptions of weak coupling and mild heterogeneity. Since this methodology assumes
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1:1 locking, there are no red or green circles indicating any 2P modes. The predictions of near
synchrony and near antiphase are reasonable at weak values of conductance and small values
of ε for mild heterogeneity, as expected. The weak coupling method captures the loss of the
near synchronous mode (blue circles) as heterogeneity is increased and that larger conductances
support near synchrony at larger values of heterogeneity. The weak coupling method fails to
predict the loss of the near synchronous mode at low values of heterogeneity for higher
conductance values, whereas the strong coupling method described above captured this trend
quite nicely. The weak coupling method somewhat overestimates the range of stability and
existence for the antiphase solution (pluses). These failures are in no way an indictment of the
weak coupling method, they simply show that the underlying assumptions are not met in this
example. The strong coupling method applies because it does not rely on the additional
assumptions required by the weak coupling method.

Fig. 8 illustrates the predictive power of the methods in heterogenous networks as the applied
current Iapp is varied. Fig. 8A shows that near antiphase 1:1 (black plus signs) is often predicted
at low heterogeneity, and that as heterogeneity is increased, near synchronous 1:1 (blue circles)
emerges. As in Fig. 7, some values of Iapp support a leapfrog 2:2 mode (green circles) at low
heterogenity which is bistable with near antiphase. The same trend is observed as in Fig. 7 that
as heterogeneity is increased, the leapfrog mode is replaced by a 2:2 mode with a constant
firing order (red circles), then by a 1:1 near synchronous mode (blue circles). Figure 8B shows
the patterns that were observed by running simulations of the two neuron circuit. The firing
pattern predicted across the parameter space again matches the observed patterns fairly well.
In the gaps where no mode was observed, complex lockings as well as asynchrony could be
observed (not shown in Fig. 8A and B, but see Fig. 8C and D described in the next section).
These gaps are often found between near antiphase and near 1:1 synchronous lockings. At the
borders where the firing pattern changes, the absolute value of the largest root λ can be close
to one, making the prediction susceptible to error, or else the intersection of the branches
described in the graphical method is close to disappearing, also making the prediction
susceptible to error.

Figure 9 shows the quantitative agreement of the predicted firing intervals with the observed
ones for the column in Fig. 8A and B labeled Iapp = 2.0 µA/cm2. The predictions are open
circles whereas the plus signs are observed values. Panels 9A and 9B show ts11 and ts21,
respectively, which in a 1:1 mode completely define the firing pattern. For the antiphase mode
(black symbols) the two intervals are close to equal, whereas for the nearly synchronous mode
(blue symbols), one interval is much shorter than the other. In the 2:2 mode in which the firing
order is preserved (red symbols), both stimulus intervals in one neuron are short (A,C) whereas
they are long in the other (B,D). In contrast, for the leapfrog 2:2 mode (green symbols) each
neuron has a long interval and a short one. The quantitative agreement is quite reasonable.

Other solutions, such as asynchrony and complex lockings
Very complex n:n lockings (see Fig. 8C and D), in which n could be as large as infinity, were
observed at the ε values in the gap between the near antiphase and near synchronous 1:1 and
2:2 lockings. Although we could not predict the stability of these modes a priori, the emulator
was able to produce very similar output. Figure 8C (bifurcation diagram) shows the predicted
stimulus interval values of the faster neuron (ts1j) at parameter values gsyn =0.35 mS/
cm2,τsyn = 1 ms, Iapp =1.8 µA/cm2 using the emulator algorithm. The corresponding observed
values obtained from simulations of the two neuron network for the parameter values used in
Fig. 8C are shown in Fig. 8D. The example shown corresponds to the vertical column in Fig.
8B at Iapp = 1.8 µA/cm2. Note the stimulus interval definitions differ depending on the mode
(leapfrog or constant firing order) in which the neurons fire. The value of ts1j was calculated
as the time interval between an action potential in slower neuron and the action potential
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immediately preceding it, regardless of whether the preceding action potential occurred in
neuron 1 or 2. This definition corresponds to tsij in both Fig. 3A and B, and used consistently
in Fig. 8C and D. The branches corresponding to leapfrog 2P in which the firing order changes
are shown in green, to 2P with constant firing order in red, and to 1:1 near synchronous locking
in blue. The remaining black points indicate complex lockings or asynchrony. The complex
lockings do not fill the entire space of possible intervals, but rather form clusters, whereas
asynchrony does not cluster. The complex lockings were often bistable with the antiphase
mode, which is not shown in this figure. The complex lockings shown here are of the leapfrog
variety, since there are both short and long intervals in neuron 1 (see also Fig. 9). Above the
values for which 1:1 near synchronous modes were observed, only asynchrony could be found
at 0.12.

Limits of the method with respect to the time constant to period ratio
The method assumes that the effects of one presynaptic action potential have dissipated by the
time that the next presynaptic action potential occurs. As the ratio of the synaptic time constant
to the network period (TN) increases this becomes less accurate. One problem is that at high
τsyn/TN ratios the synaptic activation never falls to zero between presynaptic inputs, so there
is a tonic component that is on all the time, causing the effective intrinsic frequency to be slower
than that used to generate the PRC. Figure 10A and B shows the qualitative degradation of the
correspondence between the predicted modes (Fig. 10A) and the observed modes (Fig. 10B)
as τsyn is increased at a constant value of Iapp = 2.0 µA/cm2 and gsyn = 0.2 mS/cm2. The
qualitative prediction is quite accurate at τsyn<= 3 ms, with only an occasional error at the
border of the parameter space in which a mode is expressed. At higher values of τsyn there are
many qualitative errors. These qualitative errors arise from an accumulation of quantitative
errors in the prediction (see Fig. 10C) as τsyn is increased at a constant value of ε. The
discrepancy between the predicted and observed ts11 is small for τsyn =1 and 2 but diverges
sharply for larger values. The main reason for the divergence is that the second order resetting
due to one input, as measured in Fig. 2A, is not complete by the time the next input is received
in the circuit. The network period for a near synchronous mode at the parameter sets shown in
Fig. 10 is approximately 10 ms, so at a ratio τsyn/TN of less than or equal to 0.2 performance
is satisfactory. As that ratio increases the prediction becomes less accurate.

Importance of Second Order Resetting
Figure 10D shows the result of omitting second order resetting from the prediction method for
the column in Fig. 8A and B labeled Iapp = 2.0 µA/cm2. It is not possible to selectively remove
the effect of second order resetting from the model simulations, but it is simple to remove the
second order terms from the prediction method. The far left column shows the observations,
and the second column from the left shows the predictions including the effects of second order
resetting. The only error is that at ε = 0.09 the alternating 2P mode is predicted instead of 1:1
near synchronous mode. However, if the second order resetting for the faster neuron, which in
this case is neuron 1, is omitted, then most of the leapfrog modes are missed, and the near
antiphase mode is incorrectly predicted instead in four instances. The 2:2 mode with a constant
firing order is still predicted correctly, because neuron 1 fires first and does not receive any
significant second order resetting in that mode. Note that at ε = 0.09 a spurious 2:2 mode is
predicted to be bistable with the 1:1 mode. However, if second order resetting for both neurons
is ignored, the 2:2 modes with constant firing order are no longer correctly predicted, and in
most cases 1:1 near synchrony is incorrectly predicted instead. The leapfrog modes are also
not predicted here, with an incorrect prediction of 1:1 near antiphase again in some cases.
Interestingly, the failures of the method described in Fig. 10 when second order resetting is
ignored are caused by changes in the criteria for existence, rather than stability. Without taking
second order resetting into account, some modes cease to exist, and others appear as spurious
intersections in the graphical method described in the Methods.
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Firing order is not preserved even in identical oscillators
Can the firing order also alternate for a pair of identical neurons? Yes, an example of this type
of firing was observed in Fig. 11A at gsyn = 0.35 mS/cm2, Iapp = 2.0 µA/cm2, τsyn = 1 and
ε=0. Both the emulator and the method based on existence and stability criteria correctly
predicted the leapfrog mode. In the full system of differential equations, as in physiological
neurons, the contribution of second order resetting cannot be set to zero. However, in both
prediction methods this is indeed possible, and both predict synchrony instead of the leapfrog
mode if second order resetting is ignored. Similarly, an instance of a convergence to synchrony
in which the firing order alternates was observed in Fig. 11B at gsyn = 0.25 mS/cm2, Iapp = 2
τsyn = 1 and ε = 0. Neither heterogeneity nor second order resetting are required in order to
observe switching of the firing mode, even though both can enhance the chances of observing
such a mode. A new phase versus old phase function that is not monotonically increasing, as
shown in Fig. 11C for the parameter values in Fig. 11B can contribute, as explained in the
Discussion.

The firing order is also not preserved in larger networks
In order to determine whether stable 2:2 modes can be seen in larger networks, networks
consisting of 10 neurons (N = 10) with all to all connections were examined. In order to compare
the results with those of the two neuron network, the values of Iapp and τsyn were held constant
at 2.0 µA/cm2 and 1 ms as in Fig. 7. The values of the individual synaptic conductances were
scaled to gsyn/(N-l) to keep the total conductance in the range given by Bartos et al. (2001),
and the values of applied current for the each of the ten neurons were evenly distributed over
the interval [Iapp − ε, Iapp + ε]. Stable 2:2 leapfrog modes were observed, such as the one in
Fig. 12A. Here the neuron indicated in orange fires first and the neuron indicated in blue fires
last in the first cycle shown, but reverse these roles in the second cycle shown. The difference
between the firing times of the leading and lagging neuron on each cycle is about 17% of the
cycle period. The raster plot in Fig. 12B shows that the pattern repeats every other cycle.

At low heterogeneity, Fig. 12 C shows that the dependence of the 10 neuron network on
heterogeneity as implemented by ε and on gsyn is qualitatively similar to that for the 2 neuron
network shown in Fig. 7B. As gsyn is increased, first 1:1 lockings with constant firing order
are observed (blue circles), then the 2:2 leapfrog modes (green circles) in which the firing order
alternates every other cycle, and finally only anti-phase (black plus signs) can be observed.
Just as in the two neuron network, the antiphase mode was often bistable with the near
synchronous modes. In the 10 neuron circuit, the antiphase mode is exhibited by two clusters
of five neurons. Interestingly, 2:2 antiphase modes in which the firing order within each cluster
also alternates every other cycle were observed. The 2P near-synchronous modes occurs at
somewhat larger values of synaptic conductance (0.55/9 –0.8/9) compared to the 2 neuron
network (0.3–0.4). Since gsyn for the individual synapses were scaled by N-1, the mapping
from the smaller to the larger network is only exact for exact synchrony when each neuron
receives N-1 synchronous inputs. Since exact synchrony does not occur in heterogenous
networks, the actual inputs received are spread out in time and do not sum linearly. A smaller
scale factor for the conductance would compress the parameter ranges observed in Fig 12 C
and shift them to the right, improving the mapping between the 2 neuron and 10 neuron
networks. The comparison focused on small values of heterogeneity because at higher values,
many modes arose with distinct clusters that did not map easily onto a two neuron network.

Discussion
Generality of the Method

The PRC-based methods present in this study are very general. They require only two
assumptions: 1) that the input that each neuron receives in the network closely resembles the
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input that was used to generate the PRC, and 2) that each neuron returns near its unperturbed
limit cycle and the phase resetting due to the previous input is complete prior to receiving the
next input. On the other hand, the head to head comparison with the weak coupling method
shows that the additional assumptions required for weak coupling are not satisfied in
physiologically realistic parameter regimes for the synaptic conductance (Bartos et al, 2001,
2002) used in this study and in a previous study (Skinner et al., 2005b).

In this study, it was assumed that the variation in postsynaptic conductance resulting from an
action potential generated by the presynaptic neuron in isolation was the appropriate
perturbation with which to generate the PRC. Although it is true that the action potential in the
closed circuit network can have a smaller peak and a shallower after-hyperpolarization than in
the free-running, open loop configuration, the perturbation in synaptic conductance is generally
quite similar in the two configurations. In the case of circuits comprised of bursting neurons,
the duration and intensity of a burst can vary greatly as a result of the network coupling, hence
this assumption is potentially more problematic for networks of bursting neurons.

The assumption that the neuron return close to the limit cycle prior to the next input is quite
likely to be fulfilled for Type I neural oscillators (Ermentrout 1996), because a perturbation in
current generally does not perturb the limit cycle trajectory in a direction normal to the limit
cycle (Oprisan and Canavier, 2002). Since the action potential waveform is slightly changed,
the perturbations in synaptic conductance (as opposed to current) do cause some small
departure from the limit cycle. A necessary, but not sufficient condition for the return of the
trajectory to the limit cycle by the time of the next input is that third order resetting be equal
to zero. The reason it is not sufficient is that this condition still does not guarantee that the
second order resetting is complete by the time the next input is received. The second order
resetting is measured at the time of the second spike in the postsynaptic neuron after receiving
a single input from the presynaptic neuron. The second order resetting at the time that the
postsynaptic neuron returns to the same point on the limit cycle (that is, the same phase) at
which the input was received is the relevant quantity, but is more difficult to measure. Inputs
of long duration relative to the network period pose another potential problem with this
assumption. As the synaptic time constant becomes longer relative to the network period, the
performance of PRC methods breaks down (see Fig 10C) since the coupling is no longer purely
pulsatile. One possible resolution of this problem is to decompose the synaptic input into a
tonic and phasic component, but the handling of the incomplete second order resetting under
this scenario has yet to be resolved. Nevertheless, the method is accurate in situations where
the synaptic time constant is one fifth or less than the network period, which encompasses
many neural applications.

The ultimate goal for biological phase resetting theory is to understand synchronization in
biological networks, but existing methods have limitations. The limitation of the weak coupling
method is obviously the presumption of weak coupling, so that a synaptic coupling of
significant duration can be decomposed into a train of short inputs whose effects are presumed
to summate linearly. The limitation of the method presented in this paper is that inputs are
presumed to exert their entire effect instantaneously. We have found a practical rule of thumb
that prediction accuracy deteriorates when the network period is less than five times the
synaptic time constant. This rule of thumb was borne out in a recent paper (Pervouchine et al.
2006), which used very similar PRC methods on reduced two-neuron networks. They showed
how the hippocampal CA1 oriens lacunosum-moleculare (O-LM) cells can only synchronize
at theta rhythm frequencies in the presence of inhibitory interneurons with short time constants
(5 ms), similar to the model interneurons used in this study. The theta oscillation was 10 Hz
(period =100 ms), and the slowest time constant, that of the OLM cells, was exactly one fifth
of the period (20 ms). Their predictions were successfully tested in hybrid circuits created using
biological and model neurons with the Dynamic Clamp. Another potential area of applicability

Maran and Canavier Page 12

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for these methods is that of central pattern generating circuits (Kopell 1987), which often have
network frequencies on the order of one Hz or less, and in invertebrates which often contain
only a few dozen neurons and can be further simplified by grouping functionally similar
neurons (Marder and Calabrese, 1996). Therefore, the intersection of strong coupling phase
resetting theory with experimental data should prove to be fertile ground for scientific insight.
The major limitation at this time is that the method needs to be scaled up to apply to larger
networks receiving multiple inputs per cycle. Nevertheless, in our study, this method was able
to provide insights into the activity of two neuron networks, and by analogy, into that of larger
networks. This insight could not have been derived from the more widely applied methods
based on the assumption of weak coupling.

Importance of Second Order Resetting
Theoretically, there are two mechanisms by which second order resetting can occur. The most
obvious is if the perturbation persists after a spike is elicited. The change in the first spike time
is the first order resetting, but since the input is still on, it can also affect the timing of the
second spike. The other way is if the perturbation finishes before the next cycle, but has moved
the trajectory off the unperturbed limit cycle, and additional resetting occurs during the
relaxation back to the limit cycle. Note that the second order resetting late in the cycle produces
an advance in the model used in this study (see Fig. 2B). This results because the inhibitory
input is on during the action potential, which produces an action potential with a less
depolarized peak, and a shallower hyperpolarization that subsequently requires less recovery
time before the next action potential is produced. This is consistent with our understanding of
phase resetting in Type I oscillators. They behave like integrators, so the application of an
excitatory current advances the phase and that of an inhibitory current delays it. However, this
result is true for infinitesimally small perturbations, and it is only true because the membrane
potential is monotonically increasing during every portion of the cycle except the downstroke
of action potential repolarization. An infinitesimal inhibitory perturbation applied during the
downstroke actually advances the phase (Oprisan and Canavier, 2002). The fact that an
inhibitory IPSP with a time constant one tenth of the network period produces significant
second order resetting, and that this resetting can have the opposite sign of first order resetting,
is often ignored. Nonetheless, Preyer and Butera (2005) observed very similar second order
resetting in response to an IPSP in invertebrate neurons, and Reyes and Fetz (1993) observed
an analogous phenomenon for EPSPs in layer V cortical neurons. Second order resetting is
likely to significantly impact near synchronous modes, since some neurons will always receive
at least one input just prior to firing an action potential. This is evidenced by the degradation
in predictive ability when second order resetting is ignored (see Fig. 10D). Second order
resetting can stabilize near synchronous modes. In neocortical pyramidal neurons, the transient
outward potassium channels are responsible for second order resetting (Reyes and Fetz,
1993), thus modulating the conductance of these channels could target synchronization
properties.

Importance of the Observed Changes in Firing Order
Not only have we shown that firing order is not always preserved, but we have also shown that
changes in firing order can lead to loss of synchrony in the following manner. If a stable near
synchronous 1:1 locking is perturbed, then one neuron fires earlier and the other later compared
to the stable locking, and the resultant phase resetting causes the neuron that fires earlier to
increase its period and the one that fired later to decrease its period. This compensation tends
to restore the locking. However, as the heterogeneity decreases or the conductance is increased,
1:1 locking is lost and replaced by 2:2 or more complex lockings (see Fig. 7A and B). In a 2:2
leapfrog locking, there is an overcompensation causing the firing order to switch on every
cycle. As the heterogeneity is further decreased or the conductance is increased, this
overcompensation becomes so strong that it destabilizes the nearly synchronous 2:2 locking.
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An analogous phenomenon occurs in larger networks (see Fig. 12). This is a novel route by
which synchrony is lost in mildly heterogenous networks (White et al 1998).

The elegant work of Kuramoto and others exploring the onset of synchronization in populations
of oscillators with smooth sinusoidal coupling (Strogatz 2000) using mean field formulations
has been very influential because of its generality. However, this work assumes that the
solutions have the simple form that the firing order of the individual oscillators within a
synchronized cluster remains constant. Similarly, in one of the first papers on pulsatile
coupling, Mirollo and Strogatz (1990) proved that all to all networks of identical oscillators
coupled via pulsatile excitatory coupling would always synchronize under the following
restrictive assumptions that guaranteed a constant firing order. They assumed that voltage
increases monotonically as a smooth, concave down function of phase and is reset to zero at
threshold. They also assumed that a perturbation in voltage instantaneously moved the
trajectory to the phase associated with the new voltage. They ignored second order resetting,
so in their scheme there was no way for one neuron in a two-neuron network to fire twice in a
row without the partner firing in between. Goel and Ermentrout (2002) extended the results of
Mirollo and Strogatz to networks of identical oscillators with all-to-all pulse coupling,
assuming only that the new phase versus old phase function is monotonically increasing, which
guarantees that the firing order will be preserved during the approach to synchrony. The new
phase versus old phase function is the mapping of the phase before a perturbation to the phase
afterward by subtracting first order resetting from the phase. They also ignore second order
resetting. Both heterogeneity and second order resetting can contribute to changes in firing
order. One reason that the firing order is not necessarily preserved in the networks in this study
is that the new phase versus old phase function for the Wang and Buzsáki model neurons has
an initial dip (See Fig 11C) and is therefore not monotonically increasing. A negative phase
seems contradictory since the phase is only defined from 0 to 1. We interpret a negative phase
as simply indicating that the next spike is not expected for longer than one intrinsic period,
since a spike is not generated at a phase of zero but at a phase of 1. The emulator routine
accommodates “negative” phases, as can the graphical prediction method, as long as the
associated time intervals are nonnegative. The assumption that the resetting is instantaneous
causes the apparent negative phase, but in reality, the slowing of the trajectory is distributed
over an interval and the phase never actually goes negative. Since we show here that it cannot
generally be assumed that firing order will be preserved, more general proofs of
synchronization in pulse coupled networks are required.

Generalize to N neuron networks
In networks of real neurons, there will always be heterogeneity and usually near synchrony
rather than exact synchrony. There are multiple variations on near synchrony, as shown in this
study, and as the network size increases the number of possible variants in terms of phasic
relationships and firing order increases. A previous study (Skinner et al 2005a) found some
similarities between two neuron networks and larger networks, and we also identified some
similarities. For example, the periodic, near synchronous solutions in which firing order is not
preserved are more prevalent at low values of heterogeneity between neurons than at high ones
and the 2:2 pattern shifts to 1:1 pattern as the heterogeneity is increased. Although 2:2 patterns
exist in networks of more than two neurons, we do not suggest that 2P modes have a distinct,
intrinsic functionality, but merely that they can expand the parameter range that supports near
synchrony.

Conclusion
The main result is that PRC methods based on strong coupling give excellent predictions for
two neuron heterogenous networks, both in the form of a priori theoretical predictions of
existence and stability and the phenomenological predictions of the emulator. This extends the
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applicability of PRC methods beyond those based on the assumptions of weak coupling and
mild heterogeneity, which are not invoked here. Another result is that proofs of the stability of
synchrony based on the assumption of an invariant firing order also do not apply to pulse
coupled neural oscillators because of the readily observed transients and even stable modes in
which the firing order is not preserved.

Appendix

Appendix I Error Minimization Approach to Finding Modes
The minimization approach for the 2:2 lockings in which the firing order does not change was
as follows. The values of ϕ12 and ϕ21 were determined at each point on a grid in the (ϕ11,
ϕ22) space as follows by first setting ϕ21 equal to P1{1 - ϕ11 + f11(ϕ11)}/P2 - f22(ϕ22) per the
steady state version of Eq. 3 then setting ϕ12 equal to P2{1 - ϕ21 + f12(ϕ21)}/P1 - f21(ϕ11) per
the steady state version of Eq. 2. In an exact solution, the steady state versions of Eq. 1 and
Eq. 4 would be satisfied, thus we utilized the quantities P2{1 - ϕ22 + f12(ϕ22)}/P1 - f21(ϕ12) -
ϕ11 and P1{1 - ϕ12 + f11(ϕ12)}/P2 - f22(ϕ21) - ϕ22 as two components of error that must be
minimized simultaneously. In a true solution, the value of both errors would fall to zero. All
points in the (ϕ11, ϕ12, ϕ21, ϕ22) space generated using Eq. 2 and Eq. 3 were selected if both
components of the error from Eq. 1 and Eq. 4 were below a threshold, then all adjacent points
on the (ϕ11, ϕ22) grid were considered to form a cluster. The local minimum of the cluster was
used as the initial condition for a gradient descent method to find the global minimum on the
(ϕ11, ϕ22) grid. If the error threshold was too high, a single cluster might contain two zeroes,
but the algorithm would find only one. If the error threshold is set too low, a zero might be
missed entirely because none of the grid points are close enough. It is also possible for the
algorithm to find a local minimum that is not zero, thus the algorithm must be applied very
carefully. This algorithm also finds all 1P modes, since they also satisfy the 2P criteria in which
the firing order does not change.

The minimization approach for the 2:2 lockings in which the firing order changes on every
cycle was as follows. The values of ϕ11 and ϕ21 were determined at each point on a grid in the
(ϕ12,ϕ22) space as follows by first setting ϕ11 equal to P2{1 - ϕ22 + f12 (ϕ22)}/P1 per the steady
state version of Eq. 5 then setting ϕ21 equal to P1{1 - ϕ12 + f11 (ϕ12)}/p2 per the steady state
version of Eq. 7. In an exact solution, Eq. 6 and Eq. 8 would be satisfied, thus we utilized the
quantities ϕ12 + f11 (ϕ11) - P2{1 + f22(ϕ21) + f12(ϕ22)}/P1 - ϕ11 and ϕ22 + f12 (ϕ21) - P1{1 +
f21(ϕ11) + f21 (ϕ12)}/P2 - ϕ21 as two components of error that must be minimized
simultaneously, and proceeded as described above.

Appendix II Details of Graphical Method

Firing Order is Preserved
In order to obtain the blue curve in Fig 4, a loop is performed over all values of φ22. At each
value of φ22 chosen, the value of φ21 that satisfied ts11 = tr22, ts12 = tr21, and ts21=tr11 was
determined. The values of φ11 and φ12 were also required to determine all of the appropriate
intervals. An initial estimate of φ11 was obtained by ignoring f21(ϕ12*) in the steady state
version of Eq. 1, then an initial estimate of φ21 is made using the steady state version of Eq. 3.
Then φ12 is estimated from the steady state version of Eq. 2. The estimate is refined by repeating
the process, now considering rather than ignoring f21(ϕ12*) iteratively until it converges. If
there was a solution, the algorithm converged in all cases tested. One problem is that it is
possible that there are multiple values of φ21 at a given value of φ22, whereas this algorithm
would only find one. This rarely caused a problem, however. The choice to plot tr22 and ts12
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as shown in Fig. 4A is arbitrary. It is only necessary to pick two intervals for this curve that
are equal to two intervals that can be calculated for the other curve as described below.

In order to obtain the red curve in Fig 4, a loop is performed over all values of φ21. At each
value of φ21 chosen, the value of φ22 that satisfied ts11 = tr22, ts12=tr21, and ts22=tr12 was
determined. The values of φ11 and φ12 were also required to determine all of the appropriate
intervals. An initial estimate of φ12 was obtained by ignoring f21(ϕ11*) in the steady state
version of Eq. 2, then an initial estimate of φ22 is made using the steady state version of Eq. 4.
Then φ11 is estimated from the steady state version of Eq. 1. The estimate is refined by repeating
the process, now considering rather than ignoring f21(ϕ11*) iteratively until it converges. It
should be noted that in order to interpolate properly, the intersections were actually calculated
in the (φ21, φ22) plane, then the values of φ11 and φ12 were calculated at the intersection, and
these values were used to predict the intervals observed in each mode. It was necessary to check
that all calculated phases were in the range 0 to 1 and that the calculated intervals were
nonnegative.

Firing order is not preserved
In order to obtain the red curve in Fig 5, a loop was performed over all values of φ12, and the
values of φ22 that satisfied ts11=tr21, ts21 = tr11, and ts22=tr12 was determined. First the value
of φ21 was determined from the steady state version of Eq. 7. Then a loop was performed
through the values of φ22 with φ11 set to the value determined by the steady state version of
Eq. 5 in order to find all the values of φ22 that satisfied the steady state version of Eq. 8. The
values of the phases so determined were used to compute tr12 and ts12 as shown. Multiple
values of φ22 were sometimes found, and due to the way in which the loop is structured, points
on the same branch may not be found in sequential order, but rather intermixed with points on
other branches. Since the plot is a planar section of a four dimensional space, there is no
guarantee that all branches are actually coplanar, thus care must be exercised in using these
plots. Again, it was necessary to check that all calculated phases in the range of 0 to 1 and that
the intervals are nonnegative only in a limited range of values.

In order to obtain the blue curve in Fig. 5, a loop was performed over all values of φ22, and the
values of φ12 that satisfied ts11=tr21 ts12 = tr22, and ts21=tr11 was determined. First the value
of φ11 was determined from the steady state version of Eq. 5. Then a loop was performed
through the values of φ12 with φ21 set to the value determined by the steady state version of
Eq. 7 in order to find all the values of φ22 that satisfied the steady state version of Eq. 6. The
values of the phases so determined were used to compute ts22 and tr22 as shown. Again, the
actual intersections were calculated in the (φ12,φ22) plane to facilitate interpolation.

Acknowledgments
This work was supported by the NIH grant NS54281 to CCC. We thank Will Curry for assistance with the simulations,
and Robert Butera for comments on an earlier draft of the manuscript. We also thank Bard Ermentrout for helpful
discussions and the name for the leapfrog mode.

References
Bartos M, Vida I, Frotscher M, Geiger JRP, Jonas P. Rapid signaling at inhibitory synapses in a dentate

gyrus interneuron network. J. Neurosci 2001;21:2687–2698. [PubMed: 11306622]
Bartos M, Vida I, Frotscher M, Meyer M, Monyer H, Geiger JRP, Jonas P. Fast synaptic inhibition

promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci
USA 2002;99:13222–13227. [PubMed: 12235359]

Canavier CC, Baxter DA, Clark JW, Byrne JH. Control of multistability in ring circuits of oscillators.
Biol. Cybernetics 1999;80:87–102.

Maran and Canavier Page 16

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Canavier CC, Butera RJ, Dror RO, Baxter DA, Clark JW, Byrne JH. Phase response characteristics of
model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biol.
Cybernetics 1997;77:367–380.

Dror RO, Canavier CC, Butera RJ, Clark JW, Byrne JH. A mathematical criterion based on phase response
curves for stability in a ring of coupled oscillators. Biol. Cybern 1999;80:11–23.

Ermentrout B. Type I membranes, phase resetting curves, and synchrony. Neural Computation
1996;8:979–1002. [PubMed: 8697231]

Ermentrout, B. Philadelphia, PA: SIAM; 2002. Simulating, analyzing, and animating dynamical systems:
A guide to XPPAUT for researchers and students.

Goel P, Ermentrout B. Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D
2002;163:191–216.

Guevara MR, Shrier A, Glass L. Phase resetting of spontaneously beating embrionic ventricular heart
cell aggregates. A. J. Physiol 1986;251:H1298–H1305.(Heart Circ. Physiol. 20)

Hairer, E.; Wanner, G. Springer series in Comput. Mathematics. Vol. Vol 14. Springer Verlag; 1991.
Solving ordinary differential equations II. Stiff and differential-algebraic problems.

Kopell, N. Toward a theory of modelling central pattern generators, in Neural Control of Rhythmic
Movements in Vertebrates. In: Cohen, AH.; Grillner, S.; Rossignol, S., editors. New York: Wiley;
1987. p. 369-413.

Luo, C.; Canavier, CC.; Baxter, DA.; Byrne, JH.; Clark, JW. Multimodal Behavior in a four neuron ring
circuit: mode switching; IEEE Transactions on Biomedical Engineering; 2004. p. 205-218.

Marder EE, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol. Rev 1996;76:687–
717. [PubMed: 8757786]

Mirollo RE, Strogatz SH. Synchronization of pulse coupled biological oscillators. SIAM J Appl. Math
1990;50:1645–1662.

Netoff TI, Acker CD, Bettencourt JC, White JA. Beyond two-cell networks: experimental measurement
of neuronal responses to multiple synaptic inputs. J. Computational Neuroscience 2005a;18:287–
295.

Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White JA. Synchronization in hybrid
neuronal networks of the hippocampal formation. J Neurophysiol 2005b;93:1197–1208. [PubMed:
15525802]

Oprisan SA, Canavier CC. Stability analysis of rings of pulse-coupled oscillators: The effect of phase-
resetting in the second cycle after the pulse is important at synchrony and for long pulses. Differential
Equations and Dynamical Systems 2001;9:243–258.

Oprisan SA, Canavier CC. The influence of limit cycle topology on the phase resetting curve. Neural
Computation 2002;14:1027–1057. [PubMed: 11972906]

Oprisan SA, Prinz AA, Canavier CC. Phase resetting and phase locking in hybrid circuits of one model
and one biological neuron. Biophysical Journal 2004;87:2283–2298. [PubMed: 15454430]

Pervouchine DD, Netoff TI, Rotstein HG, White JA, Cunningham MO, Whittington MA, Kopell NJ.
Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural
Computation 2006;18:1–34.

Preyer A, Butera RJ. Neural oscillators in Aplysia californica that demonstate weak coupling in vitro.
Phys. Rev. Lett 2005;95(13):138103. [PubMed: 16197185]

Reyes AD, Fetz EE. Two modes of interspike interval shortening by brief transient depolarizations in cat
neocortical neurons. J. Neurophysiol 1993;69:1661–1672. [PubMed: 8389834]

Rinzel, J.; Ermentrout, B. “Analysis of Neural Excitability and Oscillations” in Methods in Neuronal
Modeling From Ions to Networks. In: Koch, C.; Segev, I., editors. Cambridge, MA: MIT Press; 1998.

Skinner FK, Bazzazi H, Campbell SA. Two-cell to N-cell heterogenous, inhibitory networks, precise
linking of multistable and coherent properties. J. Computational Neurosci 2005a;18:343–352.

Skinner FK, Chung JY, Ncube I, Murray PA, Campbell SA. Using heterogeneity to predict inhibitory
network model characteristics. J. Neurophysiol 2005b;93:1898–1907. [PubMed: 15548628]

Strogatz SH. From Kuramoto to Crawford: exploring the onset of synchronization in populations of
coupled oscillators. Physica D 2000;143:1–2.

Maran and Canavier Page 17

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wang XJ, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network
model. J Neurosci 1996;16:6402–6413. [PubMed: 8815919]

Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by
metabotropic glutamate receptor activation. Nature 1995;373:612–615. [PubMed: 7854418]

Maran and Canavier Page 18

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Typical modes exhibited in a 2 neuron network
A. 1P near synchronous mode with 1:1 locking and alternating firing. B. Another 1:1 locking
with alternating firing near antiphase. C. 2P mode with 2:2 locking and alternating firing in
which the order remains constant. D. A type of 2P mode in which the firing order changes each
cycle in a “leapfrog” fashion. A, C and D are “nearly synchronous” while B is not. The
parameter values were gsyn = 0.35 mS/cm2 and τsyn = 1 ms, Iapp = 2.0 µA/cm2 with ε=
0.11µA/cm2 for panel A, 0.04 µA/cm2 for panel B, 0.082 µA/cm2 for panel C, and 0.015 µA/
cm2 for panel D. The dotted lines indicate 0 mV.

Maran and Canavier Page 19

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Phase resetting curve
A. The phase resetting curve is generated using an action potential from the presynaptic neuron
as the perturbation. The unperturbed cycle period is T0. The duration of the cycle that contains
the perturbation is T1, the subsequent one is T2, and the one after that is T3. The phase at which
a stimulus is received is φ = ts/Pi, where Pi is the intrinsic period of the postsynaptic neuron
and ts is the time interval between the last action potential and the synaptic input perturbation.
The phase resetting curve (PRC) is given by fi(φ) = (Ti−T)/T. The dotted line indicates 0 mV.
The red trace shows the timing of the perturbation in synaptic conductance produced by a
presynaptic action potential. B. Characteristic shapes of the f1(φ), f2(φ), and f3(φ) phase
resetting curves. Note that f3(φ) is nearly zero, and that the sum of f1(φ) and f2(φ) is continuous
at 0 and 1. The parameter values were gsyn = 0.35 mS/cm2 and τsyn = 1 ms, Iapp =2.0 µA/
cm2 and ε=0.07 µA/cm2. The PRC is given for the faster neuron.

Maran and Canavier Page 20

J Comput Neurosci. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Firing pattern for 2:2 lockings
A. Firing order is preserved. The tsij in the figure above represent stimulus intervals and the
trij represent recovery intervals (see text). B. Firing order is not preserved. Note that the firing
order changes on every cycle. The definitions for the tsij and trij are different than in A because
the assumed firing pattern is different (see text).
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Figure 4. Graphical prediction of 2:2 locking with firing order preserved
The parameter values were gsyn = 0.35 mS/cm2 and τsyn = 1 ms, Iapp = 2.0 µA/cm2 and ε=0.07
µA/cm2. A. The intersections of the two curves indicate intervals at which all four periodicity
criteria are satisfied. A different set of three of the four criteria are satisfied on each curve. B.
Magnification of the region around the origin in panel A. This graphical method is symmetric
because the existence criteria are symmetric with respect to switching the indices indicating
inputs 1 and 2.
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Figure 5. Graphical prediction of 2:2 locking with firing order not preserved
The parameter values were gsyn = 0.35 mS/cm2, τsyn = 1 ms, Iapp = 2.0 µA/cm2 and ε=0.03
µA/cm2. A different set of three of the four periodicity criteria for this mode are satisfied on
each curve. The axes of the plot are structured so that at the intersection of the curves all four
criteria are met.
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Figure 6. Application of weak coupling theory
A. Conductance waveform (black), first order iPRC (red), second order iPRC (blue). Wang
and Buzsáki model with Iapp = 2 µA/cm2 and tau =1 ms. B. Coupling function G(ϕ) at ε = 0.045
µA/cm2 with gsyn = 0.25mS/cm2 (solid black curve) and with gsyn = 0.20 mS/cm2 (dot-dashed
black curve). The dotted line indicates 0 and the dashed line indicates the normalized frequency
difference between the oscillators.
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Figure 7. Qualitative prediction of the firing pattern as gsyn is varied
Patterns include antiphase locking (+), near synchronous 1:1 locking (blue circles), near
synchronous alternating 2P locking (red circles), and near synchronous 2P leapfrog locking
(green circles). If more than one symbol is plotted, bistability is indicated. The parameter values
were Iapp = 2.0 µA/cm2 and τsyn = 1 ms, and ε is also varied. A. Predicted patterns (Strong
coupling method). B. Observed patterns. The gray circles indicate complex lockings that cannot
be predicted by the graphical method. C. Predicted patterns (Weak coupling method).
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Figure 8. Qualitative prediction of the firing pattern as Iapp is varied
Patterns include antiphase locking (+), near synchronous 1:1 locking (blue circles), near
synchronous alternating 2P locking (red circles), and near synchronous 2P leapfrog locking
(green circles). If more than one symbol is plotted, bistability is indicated. The parameter values
were gsyn = 0.35 mS/cm2 and τsyn = 1 ms, and ε is also varied. A. Predicted patterns. B. Observed
patterns. C and D. Bifurcation diagram. C. The predicted stimulus interval values of the faster
neuron (ts1j) are shown at gsyn =0.35 mS/cm2, τsyn = 1 ms, Iapp = 1.8 µA/cm2 as ε is varied.
D. The observed values at the same parameter values used in figure 8C.
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Figure 9. Quantitative prediction of the firing pattern
The predicted stimulus times (open circles) are compared with the observed stimulus times (+)
at each value of ε for the column in Fig. 8A and B labeled Iapp = 2.0 µA/cm2. The other
parameters remain gsyn = 0.35 mS/cm2 and τsyn = 1 ms as shown in Fig. 8. Antiphase (black),
near synchrony (blue), alternating 2P (red), leapfrog 2P (green). The ts12 and ts22 for antiphase
and near synchronous 1P are not shown in figure because they are the same as ts11 and ts21.
The quantitative fit to the firing intervals is fairly accurate.
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Figure 10. Degradation of predictions as the time constant is increased or the second order resetting
is neglected
A,B and C. Effect of increased time constant: The parameter values were gsyn = 0.2 mS/
cm2 and Iapp = 2 µA/cm2, and ε is varied. A. Predicted modes. B. Observed modes. C. The
predicted ts11 interval (blue) is plotted versus observed ts11 (red) as τsyn is varied at ε = 0.07
µA/cm2. D. Prediction without second order resetting. The parameter values are gsyn =0.35
mS/cm2, τsyn = 1 ms, Iapp =2 µA/cm2. The first column (Obs) shows the observed modes, the
second column (Pre) shows the predicted modes when the second order resetting of both
neurons is included, the third shows the prediction when the second order resetting of faster
neuron is zero (f21=0), and the fourth (f21=f22=0) shows the prediction when the second order
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resetting of both neurons is zero. The qualitative patterns include near synchronous 1:1 locking
(blue circles), near synchronous alternating 2P locking (red circles), and near synchronous 2P
leapfrog locking(green circles). The blue circles filled with red indicate a prediction of
bistability between two modes.
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Figure 11. Homogeneity does not guarantee that the firing order is preserved
A. Leapfrog 2:2 locking of identical oscillators. The parameters were gsyn = 0.35 mS/cm2,
Iapp = 2.0 µA/cm2, τsyn = 1 and ε=0. B. Convergence to synchrony of identical oscillators in
which the firing order is not preserved. The parameters were gsyn = 0.25 mS/cm2, Iapp = 2.0
µA/cm2, τsyn = 1 and ε=0. C. The new phase versus old phase function generated at gsyn = 0.35
mS/cm2 and τsyn = 1 ms, and Iapp = 2.0 µA/cm2 (ε=0.0 µA/cm2).
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Figure 12. 2:2 modes in 10 neuron network
A. Membrane potential. Each different trace corresponds to the voltage waveform of a single
neuron. The parameter values are gsyn = 0.8/9 mS/cm2, Iapp = 2.0 µA/cm2, τsyn = 1 ms, and ε
=0.01 µA/cm2. The values of applied current (Istim) for the each of the ten neurons were Iapp
-ε+ (n 2 ε)/9, where n ranges from 0 to 9. B. Raster Plot. C. Qualitative prediction of the firing
pattern as gsyn is varied. The parameter values are Iapp = 2.0 µA/cm2 and τsyn = 1 ms. The
following modes are observed- 1:1 near synchronous (blue circles), the 2:2 leapfrog modes
(green circles), anti-phase (black plus signs) and complex lockings (gray circles).
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