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Abstract
In studies of complex disorders such as nicotine dependence, it is common that researchers assess
multiple variables related to a disorder as well as other disorders that are potentially correlated with
the primary disorder of interest. In this work, we refer to those variables and disorders broadly as
multiple traits. The multiple traits may or may not have a common causal genetic variant. Intuitively,
it may be more powerful to accommodate multiple traits in genetic traits, but the analysis of multiple
traits is generally more complicated than the analysis of a single trait. Furthermore, it is not well
documented as to how much power we may potentially gain by considering multiple traits. Our aim
is to enhance our understanding on this important and practical issue. We considered a variety of
correlation structures between traits and the disease locus. To focus on the effect of accommodating
multiple traits, we examined genetic models that are relatively simple so that we can pinpoint the
factors affecting the power. We conducted simulation studies to explore the performance of testing
multiple traits simultaneously and the performance of testing a single trait at a time in family-based
association studies. Our simulation results demonstrated that the performance of testing multiple
traits simultaneously is better than that of testing each trait individually for almost models considered.
We also found that the power of association tests varies among the underlying models. The advantage
of conducting a multiple traits test is minimized when some traits are influenced by the gene only
through other traits; and it is maximized when there are causal relations between the traits and the
gene, and among the traits themselves or when there are extraneous traits.
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1 Introduction
For complex diseases, their characterization often requires us to consider multiple factors. For
example, one of the instruments for studying nicotine dependence is the Fagerstrom Test for
Nicotine Dependence (FTND) (Fagerstrom, 1978). An overall score is generated by FTND
after asking about ten questions.

The determinants of complex diseases are also multi-factorial and tend to be inadequately
understood. For example, in studies of smoking, people may smoke because of nicotine
dependence, but smoking may also be a behavioral adjustment to stress, depression, and other
mental health problems. Furthermore, when people smoke, they may also drink and use other
substance or vice versa. Understanding such a kind of comorbidity is a very important, very
challenging issue. Therefore, when we conduct genetic studies of complex diseases, we should
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keep in mind the complex characterization and etiology of the diseases. In fact, to this end,
multi-dimensional data are frequently collected (Beyene, & Tritchler on behalf of Group 12,
2007). As a result, we have data from a batch of traits that may be mutually correlated, and
some or all of them may be associated with common genetic markers (Lange, Lyon, DeMeo,
Raby, Silverman, & Weiss, 2003; Lange, Silverman, Xu, Weiss, & Laird, 2003). When that
happens, namely, if multiple traits are simultaneously affected by a single gene or DNA variant,
the phenomenon is referred to as pleiotropy.

In addition to the need to consider the complexity of complex diseases, there is potentially
another advantage of testing multiple traits simultaneously. Testing the traits one at a time
requires adjustments for type I error using single-trait based tests, and the adjustments are
generally made by Bonferroni correction or Hochberg correction. It is well known that these
corrections tend to be conservative and may reduce our chance to reveal underlying
associations.

Various methods have been developed to gain more power by considering multiple traits in
mapping complex disease genes. Using the composite interval mapping, Jiang and Zeng
(1995) proposed a method for mapping quantitative trait loci (QTL) when multiple traits and
their correlation structure are considered. For family-based association tests (FBATs), Lange,
Silverman, Xu, Weiss, and Laird (2003) proposed a generalized-estimation equation (GEE)
method to test multiple traits simultaneously, extending the single trait based FBATs (Schaid,
1996; Allison, 1997; Laird, Horvath, & Xu, 2000). Some authors have reported increased power
as a result of testing multiple traits simultaneously (Jiang & Zeng, 1995; Lange, Lyon, DeMeo,
Raby, Silverman, & Weiss, 2003; Lange, Silverman, Xu, Weiss, & Laird, 2003; Xu, Tian, &
Wei, 2003).

Despite the motivation highlighted above for considering multiple traits, it is not entirely clear
as to how beneficial such a strategy is and when it makes the most sense to use this strategy.
One drawback to consider multiple traits is that the method of analysis is inevitably more
complicated (Liang & Zeger, 1986; Prentice & Zhao, 1991; Lange, Whittaker, & Macgregor,
2002).

Our aim is to enhance our understanding on this important and practical issue. We consider a
variety of correlation structures between traits and the disease locus. To focus on the effect of
accommodating multiple traits, we examine genetic models that are relatively simple so that
we can pinpoint the factors affecting the power. We conduct simulation studies to explore the
performance of testing multiple traits simultaneously and the performance of testing a single
trait at a time in family-based association studies.

The magnitude of correlation among multiple traits depends on the underlying genetic
mechanism as well as environmental covariates. When data are observed, in general, we can
only assess the association among the traits. However, it is possible that the potential benefit
of analyzing multiple traits simultaneously may depend on the causal relations among them.
Hence, we simulated data using directed acyclic graphs (DAGs) to examine whether the
directions of the causal relations have impact on the power of the association test. Specifically,
we impose a linear structural equation model (SEM) on each DAG. While analyzing the
simulated data and assessing the power, however, we do not make use of the casual effects
among the traits.

For clarity, we will not consider covariates in our simulation studies or other complications in
association studies such as population admixture, because our purpose is to compare the
multiple-trait based versus the single-trait based tests. We consider both quantitative traits and
binary traits.
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2 Methods and Simulation Models
Suppose that data are collected from n independent nuclear families consisting of parents and
their offspring. For each member of a family, we observe m disease traits. For clarity, we focus
on genotypes at one di-allelic (allele A or α) marker and also restrict our attention to trios (two
parents and one child).

For the ith family, let yi = (yi1, …, yim) denote the m traits of the child. Let Xi be the number
of copies of allele A for the child at the marker, and let  denote the observed genotypes of
the parents in the ith family. To explore the performance of testing multiple traits
simultaneously and the performance of testing each trait individually, we consider two testing
strategies using the family-based association test.

2.1 Testing Strategies
First, we consider testing the association between the genetic marker and each of the m traits
by using the univariate FBAT (Lange, Silverman, Xu, Weiss, & Laird, 2003). For the jth trait,

the corresponding univariate FBAT is  where

  are
computed conditional on the parental genotypes under Mendel’s laws. Moreover, tij = yij −
ȳj for quantitative trait, where ȳj is the average of the jth trait in all children (Rabinowitz,
1997), and tij = yij − r for binary trait, where r is the population prevalence of the disease
(Whittaker & Lewis 1998).

Because we need to perform m individual tests, we apply Bonferroni correction to adjust for
multiple testing.

Second, to test the association between the m traits and the marker, we use the FBAT-GEE
method, an extension of FBATs for multivariate phenotypes (Lange, Silverman, Xu, Weiss,

& Laird, 2003). The FBAT-GEE statistic is  where

 Note that  is
asymptotically -distributed with the degrees of freedom k defined as rank 

2.2 Graphical Structures for Simulation Studies
To compare the two testing strategies introduced above, we conducted a series of simulations.
For clarity, we assume a di-allelic disease susceptibility locus with alleles D (disease allele)
and d. We consider three traits Y1, Y2 and Y3.

Although we may not observe the causal relationship between the genotypes and traits or
among the traits, we generate the data from 40 directed acyclic graphs (DAGs) to understand
how the directions may impact the performance of the tests. Those DAGs are displayed in
Figure 1. An arrow between any two elements points to a causal relationship. The 40 DAGs
can be summarized in four categories according to the number of traits that are directly affected
by the disease susceptibility locus. The structures in the first category (S1–S6) imply that none
of the three traits are caused by the gene (the null hypothesis). In the second category (S7-S20),
one of the three traits is induced by the gene. In the third category (S21–S34), two of the three
traits are induced by the gene. Finally, in the fourth category (S35–S40), all of the three traits
are induced by the gene.
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2.3 Models for the Traits
With the directional relationship defined in Figure 1, we explain here how to generate the trait
values.

First, we consider quantitative traits. We impose linear SEMs on each DAG. For Yj in a DAG,
if there exist some arrows pointing to Yj, say, an arrow from gene G to Yj and an arrow from
Yk to Yj, we reflect these relationships through a linear regression model as follows:

(1)

where  ε1, ε2, ε3 are mutually independent, and XD is the number of disease allele
D. In addition, μj denotes the intercept, βj represents the additive effect of disease allele D for
the trait Yj, and γkj represents the effect of trait Yk on the trait Yj. Conditional on XD and Yk,

Yj can be generated from the normal distribution 

If there are no arrows pointing to Yj in a DAG, Yj is independent of the disease gene and other

traits, and distributed as a normal distribution 

For clarity, we set μj = 0,  for j = 1, 2, 3 throughout the simulation.

2.4 Heritability
We presented our simulation models in the regression framework. However, for ease of
interpretation, we discuss the relationship between the regression parameters and heritability.
Without loss of generality, we use the following models for illustration.

(2)

Heritability of trait Yj, denoted by  is defined as the proportion of phenotypic variation that
is attributable to the genetic variation, i.e.,

Similar to the definition of heritability, we define interability as

for j, k = 1,2,3. This interability reflects the ratio of the phenotypic variation of the jth trait
explained by the kth phenotypic variation.

After some simple algebra, we have
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Therefore, given heritabilities and interabilities, we can determine the regression co-efficients
and then follow model (2) to generate Y1, then Y2, and lastly Y3.

2.5 Extraneous Variables
In the discussions above, we considered the situations where the three traits either are
independent or directly affect each other or correlated through the gene. However, there may
exist one or more extraneous variables that are not included in the traits under consideration
and that result in correlations among the the traits under consideration. To accommodate this
situation, we need to consider correlated ε1, ε2, ε3. To be more specific, we let (ε1, ε2, ε3)′ ~ N
(0, Σ) in the model for traits, where Σ = (σkj)3×3 represents the correlation among the traits
under consideration that is induced by extraneous variables. Furthermore, let σjj = 1, then σkj
= ρkj for k, j = 1,2,3. We control the covariance structures of (ε1, ε2, ε3)′ by changing ρkj.

2.6 Binary Traits

To simulate binary traits  we first simulate quantitative traits (Y1, Y2, Y3) as describe
above, then we let  if Yj > cj and  otherwise, j = 1, 2, 3. We need to select suitable
cut-off points cj in our simulations to reflect the prevalence. Note that cj = Φ−1(1 − r), where
Φ is the cumulative distribution function of the standard normal distribution.

2.7 Simulation Settings
As in Zhang, Wang, and Ye (2006), the parents’ genotypes at trait and marker loci were
generated according to a specified coefficient of linkage disequilibrium, δ = 0.11, and the
haplotype frequencies for AD, Ad, aD, and ad were 0.2, 0.1, 0.1, and 0.6 if we let P(A) = P
(D) = 0.3.

The offspring genotypes were generated using the parental genotypes. For estimating the
empirical type I error, under the null hypothesis, the traits are not associated with the disease
susceptibility locus. For evaluating the power, the trait and marker loci are 1 cM apart.

We let the significance level be 0.01 and the number of nuclear family be 400 in our simulations,
and replicated each simulation 10,000 times for power comparisons and 50,000 times for type
I error comparisons. It should be pointed out that the significance level of each single-trait test
is set to be α = 0.01/3 based on the Bonferroni adjustment, and then each single-trait test was
counted on its own, giving rise to, for example, 30,000 tests under the null hypothesis. For the
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case of quantitative traits, we considered the heritability of  In absence of any

extraneous variables, we considered three choices for  i.e., 0.05, 0.15, and 0.35.

In presence of extraneous variables, we considered two different covariance structures for
(ε1, ε2, ε3)′ by choosing ρkj = 0.2, and −0.2.

For the case of binary traits, we replaced the value of  with 0.10 and let the population
prevalence r = 0.10.

3 Results
3.1 Type I Error Comparison

Type I error comparisons are listed in Table 1 for quantitative traits and in Table 2 for binary
traits based on structures S1–S6. Table 1 and Table 2 show that the empirical type I errors of
the two testing methods are relatively close to the nominal significance level. The estimated
type I errors for the multiple traits based test are closer to the nominal significance level than
those of the single trait based test, especially when the magnitude of the directed effects among
the traits become large and/or the extraneous variables result in correlations among the traits
under consideration. Because the tests performed on each trait are usually not independent due
to the correlations among the traits. This violation of the independence assumption limits the
ability of Bonferroni adjustment to control type I error effectively.

3.2 Power Comparison
To compare the power of the two testing methods, we need to carry out simulations based on
S7–S40. We should note that although all DAGs include three traits, power can only be assessed
when there exists an association between a trait and the gene. For example, for S7, we
considered the association between G and Y1. For S13, we considered the associations between
G and Y1 and between G and Y2. In this graph, Y1 affects Y2 and hence G affects Y2. However,
Y3 affects Y2 independent of Y1 and hence G. All eligible associations are counted individually
in the power calculation.

In presence of extraneous variables, the results are displayed in Figure 2 for ρkj = 0.2 and in
Figure 3 for ρkj = −0.2 for quantitative traits. For the purpose of comparison, the results without
extraneous variables are also listed in Figure 2 and Figure 3. Overall, as expected, the power
of both testing methods increases when there are more traits that are directly affected by the
disease susceptibility locus, and when the magnitude of the direct effect among multiple traits
is greater.

In absence of extraneous variables, from Figure 2 and Figure 3 we can see that, testing multiple
traits simultaneously outperforms testing each trait individually for most of the DAGs,
especially when more than one trait are induced by the disease locus. The improvement is much
more pronounced for some structures (see S16, S20, S27, S33, S34, S38, and S40) when the
correlation between the traits that are directly or indirectly affected by the gene is stronger

 As pointed out by Lange, Silverman, Xu, Weiss, and Laird (2003), FABT-GEE
gains power more by using traits simultaneously than depending on the information of one
trait. When the correlation between the traits that are directly or indirectly affected by the gene

is low  the traits are nearly independent. The method of testing multiple traits
simultaneously remains superior to the single-trait test by avoiding Bonferroni correction.

We should note, however, that the performance of testing multiple traits simultaneously varies
across different causal structures. When only one trait is directly induced by the disease locus,
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the power of testing multiple traits simultaneously is lower for S9, S11, S13, S17, and S18 than
for other structures. This is not surprising because structures S9, S11, S13, S17, and S18 share
one thing in common: G directly affects Y1 and then Y1 directly affects other trait(s). Because
the other traits are independent of G conditional on Y1, they do not add much information in
the test of multiple traits, at least not enough to compensate the increase of the degrees of
freedom of the test. For this reason, testing multiple traits becomes less and less attractive as

 increases if the underlying model is S9, S11, S13, S17, or S18. The situation is similar in
structures S30 and S32 although two traits are directly induced by the disease locus, where the
third one are conditionally independent of G given the other two traits. The presence of Y3 in
the multiple-trait test adds both information and noise in the test. In contrast, for S10, S12,
S14-S16, S19, and S20, the power of testing multiple traits simultaneously is relatively high.
In S10, for example, Y2 is actually an extraneous variable to Y1 and G. By testing multiple
traits, the influence of this extraneous variable is taken into account, which is not possible by
testing a single trait. As a result, the power of testing multiple traits is much enhanced.

When more than one trait are induced by the disease locus, both testing methods become more
powerful. Besides the genetic cause, if the traits also have a causal relationship, the power of
both testing methods (see S22, S25–S28, S32–S34, and S36–S40) are even greater. For
example, the power of testing multiple traits simultaneously is high for S27, S33, S34, S38,

and S40 in which the magnitude of the direct effect is large  We illustrate some
of the reasons. In S27, not only does G directly cause Y1 and Y2, but also there is a cause
relationship between Y1 and Y2. Furthermore, Y3 is the extraneous variable to Y1 and Y2. In S31
and S34, one trait acts as the extraneous variable to the other two traits directly induced by
G. Hence, as expected, the power of testing multiple traits is greater than testing a single trait,
because again the former considers the extraneous variable and the latter does not.

We have seen the advantage of including the extraneous variable in the multipletrait test over
the single-trait test. However, in practice, we do not have information about all extraneous
variables, and hence we cannot really consider all of them in the multiple-trait test. For this
reason, we examine the consequence of without including all extraneous variables in the
multiple-trait test. Figure 2 and Figure 3 show that the general patterns are similar to those we
revealed above. As expected, however, extraneous variables do impact on the power of both
testing methods in all structures. We have seen that the failure to consider the extraneous
variable in the single-trait test reduces the power of the test. Likewise, the failure to consider
the extraneous variables in the multiple-trait test also reduces the power of the test. When the
extraneous variables result in positive correlations among the traits under consideration, the
power of both testing methods is reduced even more (see Figure 2). To the contrary, the power
of both tests increases when the extraneous variables cause negative correlations among the
traits under consideration (see Figure 3). Therefore, in practice, efforts should be made to
consider and collect data from the extraneous variables.

The power comparison for binary traits is presented in Figure 4 and Figure 5, which are similar
to Figure 2 an Figure 3 for quantitative traits. However, the superiority of the multiple traits
based test over the single trait based test is less substantial. Lange, Silverman, Xu, Weiss, and
Laird (2003) discussed a similar observation. This is most due to the loss of information from
thresholding the underlying quantitative traits.

4 Discussion
We carried out extensive simulations to compare the performance of two testing methods in
the family-based association studies where multiple traits are of interest: one tests one trait at
a time and the other tests multiple traits simultaneously. To understand when and how testing
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multiple traits may be helpful, we considered a variety of data-generating models to reflect the
causal relations among the traits and the gene. Those models are presented in the form of
directed acyclic graphs. Within each structure, we utilized linear structure equation models to
accommodate the direct effects between different traits and between traits and disease locus.
In practice, we usually do not observe the data for inferring a causal relation. But, it is useful
to examine whether such a causal relationship has any impact on the power of the multiple-
trait based testing.

Our simulation results demonstrated that the performance of testing multiple traits
simultaneously is better than the performance of testing each trait individually for almost casual
structures. Meanwhile, we found that the power of association tests varies among causal
structures. The advantage of conducting a multiple traits test is minimized when some traits
are influenced by the gene only through other traits; and it is maximized when there are causal
relations between the traits and the gene, and among the traits themselves or when there are
extraneous traits.

While the data were generated from known causal models, we should point out that neither
tests make use of the casual effects. In practice, if the existing literature suggests a causal
pathway, our simulation result can help select a powerful testing strategy. In absence of this
knowledge, our simulations underscore the importance of developing more effective testing
methods that accommodate multiple traits simultaneously.

Although we designed the simulation studies by assuming one di-allelic disease gene and three
traits, the simulation method can be extended to involve more loci and more traits. However,
we expect the general conclusions will not be changed by those extensions. In the linear
regression structural equation models, for clarity, we did not consider complex causal
relationship. For example, in theory, there can be interactions between some traits and the
disease gene when they induce the other traits. We did not consider this complex causal
relationship, also because it is unlikely to be detectable in most association studies.

We only considered a few choices for the magnitude of causal effect and two levels of
correlation induced by an extraneous variable. In practice, underlying mechanisms are more
complex. Thus, despite our extensive simulations, it warrants further studies to understand the
power of testing statistic under more realistic and complex genetic models.

The topic we presented is rather timely, as there is an increasing interest in developing testing
procedures for multiple traits in statistical genetics. As we discussed in the introduction, there
is a strong motivation as to why it is important from a scientific point of view. Here, we
demonstrated that the potential benefit can be real. Furthermore, we are at a stage in which
data are available to conduct association analysis of multiple traits.
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Figure 1.
Forty causal structures among one disease gene G and three traits Y1, Y2 and Y3 that are
illustrated by DAGs. The arrows from G to Yj and from Yk to Yj represent that there exist direct
effects of G on Yj and Yk on Yj for j, k = 1, 2, 3. The locations of Y1, Y2 and Y3 can be exchanged
arbitrarily in each structure.
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Figure 2.
Power of the two testing methods based on structures S7–S40 for quantitative traits. The black
dots and the black triangles respectively represent the performance of single-trait test and
multiple-trait test in absence of any extraneous variables, and the gray dots and the gray
triangles respectively represent the performance of single-trait test and multiple-trait test in
presence of extraneous variables, which result in positive correlations among traits. The
nominal significance level is 0.01.
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Figure 3.
Power of the two testing methods based on structures S7–S40 for quantitative traits. The black
dots and the black triangles respectively represent the performance of single-trait test and
multiple-trait test in absence of any extraneous variables, and the gray dots and the gray
triangles respectively represent the performance of single-trait test and multiple-trait test in
presence of extraneous variables, which result in negative correlations among traits. The
nominal significance level is 0.01.
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Figure 4.
Power of the two testing methods based on structures S7–S40 for binary traits. The black dots
and the black triangles respectively represent the performance of singletrait test and multiple-
trait test in absence of any extraneous variables, and the gray dots and the gray triangles
respectively represent the performance of single-trait test and multiple-trait test in presence of
extraneous variables, which result in positive correlations among traits. The nominal
significance level is 0.01.
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Figure 5.
Power of the two testing methods based on structures S7–S40 for binary traits. The black dots
and the black triangles respectively represent the performance of singletrait test and multiple-
trait test in absence of any extraneous variables, and the gray dots and the gray triangles
respectively represent the performance of single-trait test and multiple-trait test in presence of
extraneous variables, which result in negative correlations among traits. The nominal
significance level is 0.01.
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