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Abstract
The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings
(>100 channels) capable of probing the range of neural activity from local field potential oscillations
to single neuron action potentials presents new challenges for data acquisition, storage, and analysis.
Our group is currently performing continuous, long-term electrophysiological recordings in human
subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed
of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32 kHz
per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning
single neuron action potentials, high frequency oscillations, and high amplitude ultraslow activity,
but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data
formats. Data compression can provide several practical benefits, but only if data can be compressed
and appended to files in real-time in a format that allows random access to data segments of varying
size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for
acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format
that incorporates lossless data compression using range encoded differences, a 32-bit cyclically
redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient
information.
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Introduction
Large-scale electrophysiology recordings are recognized as a powerful tool for systems
neurobiology and investigation of normal and pathological brain function {Buzsaki 2004}.
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Continuous, high, spatial and temporal resolution intracranial electroencephalography (iEEG)
and single neuron recordings from humans are being used to investigate cognitive function,
e.g. {Kraskov 2007} {Gelbard-Sagiv et al., 2008}. There is accumulating evidence that the
bandwidth used for clinical iEEG is inadequate, and that high frequency oscillations can
localize epileptogenic brain {Bragin et al., 2002, Gardner et. al., 2007, Worrell 2004,
Urrestarazu 2007, Worrell 2008}. These opportunities have not been fully exploited, however,
due to limitations in recording and storage technologies that have required scientists and
clinicians to limit data acquisition directly by reducing the duration, number of channels,
sampling rate or resolution of recordings in order to generate manageable amounts of data. For
example, acquisition of “single unit” data (i.e., the extracellular action potentials from
individual neurons) routinely requires users to set a fixed voltage threshold prior to the start of
recording. When the electrode voltage exceeds this threshold, a limited-duration window of
samples surrounding this event is stored and all other samples are discarded. Clearly, post-hoc
analysis is then limited to the acquired waveforms, no further data windows can be extracted,
and no relationship to other EEG features (e.g. phase, energy) can be generated. A preferred
solution would be to record all samples in a compressed file format and then threshold the data
offline, allowing the user to optimize detections with regard to the amount of data to analyze.
The technology for acquisition of wide bandwidth electrophysiology (high channel count, high
input impedance, DC-capable amplifiers, per-channel sampling rate of 32 kHz, 18-bit signal
digitization) from high-density hybrid electrode arrays now makes it possible to record the full,
physiological range of brain activity, from single neuron action potentials to high amplitude
ultraslow field potential oscillations. However, the massive amounts of data produced by these
recordings (i.e., “Big Data”) present unique, “biocuration,” or data sharing and interpretation
challenges for institutional and laboratory information technology infrastructure {Howe et al.,
2008}.

At our institution, large-scale recordings from patients undergoing evaluation for epilepsy
surgery are obtained using hybrid electrodes containing microwires and clinical
macroelectrodes {Van Gompel 2008a, Van Gompel 2008b, Worrell 2008} (Figure 1). This
approach requires the infrastructure to transfer, store and manage up to 40 megabytes per
second, 140 gigabytes of data per hour, or 3.3 terabytes per day (at 4 bytes / sample). Using
current electrophysiology data storage methods, a typical patient recording (7 days) would
require 23 terabytes of disk space for storage. Furthermore, conventional EEG data file formats
typically bundle all the recorded channels into a single large file, making data analysis, storage,
and transfer all the more unwieldy. Here we describe our approach to acquisition, compression,
storage and management of data obtained from large scale electrophysiological studies required
for investigation of systems neurobiology of brain function and disease.

At the core of our approach is a scalable (up to 1024 channels) acquisition system, large-scale
storage area network (SAN) database, and a novel electrophysiology file format, called MEF
(Multiscale Electrophysiology Format) (Figure 2). MEF achieves significant data size
reduction when compared to existing formats (e.g. Neuralynx DMA format, EDF+ {Kemp
1992,Kemp 2003}, Extensible Biosignal Format (EBS) {Hellmann 1992}) using state-of-the-
art lossless data compression {Bodden 2002,Martin 1979} and is designed for efficient data
transfer, storage and analysis. In addition, MEF satisfies the Health Insurance Portability and
Accountability Act (HIPAA) requiring any patient protected health information transmitted
over a public network to be encrypted with a minimum 112-bit symmetric encryption [Federal
Register 2003]. Sharing electrophysiology data for research purposes requires encryption or
elimination of patient information to maintain compliance with HIPAA regulations. Encryption
of patient identifying information within the file with an appropriate algorithm represents an
elegant solution for maintaining patient confidentiality, while obviating the need for
specialized, secure transfer protocols, and reducing the potential to lose relevant information
or cause record keeping errors in research data. The existence of data warehouses and the
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capability to easily and reliably share massive data volumes among researchers has had an
enormous impact in genomics and imaging {Howe 2008}, and we anticipate that in the near
future advances in human and animal systems neurobiology will be accelerated by the creation
of large scale human and animal electrophysiology databases {Lynch 2008}.

Methods
Protocol for Large Scale Electrophysiology

The data reported here are from a Mayo Clinic IRB approved investigations of wide-bandwidth
electrophysiology recorded from hybrid electrodes in patients undergoing evaluation for
epilepsy surgery. The need for intracranial EEG monitoring is a clinical decision made by a
multi-disciplinary epilepsy surgery conference with members from neurosurgery, neurology,
neuroradiology, and neuropsychology. The location, number and type of intracranial electrodes
to be implanted (depth, subdural grid, and strip electrodes) is determined by consensus at the
clinical conference. The research protocol involves replacing standard clinical electrodes with
custom hybrid electrodes. The only difference between the hybrid and clinical electrodes are
the microwire arrays (Figure 1) {Van Gompel 2008a,Van Gompel 2008b,Worrell 2008}. The
hybrid depth and subdural electrodes contain standard clinical macroelectrodes and additional
microwire arrays (40 um Platinum/Iridium wires spaced 0.5 – 1 mm), and are manufactured
by Adtech Medical Instrument Corporation, Racine, WI and PMT Chanhassen, MN US under
a 510K.

Platform for collecting and warehousing large-scale human electrophysiology
The capability for collecting, warehousing, and mining wide-bandwidth electrophysiology
over multiple spatial scales was originally developed to probe the fine structure of human
epileptic brain (Fig 2). A scalable (32 to 320 channels) acquisition platform capable of
continuous long-term recording was developed in collaboration with Neuralynx Inc.
(http://www.Neuralynx.com). The Digital-Lynx system is unique in that it uses an individual,
high resolution, 24 bit A/D converter per channel to directly digitize the electrode signal using
a single, DC-coupled, low noise differential amplifier and anti-aliasing filter (low pass 9Khz).
All channels are simultaneously sampled at 32 kHz with a DC to 8 kHz signal bandwidth. This
high resolution design provides a dynamic input range of ±132 mV with 1 μV resolution (18th
bit). All sampled data is packetized and transferred to a PC over a fiber optic data link at 600
Mbits/sec.

The Hybrid Array 40 μm Microwires exhibit a characteristic high impedance (200Kohms to
500Kohms) and the high frequency, weak multi-unit signals (<100 μv) will be degraded by
noise and attenuation if not buffered/amplified in close proximity to the brain. An active 32
channel buffered electrode interface was developed for DC-stable microwire/clinical electrode
recording and incorporates electrode impedance measurement and patient safety circuitry in a
compact package which can be placed on the headwrap. This interface allows individual
references for each group of 8 microwires and has proven advantageous for multiple-single
unit classification.

The fiber optic connection transfers data to the Neuralynx Cheetah software system. This
software package allows for data management, disk file recording of the continuous high
resolution sampled data and on-line analysis, processing and display of single unit and scrolling
EEG waveforms. The data are then archived to a 70 TB storage area network (SAN) library
using a custom file format (MEF) created for efficient data transfer, compression, annotation,
archival and retrieval. A SAN is a scalable data storage solution that divides data across
multiple hard disk drives to increase data reliability and access speed, and presents the data in
such a way that the multiple storage devices appear as a single locally attached volume to the
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client operating systems. Clinical data are acquired in parallel with an EMU-128 XLTek system
(XLTek Inc.). All clinical decisions are based on the clinical XLTek recordings.

Online event notations and information for all recorded channels are stored in a single separate
Extensible Markup Language (XML) event file (Figure 3). The event file and all the associated
channel files contain identical 8-byte unique ID (UID) numbers in their unencrypted header
blocks in order to validate the association of event and channel files. Event files contain such
things as video synchronization records, data annotations, seizure onsets, behavioral state, unit
firing, etc. The event file structure consists of variable length XML records, allowing creation
of custom event types without disabling existing software that may be unaware of the new
event type. This format can also be used to store annotation information related to automated
event detections in the file, such as the time of interictal spikes or single-neuron action
potentials. We view the XML file as a transient communication medium created for import
into a general purpose database (e.g., MySQL), which is better suited to the task of integrating
large scale data of various types and providing flexible retrieval options.

Multiscale Electrophysiology Format (MEF)
The Multiscale Electrophysiology Format (MEF) consists of three main parts: 1) a fixed-length
1024-byte header, containing patient information and technical information about the
recording, 2) a data section, consisting of a series of encoded data blocks, and 3) a time index
section, consisting of three 8-byte element blocks holding block start time, file offset, and
sample index values to facilitate rapid random access to the data (Table 1). Each file's header
begins with an unencrypted block of data containing the non-private technical information
necessary to read and begin decryption (if needed) of the file's header. This data block includes
the file's byte order, the file type and version, the length of the header, the encryption algorithm
used, and boolean values denoting whether subject and session encryption are used. The next
sections of the header employ a dual-tiered encryption scheme, with both sections being
encrypted independently. In particular, a “subject” section contains all the subject-identifying
data, while a subsequent “session” section contains information regarding data acquisition,
such as filter settings and sampling frequency. The session encryption can optionally be applied
to the leading coefficients of the statistical model in the data block headers, making the data
impossible to decompress without the encryption key. The subject section also contains the
session password so that if the subject password is provided, all header information is
accessible. If only the “session” password is provided, the subject data remains inaccessible,
but the technical details of the recording necessary for data analysis can be decrypted. Subject
and session encryption use 128-bit AES encryption [NIST 2001] with passwords chosen by
the file's creator. Encryption is not required, and either subject or session encryption, or both,
may be omitted if desired.

The data section of the file (Table 1) consists of recorded samples stored in compressed blocks,
the length of which can be specified by the file's creator. Lossless data compression is
accomplished via the range encoded differences (RED) algorithm {Bodden 2002,Martin
1979}. Range encoding is a type of integer arithmetic encoding that uses byte-wise scaling to
improve encode and decode speeds. RED compression encodes data in two stages: first,
differences between sequential samples in the data block are computed; second, the frequency
of difference values are computed. The range and frequencies of values in the statistical model
are then used to encode values within the block. Differencing time series data efficiently
reduces its variance, a property that range encoding benefits significantly from, i.e. as the
inherent variance in a signal decreases its compression ratio increases. A 32-bit cyclically
redundant checksum (CRC) value {Peterson 1961,Koopman 2002} is calculated from each
compressed block and stored as the first entry in the block's header, providing the ability to
detect data corruption arising from network transmission errors or disk errors during long-term
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storage. The block-wise compression scheme used has the advantage that each compressed
data block is independent of other blocks in the file. In the event that a particular data block is
corrupted due to a disk or network transmission error, the affected block can be removed with
no effect on the remaining data. By comparison, a single corrupt value in a difference-encoded
file propagates the error to all remaining data in the file. Discontinuities in the recording are
indicated by a flag in each block's header, and maximum and minimum recorded values in the
block are also stored in the block header to facilitate processing and display. The compressed
data blocks are stored with 8-byte alignment to enable direct access to header variables, and
to facilitate file recovery if damage to the file results in alignment loss. While data corruption
is a low-probability event, the extreme size of these recordings and the fact that we access them
repeatedly for different analyses increase the chance of any particular file becoming corrupted.
In addition, the size of these files makes it impractical to keep multiple backup copies, making
the ability to detect, isolate, and repair data errors all the more important.

Following the compressed data blocks is a series of 8-byte integer triplets encoding the clock
time (in microseconds) of the start of each compressed data block, the file offset to the start of
each block, and index number of the first sample in each block. These values allow data blocks
within the file to be accessed directly based either on a desired time index or recording sample
number. Time stamps are stored in Microsecond Coordinated Universal Time (uUTC), which
is a variation of standard Unix or Posix UTC time defined by the number of microseconds
since midnight January 1, 1970, GMT (also known as “the epoch”). Microseconds are used to
provide sufficient temporal resolution for EEG recordings without requiring the use of floating
point data types, which are inherently limited in their precision and can cause errors from
truncation of the least significant bits.

Results
To date large-scale electrophysiology recordings were obtained from a series of 20 patients
using subdural and depth hybrid electrodes. Initial results from patients with hybrid depth
electrodes have been previously published {Worrell 2008}. Studies are underway with the the
patients implanted with hybrid subdural grid electrodes and will be reported separately. In
Figure 4 a representative recording from hybrid depth electrodes implanted into the mesial
temporal lobe (amygdala hippocampus) is shown across a wide range of time scales: 10-hours,
10 minutes, and 10 seconds. The single channel of data recorded from a microelectrode
demonstrates the long time scale variability seen over the course of hours (Fig 4A), an
electrographic seizure discharge (Fig 4B), and extracellular single unit activity (Fig 4C & D).
The recordings are notable for the fact that they span neural activity from single neuronal units
(10-6 volts) to extracellular fields of almost a 100 millivolts. Microelectrode data were bandpass
filtered between 600-6,000 Hz, and action potentials were detected using standard extracellular
recording criteria for anatomical location, stability of waveform shape, firing rate (< 2Hz) and
multi-modal inter-spike interval distribution. {Bower 2008, Harris 2000}

To demonstrate the benefit of the MEF format, a series of randomly-selected 32 kHz macro
and microelectrode iEEG channel recordings were compressed using RED compression with
varying block lengths. For our tests we defined the theoretical compression ratio as the ratio
of the compressed file size (including the header and index block) to the 18-bits of information
in each recorded sample in each file. This would be equivalent to comparing our compressed
files to an uncompressed file with 18-bits per sample (i.e. 9 bytes for every 4 samples) stored
on disk with no sample delimiters and no header. For all channels, the data is compressed to
less than 30% of its theoretical size, even with blocks as small as 50 msec, or 1627 samples
(Figure 5). Data compression improves markedly as block sizes increase to 1.0 second (32556
samples, in our data), with more modest improvement achieved at larger block sizes.
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We also compared the data compression achieved with the MEF file format to real-world
recorded data files in widely-used formats. A 32 kHz, 395.8 second iEEG recording with 40
channels in Neuralynx DMA format was converted to MEF format with a 1.0 second block
interval, resulting in a net compression ratio of 3.44%, defined as the compressed file size
divided by the input file size. For the XLTek file format 32 kHz data was not available, so a
500 Hz data file was used. This file contained 76 recording channels and spanned 65267.5
seconds. Conversion into MEF format with a 10.0 second block interval resulted in a 40.53%
net compression ratio. Conversion of 28327.6 sec of data stored in EDF to MEF resulted in a
net compression ratio of 8.56% (Table 2). It should be noted that because of the formats'
limitations, the XLTek and EDF data files contained only 16 bit sample resolution.

The ability of the RED compression algorithm to adapt to the information content of the
recorded signal was tested by low-pass filtering data from a microwire and a clinical macrowire
channel with varying cutoff frequencies between 100 and 9000 Hz, maintaining sampling
frequency. Figure 6 shows that both files compress to less than 20% of their theoretical size
(18 bit sequential samples) with minimal low-pass filtering (9000 Hz) and approach 3%
compression at the most aggressive filter levels (100 Hz). Figure 7 shows similarly improved
performance by the compression algorithm for the same recorded data as the stored per-sample
bit rate is decreased from 20 to 16 bits. Theoretical compression ratios were calculated based
on each file's particular bit rate.

The speed of reading and decompressing MEF data was compared to the speed of reading
uncompressed raw 32-bit data from disk. Varying lengths of an iEEG data were read from a
MEF data file, decompressed, and stored on disk as a binary file of 32-bit integers. Custom
software written in C and compiled with the Intel Compiler version 11.0 (Intel Corporation,
Santa Clara, CA) was used on an Apple Macintosh computer (Apple Inc., Cupertino, CA)
running Mac OS X version 10.5.5 with a 3.2 GHz Intel Xeon 8-Core processor and 32Gb of
RAM to read the raw data from disk, and to read the corresponding MEF file from disk and
decompress the data into 32-bit integers in memory. The MEF decompression was single-
threaded, removing any potential advantage to the machine's multiple processors. As shown
in Figure 8, reading plus decompression is faster than reading uncompressed data. Further
improvement can be achieved by multithreading the data decompression. (Figure 9,
325,560,000 samples read.) Data block header encryption was not used in these examples, but
it typically adds 0.5% to the encoding time.

Discussion
Systems neurobiological data acquisition has always forced scientists and clinicians to “trade
off” one or more aspects of recording to stay within the capabilities of recording equipment
and to produce files containing manageable volume of data. These considerations have limited
the utility of such data to the questions that originally motivated the acquisition of the data.
Current recording technology coupled with MEF file format uncouples data acquisition from
storage and analysis constraints, allowing systems neurobiologists to acquire, store and
manipulate all physiologically relevant data. While the MEF format is flexible enough to be
used with other block-wise compression algorithms, including lossy algorithms if desired, RED
encoding offers significant advantages for lossless compression of time-series data. Principal
among these advantages are the algorithm's high lossless compression rate and its
computational speed. An additional advantage is the algorithm's ability to adapt to the statistical
variation in the raw data, which is particularly useful in non-stationary signals such as EEG
(Cranstoun 2002), resulting in improved compression ratios in filtered or slowly varying data
without requiring changes to the algorithm. The variable block length further permits the user
to balance the overall file compression rate versus quick access to specific time points within
the file. We typically store our 32 kHz recordings with a block size of 1.0 seconds (32556
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samples), although reasonably good compression should be obtainable above 2000 samples
per block at most sampling frequencies.

With the increasing processor speed of modern computers, the limiting factor in the speed of
data-intensive procedures increasingly becomes access to the data on the computer's disk drive.
While data compression does increase the computational load in accessing EEG recordings,
the reduction in the size of the data on disc results in a net speed increase, provided the
compression algorithm is not overly computationally intensive. Data compression will become
more important as hospitals increasingly use electronic patient records and data networks in
routine clinical practice. This problem is more pronounced when transferring files across the
internet, for example between institutions, where data transfer rates can be significantly slower.
Similarly data compression has become more important in research studies as collaborators
share data between labs and institutions. Prior EEG data compression studies suggest a
correlation between the complexity of the compression algorithm used and the compression
ratio achieved. {Antoniol 1997} However computational speed is required to permit real-time
compression during data recording, as well as to facilitate display and processing of previously
recorded data.

The MEF file structure has been designed to facilitate data storage, transmission, access and
processing despite the large number of electrophysiological samples involved. The block
structure of the data makes the file resilient to minor file damage during storage or transmission,
as only the damaged block(s) will be lost, while the remaining data blocks are unaffected. The
index data portion of the file can be reconstructed from the block data if damaged, or if it is
practically difficult to construct the indices during recording. The index data permits rapid
random access to individual data blocks during viewing or processing, regardless of the length
of the overall file. Sampling frequencies are channel specific, making the MEF format suitable
for any time series data, including scalp EEG, polysomnography, electrocardiography, and
analytic transforms of recorded data, in addition to intracranial EEG. Other data types are
possible as well as long as they can be stored as 24-bit or smaller integer time series. Additional
data size reduction can be achieved as well in hybrid array recordings by downsampling the
macroelectrode signals. The MEF format is equally applicable to human and animal recordings,
and header fields have been designed to accommodate either type of subject. The ability to
encrypt patient information is fully compliant with HIPPA standards, and thus facilitates data
sharing by removing the burden of data deidentification otherwise required. Large scale data
also presents challenges for data analysis. The MEF data format divides channels into separate
files composed of independent blocks to facilitate parallel processing. The index data section
at the end of each file facilitates rapid random access to any point in the file based on either
time (uUTC time), or sample number.

The format specification, C source code, Java classes, and Matlab functions to generate and
read MEF files have been made freely available under the GNU open-source software license
in the hope that this will facilitate widespread use of this file format
(http://mayoresearch.mayo.edu/mayo/research/msel/). In addition, Neuralynx Inc recording
equipment will now be capable of saving recordings directly to MEF format.
(http://www.neuralynx.com)

Conclusions
Systems electrophysiology can require recording from a large number of electrodes and over
a wide dynamic range. In this paper we described a human electrophysiology platform capable
of recording from 320 electrodes (scalable to 1024 channels) and with a per channel sampling
rate of 32 kHz. The practical challenges of managing the massive data volumes generated with
high spatiotemporal electrophysiology are significant, but the data compression, information
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encryption, 32-bit CRC, and block index structure incorporated in MEF data files are important
tools for addressing these challenges. Range encoded difference compression reduced the size
of recorded data files to less than 20% of the 18 bits per sample encoded at a one second block
size, while increasing the speed at which recorded data can be accessed. 128-bit AES encryption
meets the patient information privacy restrictions imposed on clinical data by HIPAA
regulations. The 32-bit cyclically redundant checksum detects any data corruption that may
occur, and MEF's block-wise approach to compression limits the effects of data errors to the
data block in which errors occur. The MEF index table provides ready access to any arbitrary
point in the recorded data, specified by either the time of the recorded segment or the sequential
index of the recorded samples. Software libraries to read, write, and process MEF data are
freely available. The system described here is scalable and can be tailored to the
electrophysiological questions of interest, without necessitating a trade off dictated by data
volume and management.
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Figure 1.
Left) Photographic montage of hybrid subdural grid containi 16 clinical macroelectrodes (4
mm) and 112 microelectrodes. Right) Schematic of hybrid subdural grid and depth electrodes.
MRI of hippocampal hybrid depth implant (below).
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Figure 2.
Large scale human electrophysiology acquisition system streams data from the patient's room
to the acquisition node via a dedicated dual-Gigabit Ethernet. Data are stored on a 70 terabyte
storage pool. Data are accessed via a fiber channel Service Area Network. Large-scale analysis
is performed on a dedicated computational cluster.
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Figure 3.
Data flow schematic. Data acquisition creates files stored in a range of data-type-specifc
formats. Storing continuously sampled data normally constitutes the largest component of the
dataset, which allows data compression to reduce overall storage requirements significantly.
Permanent storage of events and metadata in a relational database provides a flexible and
reliable storage mechanism that allows subsequent integration of analysis information
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Figure 4.
Long-duration, high-frequency, DC-coupled EEG recordings capture all physiologically
relevant time scales. A. 10 hours of continuous data from a macroelectrode show a clear DC
drift. B. 10 minute, expanded view from A shows a spontaneous seizure approximately 16 min
into the recording session. C. 10 second expanded view from B from a microelectrode
(bandpass filtered, 600-6,000 Hz) shows action potentials from single neurons. Blue dots show
18 action potentials associated with a single neuron. Da. Expanded view of color-coded action
potentials from C showing the similarity of the recorded waveforms. Db. Mean and standard
deviation of the 18 action potentials identified in C. Note the dynamic range in both voltage
(mV to μV) and time (hours to msec).
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Figure 5.
Theoretical compression ratios for macro- and microwire 32 kHz channel recordings based on
18 bits of information per sample are plotted against the log of the compressed block length in
seconds. Compression ratios tend to improve with longer block lengths and increasing number
of samples per block. However, gains beyond 1 sec (32556 samples) are modest and may be
outweighed by the advantage of greater direct access to individual time points with smaller
blocks.

Brinkmann et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2010 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
The range-encoded difference algorithm improves its compression ratio as high-frequency
information is removed from the recorded data. Compression ratio calculations are based on
18-bits of information in each sample. Reported data represents 2,255,061,204 samples (69,267
seconds) from a macro electrode (white circles) and micro electrode (black diamonds). The
relatively low impedance of the macroelectrode compared to the microelectrode yields a lower
thermal noise and better overall compression.
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Figure 7.
The RED compression algorithm reduces the size of the MEF file as the number of data bits
stored is decreased. Percent compression is reported as the ratio of the MEF file size to the
theoretical size of the data for each bit rate. Data is reported for 2,255,061,204 samples from
a macro electrode and a micro electrode.
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Figure 8.
Reading and decompressing the MEF data from disk is faster than reading raw 32-bit integer
data from disk. Data are reported as the percentage of the raw 32-bit integer read time required
to read and decode the corresponding MEF file for the given number of samples. Raw and
MEF read times were measured using one processor thread on an Apple Macintosh with a 3.2
GHz Intel processor and 32 Gb of RAM.
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Figure 9.
Multithreading the RED decompression on a multi-processor computer provides a significant
speed increase. 325,560,000 samples were read on an 8-processor system with 32 Gb of RAM.
Values are expressed as a percentage of the time required to read an identical number of 32-
bit samples from an uncompressed raw data file.
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Table 1
The MEF file consists of a file header, composed of one unencrypted and two optionally encrypted sections, a data
region, composed of sequential data blocks containing block header and compressed data regions, and a block index
section, which gives the file offset to each compressed block in the data region.

File Region Section Offset Length Contents

Header No Encryption 0 176 Institution name, encryption algorithm and usage, file version, header length,
byte order

Subject Encryption 176 160 Subject first, middle, and last names, and ID number

Session Encryption 352 452 Number of samples, channel name, recording times, filter settings, maximum
block size and length, offset to and number of index entries, max and min
recorded values.

Data Block Header 1024 277 Compressed block length, difference data length, number of samples in block,
block start time, discontinuity flag, block statistics.

Compressed Block Variable Variable Encoded Data

Block Indices Variable Variable (24- bits per block) Block start time, file offset to each compressed block, index of first sample in
each block.
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