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Rationale: Tobacco smoking is responsible for 85% of all lung
cancers. To further our understanding of the molecular pathogen-
esis of lung cancer, we determined whether smoking history leads to
the emergence of specific genomic alterations found in non–small
cell lung cancer (NSCLC).
Objectives: To identify gene copy number alterations in NSCLCs
associated with smoking history or DNA repair capacity.
Methods: Seventy-five NSCLCs were selected for this study from
patients with current, none, or past smoking history, including pack
year information. Tissue sections were microdissected, and DNA was
extracted, purified, and labeled by random priming before hybrid-
ization onto bacterial artificial chromosome (BAC) arrays. Normal-
ized ratios were correlated with smoking history and DNA repair
capacity was measured by an in vitro lymphocyte assay in the same
patients.
Measurements and Main Results: We identified smoking-related ge-
nomic signatures in NSCLCs that could be predicted with an overall
74% accuracy. Lung tumors arising from current-smokers had the
greatest number of copy number alterations. The genomic regions
most significantly associated with smoking were located within 60
regions and were functionally associated with genes controlling the
M phase of the cell cycle, the segregation of chromosomes, and the
methylation of DNA. Verification of the data is provided from data in
the public domain and by quantitative real-time polymerase chain
reaction. The associations between genomic abnormalities and DNA
repair capacity did not reach statistical significance.
Conclusions: These findings indicate that smoking history leaves
a specific genomic signature in the DNA of lung tumors and suggest
that these alterations may reflect new molecular pathways to cancer
development.
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Lung cancer remains the leading cause of cancer mortality for
both men and women in the United States (1). Greater than
85% of all lung cancers are attributed to cigarette smoking;
however, only a fraction of long-term cigarette smokers
develop lung cancer, suggesting a role for interindividual

variation in genetic susceptibility for lung tumorigenesis.
Lung cancer also develops through a multistage process in
a background of increasing genomic instability (2). There-
fore, elucidating the molecular determinants responsible for
the development of lung cancer and identifying intermediate
biomarkers associated with malignant progression remain
important challenges.

Over the last 10 years, we have learned that the somatic
molecular alterations in cancers yield signatures that can be
used for subclassification (3–5) and that they provide informa-
tion relevant to predicting patient survival (3, 6), risk of re-
currence (7), and response to therapy (4, 8). Nevertheless, non–
small cell lung cancer (NSCLC) is still typically managed as
a single major entity using similar preventive, diagnostic, and
therapeutic approaches. Cigarette smoking contributes to the
accumulation of genetic alterations in lung cancer (9–11). There-
fore, it is critical to elucidate whether phenotypically similar
tumors arising among ever-smokers and lifetime never-smokers
acquire specific molecular abnormalities that could further elu-
cidate lung tumorigenesis.

Genetic alterations in NSCLC have been recently measured by
array comparative genomic hybridization (12–15). Specific areas of
amplification and deletion distinguish squamous from adenocar-
cinoma of the lung. To better understand how tobacco smoking
participates in the molecular pathogenesis of lung cancer, we used
array comparative genomic hybridization (CGH) to discover
specific patterns of genomic alterations found in NSCLC that
might be related to tobacco smoking history. We evaluated
whether these somatic patterns of genomic abnormalities were
associated with molecular pathways including DNA repair ca-
pacity as measured by in vitro peripheral lymphocyte assays of the
same patients.

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Lung tumors that develop in smokers and nonsmokers have
similar clinical behavior and yet result from different injury
to the airways. It remains to be determined whether tobacco
smoking is responsible for the development of a specific
genomic signature that is related to tumorigenesis.

What This Study Adds to the Field

Lung cancers from smokers carry a genomic signature that
is distinct from that of never-smokers. The genes associ-
ated with these genomic regions of aberration are involved
in tobacco-related molecular pathways of tumorigenesis
and may represent new targets for chemoprevention.
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METHODS

Patient Population and Tumor Samples

Frozen samples from 75 resected lung tumors, 32 squamous carcino-
mas, and 43 adenocarcinoma of the lung, were selected from the
pathology archives from the University of Texas M. D. Anderson
Cancer Center between 2000 and 2002. Detailed questionnaire data
derived from personal interviews were available on all study subjects,
including demographic characteristics and smoking history. The clinical
and pathological characteristics of the patients are summarized in
Table 1. Group 1 consisted of 30 current-smokers (CS) at the time of
diagnosis or those who quit less than a year before the diagnosis of lung
cancer. Group 2 consisted of 22 former smokers (FS) who quit smoking
between 2 and 22 years before diagnosis of lung cancer. Group 3
included 17 lifetime never-smokers (NS; fewer than 100 cigarettes in
their lifetime) and 6 long-time quitters (LTQ) who had quit smoking
between 23 and 56 years before diagnosis. This cut-off was selected
based on the overall distribution of smoking history in the population.
Hematoxylin and eosin stained paraffin sections from all tumors were
reviewed and tumor-containing areas were circled by our pathologist
(I.W.) to identify regions containing greater than 70% tumor cells. The
tumor tissues were then microdissected from adjacent twenty-micron
methyl green stained tissue sections under a dissecting microscope. The
study was approved by the local Institutional Review Boards at
Vanderbilt University and the M. D. Anderson Cancer Center.

DNA repair capacity had been previously assayed in these patients
by an in vitro lymphocyte culture-based host cell reactivation assay.
The host cell reactivation assay measures the activity of a reactivated
reporter gene in cells transfected with benzo(a)diol epoxide–treated
plasmids (16). Because a single unrepaired DNA adduct can effectively
block transcription (17), any activity reflects the ability of the host cells
to remove benzo(a)diol epoxide–induced adducts from the plasmids.
Mutagen sensitivity is measured by quantifying the chromatid breaks
induced by an in vitro mutagen challenge (in this instance, bleomycin)
in short-term lymphocyte cultures and reported as the mean number of
breaks per cell (18).

DNA Extraction and Array Comparative Genomic

Hybridization Analyses

DNA was extracted, purified, and labeled by random priming (12) before
hybridization onto a 2,464 bacterial artificial chromosome (BAC) clone
array obtained through the University of California, San Francisco
(UCSF) array comparative genomic hybridization (CGH) core labora-
tory (12, 19–22). One mg of tumor and sex-matched control DNA from
a pool of normal peripheral blood monocytes (Promega, Madison, WI,
Catalog number is G1471/G1521) were differentially labeled and hy-
bridized onto a 2,464 BAC clones array CGH slide (http://cancer.ucsf.edu/
array/services.php#humanBAC). Array CGH hybridizations were per-
formed as described elsewhere (23). Approximately 500 ng of each test
and reference probe were coprecipitated with 50 mg of human Cot-1
DNA (Invitrogen, Carlsbad, CA) and resuspended in 20 ml of hybrid-
ization mix [50% formamide, 10% dextran sulfate, 2 3 sodium chloride/
sodium citrate (SSC), 2% sodium dodecyl sulfate (SDS)]. Probes were
denatured at 728C for 7 minutes, incubated at 378C for 45 minutes,
applied to the array slide inside a rubber cement dam and incubated at
378C in a humidified chamber overnight. Slides were washed and dried
before analysis.

Array CGH Data Normalization

Hybridization signals for each array element consisting of red to green
intensity ratio of median values obtained by Gene Pix 4.0 (Axon
Instruments Inc., Foster City, CA) were analyzed using the snap CGH
package in R 2.5.0 (http://www.r-project.org). The data were first
filtered by flag and R square < 0.81 (the correlation of the CY3
labeled tumor specimen pixel intensities versus CY5 labeled control
DNA). The background was corrected by a log linear interpolation
method (24). Within-array normalization was obtained by print-tip
lowess methods and between-array normalization with quantile nor-
malization. All data were log2 transformed and lung tissue samples
from nine individuals with smoking history but without evidence of
malignancy were used to compare tumor classes versus normal signals
and to determine a statistical cut-off for amplification and/or deletion

(62 SD). Our report of microarray experiments conforms to Minimum
Information about a Microarray Experiment (MIAME) guidelines. The
raw data from the experiments is deposited in a publicly accessible
database (http://www.vicc.org/biostatistics/supp.php).

Quantitative Real-time Polymerase Chain Reaction

Gene copy number was determined by quantitative real-time poly-
merase chain reaction (PCR). The method was described by Wang and
Velculescu (25). Briefly, real-time PCR was performed on an iQ5-Cycler
(Bio-Rad, Hercules, CA) using SYBR Green Supermix (Bio-Rad).
Primers for each gene analyzed were designed by PerlPrimer (http://
perlprimer. sourceforge.net/). We used the following for PCR ampli-
fication protocol: one cycle of 95.08 C for 15 minutes, followed by
45 cycles of 95.08 C for 15 seconds, 59.08 C for 30 seconds and 72.08 C for
30 seconds. FAM5B 59-CAAAGATAATCTAAGCCCTCACC-39 for-
ward primer, 59-TTAGTTGTAGCCTCCCTGTG-39 reverse primer;
MCM2 59-ATCAACATCCACAACCTCTC-39 forward, 59-AGAAA
CAAACAGTCATGCCAG-39 reverse; NSD1 59-ACCTGTCATCAAG
CATATCCA-39 forward, 59-TTTAGACCATCCACTTTCCCA-39

reverse; CTSB 59-TTGAAGTCTACTCTGATGGG-39 forward, 59-
CGAGAAGTTAAGATGAAGTCC-39 reverse.

Statistical Analysis

Statistical analyses focused on establishing patterns of recurrent copy
number abnormality by smoking status and identification of BAC clones
closely associated with the groups. The analysis followed the following
steps:

1. Selection of copy number (CN) abnormalities in BAC clones between
the study groups. The selection was based on Wilcoxon rank-sum test,
two-sample t test, Kolomogorov-Smirnov test, significance analysis of
microarrays (SAM) (26), and weighted gene analysis (WGA) (27). The
cut-off points were determined based on SAM .4, WGA .2 and false
discovery rate (FDR) ,0.05 for Wilcoxon rank-sum test, two-sample
t test and Kolomogorov-Smirnov test. The BAC was on the final
selection list if it met at least one of the five selection criteria above.

2. Class prediction model. The weighted flexible compound cova-
riate method (WFCCM) (28–30) was used in the class-prediction model
based on the selected BACs to determine whether the genomic
patterns could be used to classify tissue samples into two classes
(current- versus former-smokers). We estimated the misclassification
rate using the leave-one-out cross-validation (LOOCV) class predic-
tion method based on the WFCCM. We used LOOCV to estimate the
accuracy of the prediction model. LOOCV uses a single observation as
the test set and the remaining observations as the training set. A pre-
diction model involving statistical processes (1) and (2) was built from
the training set and used to predict the class of a single-observation test
set. The predicted class was compared with the true class to estimate
accuracy. The process was repeated n times, where n is the number of
samples. During the LOOCV, n different models were created and
each one was used to predict the class of the omitted sample. At the
end, the n accuracies from LOOCV were averaged to provide an
estimate of the accuracy of the prediction model using all n samples.

3. Cluster analysis. The agglomerative hierarchical clustering algo-
rithm (28) was applied to examine similarity in samples across array
elements and to investigate the pattern among the statistically significant
discriminator features as well as disease status using M. Eisen’s software (31)

4. Data visualization. Rank-based visualization method of micro-
array clusters allows users to easily see patterns of trend associated
with specific variable (32) that are not apparent in traditional visual-
izations, and it is more robust to noise. Clustering algorithms that use
a rank-based distance metric will group together variables based on
their pattern of expression, which can result in clusters that look very
nonuniform when traditionally displayed.

Spearman correlation was used to assess the association between
BAC copy number and the clinical factors with continuous measure-
ment such as DNA repair capacity (DRC), bleomycin induced
chromatin (BIC), pack year history and number of cigarettes smoked
per day. The selection of important BACs was based on the cut-off of
the FDR , 0.05. Ordinary regression was used to detect whether there
was a linear trend between genomic alterations and smoking status
(CS, FS and NS or LTQ) with a P value , 0.0005 as the selection cut-
off of important BACs.
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RESULTS

Patient Characteristics

Characteristics of the patients studied are summarized in Table
1. The mean age of the cases was 63 years for CS, 64 years for
FS and 68 years for NS or LTQ. Fifty three percent were
female. Women were overrepresented (61%) in the NS group.
Seventy-two patients (87%) were non-Hispanic whites, one
Hispanic, five African Americans and one was Korean Amer-
ican. Thirty-two patients presented with adenocarcinoma of the
lung and 43 with squamous carcinoma of the lung. There was no
significant smoking history difference between histological
subgroups. The average smoking intensity for CS was 60 pack
years (PKY) (number of packs of cigarettes smoked per day 3

number of years) compared with 51 for FS and 4.5 for NS/LTQ.
Seventy-six percent of the tumors were early stage (I or II).
Sixty-one percent of patients were alive after 3 years of follow-
up. There were no significant difference in DRC, and BIC
strand breaks between the smoking groups. NS exhibited the
lowest DRC (8.06%) and BIC (0.61), compared with CS (8.23%
and 0.77, respectively).

Copy Number Alterations in NSCLCs

Thirty-two squamous cell carcinoma samples, forty-three
adenocarcinomas of the lung samples, and nine normal samples
were analyzed by array CGH. To confirm the reproducibility of
the platform reported in the literature, we tested the variability
of the copy number assessment within triplicate analyses of two
lung tumors. Copy number measurements across the array were
found to have a coefficient of variance of less than 4%. In the
analysis of between-group variability, we normalized the data to
assays obtained from nine histologically normal lung samples
obtained from patients undergoing anatomic resection of lung
cancer. The greatest variability in gene copy number was ob-
served in tumors derived from patients with a current smoking

history (see Table E1 in the online supplement). The genomic
profile of a typical squamous carcinoma is shown in Figure E1
(see online supplement). Significantly more genomic alterations
were found among NSCLC from CS (14.9%) than among FS
(12.7%) and NS/LTQ (12.0%), P , 0.001. All of the chromo-
somes were involved with alterations. The most frequent copy
number alterations among the three groups are available in the
online dataset and presented in supplement Figure E2. In
addition, the histologies could be predicted based on 63, 81,
and 28 BAC clones with an overall 83, 75, and 78% accuracy for
the following comparisons: adenocarcinoma versus squamous
carcinoma, adenocarcinoma versus normal, and squamous cell
carcinoma versus normal, respectively (Table 2). These results
were based on leave one out cross-validation analysis (33).

In an effort to compare the frequency and location of the
observed copy number changes in all NSCLC to published data,
we defined amplification or deletion regions if the log2 ratio was
outside of the mean (9 normal samples) 62 SD. If amplification or
deletion frequency for a BAC clone was equal to or greater than
25% of the normal value, this BAC clone was defined as
amplification or deletion. The fluorescent in situ hybridization
(FISH) bands mapping to these BAC clones, copy number
variation (CNV) regions, were used to compare with published
datasets. Comparing our CNV regions from all samples (in-
cluding both adenocarcinoma and squamous) to Table 1 in the
article by Zhao and colleagues (13), 5 of 5 regions of deletions
were found, whereas 10 of 11 (91%) amplified regions were
overlapping. Comparing our CNV regions (based on adenocar-
cinoma samples only) to the supplementary Table 2 in the article
by Weir and colleagues (15), there was an excellent overlap of the
regions of interest, since 16 regions of deletion and 10 regions of
amplification were also found in our dataset.

NSCLC Genomic Signature Related to Smoking Status

The genomic signature related to smoking status was obtained
in three ways. First we looked for BAC clones associated with
smoking status. Second, we looked for BAC clones associated
with a smoking trend in NS/LTQ, FS, and CS; and third, we
looked for BAC clones associated with PKY.

The selection of copy number abnormalities among BAC
clones tested between the lung tumors of patients with different
smoking status (CS, FS and NS/LTQ) was based on the analysis
as described above. To classify the genomic signatures of
tumors by smoking status, we used a class-prediction model
based on the selected BACs to determine whether the genomic
patterns could be used to classify tissue samples between classes.
The agglomerative hierarchical clustering algorithm presented
in Figure 1 shows similarity in samples across array elements
and determines patterns among the statistically significant
discriminator features among the smoking groups indepen-
dently from the histological subgroup. Our prediction model
classified lung tumors of CS from those of NS/LTQ or from
those of FS with accuracies of 74 and 62% based on 35 and 85
BAC clones, respectively (Table 2). In contrast, we were not
able to distinguish NSCLC genomic signatures of FS from NS/
LTQ. The data presented are the results of an estimated
misclassification rate using the LOOCV class prediction method
(classifier selection repeated with each training set prior to the
classification of LOOCV (33). From this iterative process in
comparing CS with NS/LTQ, we identified 10 BAC clones at
genomic locations 3q21, 3q25-3q26, 5q23.2, 5q31, 5q34, 8p23.1,
12q13.3, 15q26.1, 17p13.3 and 20q13.2 that overlap each of the
hundreds of cross-validation tests. Those are presented in Figure
2. We also determined our ability to obtain such a signature
among adenocarcinomas and obtained a similar accuracy of 78%
(Table 2). For squamous carcinoma of the lung, however, and

TABLE 1. PATIENT CHARACTERISTICS

Current-smokers Former-smokers

Nonsmokers/

Long-term

Quitters P value*

Patients, n (%) 30 (40) 22 (29) 23 (31)

Age, mean (SD) 63 (9) 64 (9) 68 (12) 0.131

Sex, n (%) 0.735

Female 15 (50) 11 (50) 14 (61)

Male 15 (50) 11 (50) 9 (39)

PKY, mean (SD) 60 (50) 51 (34) 4 (13) ,0.001

Histology, n (%) 0.013

Adenocarcinoma 19 (63) 7 (32) 17 (74)

Squamous 11 (37) 15 (68) 6 (26)

Stage, n (%) 0.259

I 16 (53) 10 (45) 12 (52)

II 7 (23) 9 (41) 3 (13)

III 6 (20) 3 (14) 8 (35)

IV 1 (3) — —

Ethnicity, n (%) 0.595

Caucasian 27 (90) 21 (95) 20 (87)

Hispanic — — 1 (4)

African 3 (10) 1 (5) 1 (4)

Korean — — 1 (4)

DRC, mean (SD) 8.23 (2.87) 8.09 (2.32) 8.06 (2.41) 0.99

BIC strand breaks,

mean (SD)

0.77 (0.37) 0.64 (0.27) 0.61 (0.27) 0.352

Definition of abbreviations: BIC 5 bleomycin induced chromatin; DRC 5 DNA

repair capacity; PKY 5 pack years.

* Kruskal-Wallis test for groups with continuous outcomes; Fisher’s exact test

for categorical outcomes.
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using the same statistical cut-offs, no BAC clones were found to
be significantly associated with smoking status.

We additionally looked for BAC clones associated with
a trend of smoking status (from NS/LTQ to FS and CS). We

found 32 genomic locations strongly associated with this trend
(P , 0.0005 as cut-off points), 10 of which were in the list of 35
from the covariate model in the analysis based on smoking
status. Finally, we searched for clones associated with smoking

TABLE 2. PERFORMANCE OF A PREDICTION MODEL BASED ON SMOKING-RELATED GENOMIC
SIGNATURES AND HISTOLOGICAL SUBTYPES

Accuracy Specificity Sensitivity Classifiers, n

Smoking (CS vs. NS/LTQ) 74 (62,85) 77 (62,92) 70 (51,88) 35

Smoking (CS vs. FS) 62 (48,75) 60 (42,78) 64 (44,84) 85

Smoking (FS vs. NS/LTQ) 45 (30,60) 45 (23,67) 45 (25,66) 81

Smoking (CS vs. NS/LTQ) within Adenocarcinoma 78 (64,91) 74 (68,100) 71 (49,92) 123

Smoking (CS vs. NS/LTQ) within Squamous 41 (18,65) 64 (35,92) 0 (0,0) 8

Adenocarcinoma vs. Squamous 83 (70,97) 82 (59,100) 84 (68,100) 63

Normal vs. Adenocarcinoma 75 (63,87) 89 (68,100) 72 (59,85) 81

Normal vs. Squamous 78 (65,91) 100 (100,100) 72 (56,87) 28

Definition of abbreviations: CS 5 current-smokers; FS 5 former-smokers; LTQ 5 long-time quitters; NS 5 never-smokers.

Values are presented as percent (95% confidence interval).

Figure 1. Genomic signature
of lung cancers according to

smoking status: current-smok-

ers, never-smokers, or long-
term quitters. On the y axis,

the brown label represents the

current-smokers group and

the blue the never-smokers or
long-term quitters. S 5 squa-

mous carcinoma; A 5 adeno-

carcinoma.

Massion, Zou, Chen, et al.: Smoking Signature in Lung Cancer 1167



history defined as PKY. An additional 6 BAC clones were also
found to be associated with smoking PKY and number of
cigarettes smoked per day.

The final number of 60 genomic locations associated with
smoking (see Table E2 in the online supplement) was used in
subsequent analyses to identify candidate genes associated with
cigarette smoking. For each of the 60 BAC clones, we used the
UCSC online genome browser (http://www.genome.ucsc.edu) to
output the reference sequence genes located within an arbitrary
300,000 genomic distance, fixed on the centroid of the BAC.
This arbitrary genomic distance for each BAC was chosen
because of the absence of full sequencing information on all
BACs. This process returned 330 genes (see Table E2 in the
online supplement). Twenty-five percent of 60 genomic alter-
ations occurred at known fragile sites (34).

Normally Occurring Copy Number Alterations among

Selected Clones

To determine whether any of the smoking-related 60 genomic
alterations could be the result of natural copy number variation
we compared our results to a study on naturally occurring copy
number alterations by Richard Redon (35) (see http://www.nature.
com/nature/journal/v444/n7118/full/nature05329.html). We cross-
referenced our 2,464 clones to Redon’s list of clones that
naturally exhibit copy number variations. We found 13 of our

60 selected genomic regions with known naturally occurring copy
number variation. Only 3 of the 13 regions of CNV (RP11–
123E5, RP11–198G24, RP11–203L17) varied in the same di-
rection (gain or loss) in our dataset and may therefore carry
lower significance.

Verification of Copy Number Alterations Associated with

Smoking History

We verified the copy number alterations related to smoking in
two ways. First, we compared our data to those published by
others and second, by quantitative real-time PCR. We com-
pared our array CGH data with the data recently published by
Weir and colleagues (15) where five main regions of aberrations
were associated with smoking history in adenocarcinoma of the
lung. Of the five regions, four were found also altered in our
dataset and in the same direction. Specifically these were
regions on 7q, 7p, 10q and 16p (see Table E2 in the online
supplement). When we tested clones associated with a smoking
trend, three of five regions were also identified on 7p, 7q, and
16p.

We then selected four other genomic regions strongly asso-
ciated with cigarette-smoking history representative of our data
for quantitative real-time PCR verification. We chose these four
regions based on statistical significance and biological implica-
tions and tested the copy number of genes within these regions,
specifically, FAM5B (1q23), MCM2 (3q21), NSD1 (5q34) and

Figure 2. Scatter box plot of

median values for copy num-

ber (log2) for ten classifiers
between current-smokers and

never-smokers or long-term

quitters.
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CTSB (8p23.1). Three of these regions were related to the
smoking-status analysis and one region to the smoking-trend
analysis (FAM5B). Quantitative real-time PCR was performed
on the DNA of tumors tested by array CGH (CS, n 5 19 and
NS/LTQ, n 5 12) and we demonstrated in three out of four
a significant change in copy number following the same di-
rection as the array CGH data (Figure 3).

KEGG and GO Pathway Analysis of Smoking-Related Genes

To determine whether our smoking-related genes were
enriched for some biological processes, cellular components,
or molecular pathways and output gene ontology information
on our genes of interest, we used the WebGestalt program (36,
37). Using our 2,464 BAC array gene universe as a reference,
including 7,300 known genes, we found that our gene set is
enriched for the cell cycle pathway in the Kyoto Encyclopedia
of Genes and Genomes (KEGG), a knowledge base for
systematic analysis of gene functions in terms of the networks
of genes and molecules (38). This analysis revealed a strong
node in genes related to cell cycle function (CDC25C; CDC23;
CDK2; YWHAG; MCM2; ANAPC4; CCNB1; CDK7). The
gene ontology annotation available on WebGestalt was pro-
vided by the Stanford Source database (39, 40). The analysis
in the Gene Oncology (GO) database revealed significant
enriched population (P , 0.05) 1) in genes related to the M
phase of the cell cycle (CDC25C; CDC23; CDK2; PAFAH1B1;

SPBC24; SMC4; YWHAG; ANAPC4; CDCA5; CCNB1); 2) in
genes related to chromosome organization and biogenesis (a
process that results in the formation, arrangement of constituent
parts, or disassembly of eukaryotic chromosomes) (BRD8;
SMARCC2; SMG6; TERF2IP; TRIM23; NSD1; JMJD1B;
SMARCA4; CARM1; SMC4; MCM2; ARD1A; CDCA5;
CENPH; WHSC1); and 3) in genes involved in the transfer of
methyl groups (NSD1; CARM1; AMT; WHSC1).

Genomic Signature Associated with DNA Repair Capacity

and Polymorphism of Genes Known to Be Associated with

Risk of Development of Lung Cancer

There was no association between genomic abnormalities by
array CGH, DRC assay, or BIC strand breaks obtained from
the peripheral blood of matched individuals. The Spearman
correlations between DRC and copy number among BAC
clones ranges from 20.47 to 0.57 with FDR adjusted P values
ranging from 0.999 to 1. The Spearman correlations between
BIC strand breaks and copy number among BAC clones range
from 20.49 to 0.45 with FDR adjusted P values ranging from
0.707 to 1.

DISCUSSION

Genomic alterations found in lung cancer may relate to the
pathogenesis of this disease and specifically elucidate how

Figure 3. Scatter box plot of

median values for copy num-
ber for four classifiers between

current-smokers and never-

smokers or long-term quitters

obtained by quantitative real
time polymerase chain reac-

tion. Asterisks indicate signifi-

cant difference between
groups, P , 0.05.
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smoking history leads to specific patterns of aberrations. Here,
we focused on the discovery of genomic signatures found in
NSCLC as they relate to smoking history. We found an increase
in copy number alterations in tumors from current-smokers. We
identified specific patterns of genomic abnormalities that active
smoking confers during lung cancer development.

Genetic alterations such as mutations (9), aneuploidy, and
gene copy number alterations (deletions and amplifications)
(12, 41–43) have long been recognized in lung cancer. Recently,
attempts have been made to look at the genome in compre-
hensive ways to identify tumors with common groups of genetic
features that might provide biological or clinical guidance
beyond traditional classification by light microscopy. Single
nucleotide polymorphism arrays have been developed that are
able to analyze loss or gain of genetic material at very high
resolution (13, 44), and cancer genome resequencing efforts are
likely to uncover common mutations (45). From genomic anal-
yses, relatively small differences have been observed between
squamous and adenocarcinoma of the lung. Main differences
were described on chromosome 3q and include the p63 gene
(14, 46, 47). Minimal chromosomal regions of alterations are
now under investigation in the context of mechanistic studies of
lung tumorigenesis.

Although the airway epithelium of patients with and without
lung cancer may be particularly useful in assessing disease
elsewhere in the airways or risk of transformation (48, 49) it pro-
vides limited information as to how different lung cancers develop
their specific signatures. The signatures we have detected may
yield new insights in how cigarette exposure may select or apply
the necessary pressure to select copy number alteration in
specific regions of the genome. In fact, these signatures may
reflect new pathways to cancer development or that may occur
later in the process and be a product of selection of genomic
alterations related to smoking. Experimental data will be
needed to confirm the role of these signatures in tumor de-
velopment.

From our pathway analysis, the genes found in regions
showing association between smoking status and significant
copy number differences were implicated in DNA replication,
and chromosomal segregation such as SMC4, ANAPC4, BML,
SPC24, CARM1 and MCM2. The copy number alterations of
these genes controlling chromosomal stability may have re-
sulted in a less stable genome in smokers, a hypothesis that will
need to be tested prospectively. These data are consistent with
the literature on genotoxicity of tobacco smoke that is known to
induce DNA strand breaks, aneuploidy, and mutations in germ
cells (50, 51).

The smoking-related signature also affects copy number
changes in a series of genes associated with DNA methyltrans-
ferase activity, including genes such as NSD1, CARM1, and
WHSC1 involved in histone methyltransferase activity, and
AMT an aminomethyltransferase. Histones may be methylated
and thereby allow the recruitment of regulatory proteins (52,
53). Specific methylated residues confer gene activation within
euchromatin (54). The alterations found in these tumors suggest
an association between histone methylation, chromatin struc-
ture, and development of lung cancer in smokers. Further
investigation will be required to explore the role of tobacco
smoking in regulating lung carcinogenesis.

Cancer is thought to be clonal in nature, but because of the
related genomic instability within tumor cells we can expect
great variability of DNA abnormalities between cells within
a cancer (55). Yet among these lung tumors, some signatures
seem to persist after tumor development throughout their
progression and their histological differentiation. The fact that
smoking history leads to specific genomic alterations across

tumor types also suggests a specific pathogenesis with genomic
alteration resulting from a series of dysregulation in the DNA
repair mechanism and chromosomal segregation that needs to
be validated.

Previously we have shown that suboptimal DNA repair
capacity, as measured by the host cell reactivation assay, is
associated with up to a two-fold statistically significant increased
risk of lung cancer (56, 57). Likewise, the in vitro mutagen
sensitivity assay quantifies chromatid breaks induced by bleo-
mycin as an indirect reflection of repair ability. Higher bleo-
mycin sensitivity is associated with 1.6 to 1.9-fold lung cancer
risks with evidence of a dose–response relationship (56, 58). The
absence of association between copy number alterations and
DNA repair capacity and genomic signatures suggests that the
processes are independent from one another. Possible explan-
ations could be that the sample size of our study may not be
large enough to have the power to detect a significant difference
between smokers and never smokers, that the repair capacity
was measured in a surrogate tissue (peripheral lymphocytes)
and not in the target tissue, and that repair capacity may be
a marker of cancer risk and may not impact the genomic regions
selected by the cancer related to this phenotype.

In summary, we identified patterns of genomic abnormalities
associated with smoking exposure. These signatures may reflect
new pathways affected by smoking that lead to lung cancer
development. This initial study will need to be validated in an
independent set of tumors, but identification of specific genetic
abnormalities related to smoking history may allow for the
identification of key genes in individuals at high risk who may
be targeted for early detection and prevention strategies.
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